Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = human intestinal organoid monolayers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3110 KiB  
Communication
Regulation of Enterocyte Brush Border Membrane Primary Na-Absorptive Transporters in Human Intestinal Organoid-Derived Monolayers
by Jennifer Haynes, Balasubramanian Palaniappan, John M. Crutchley and Uma Sundaram
Cells 2024, 13(19), 1623; https://doi.org/10.3390/cells13191623 - 28 Sep 2024
Cited by 1 | Viewed by 1174
Abstract
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, [...] Read more.
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, whether NHE3 and SGLT1 regulate one another in normal human enterocytes is unknown, mainly due to a lack of appropriate experimental models. To investigate this, we generated 2D enterocyte monolayers from human jejunal 3D organoids and used small interfering RNAs (siRNAs) to knock down NHE3 or SGLT1. Molecular and uptake studies were performed to determine the effects on NHE3 and SGLT1 expression and activity. Knockdown of NHE3 by siRNA in enterocyte monolayers was verified by qPCR and Western blot analysis and resulted in reduced NHE3 activity. However, in NHE3 siRNA-transfected cells, SGLT1 activity was significantly increased. siRNA knockdown of SGLT1 was confirmed by qPCR and Western blot analysis and resulted in reduced SGLT1 activity. However, in SGLT1 siRNA-transfected cells, NHE3 activity was significantly increased. These results demonstrate for the first time the functionality of siRNA in patient-derived organoid monolayers. Furthermore, they show that the two primary Na absorptive pathways in human enterocytes reciprocally regulate one another. Full article
(This article belongs to the Special Issue Organoids as an Experimental Tool)
Show Figures

Figure 1

18 pages, 2383 KiB  
Article
Validating Enteroid-Derived Monolayers from Murine Gut Organoids for Toxicological Testing of Inorganic Particles: Proof-of-Concept with Food-Grade Titanium Dioxide
by Yann Malaisé, Eva Casale, Aurélie Pettes-Duler, Christel Cartier, Eric Gaultier, Natalia Martins Breyner, Eric Houdeau, Lauris Evariste and Bruno Lamas
Int. J. Mol. Sci. 2024, 25(5), 2635; https://doi.org/10.3390/ijms25052635 - 23 Feb 2024
Cited by 1 | Viewed by 1374
Abstract
Human exposure to foodborne inorganic nanoparticles (NPs) is a growing concern. However, identifying potential hazards linked to NP ingestion often requires long-term exposure in animals. Owing these constraints, intestinal organoids are a promising alternative to in vivo experiments; as such, an in vitro [...] Read more.
Human exposure to foodborne inorganic nanoparticles (NPs) is a growing concern. However, identifying potential hazards linked to NP ingestion often requires long-term exposure in animals. Owing these constraints, intestinal organoids are a promising alternative to in vivo experiments; as such, an in vitro approach should enable a rapid and reliable assessment of the effects of ingested chemicals on the gut. However, this remains to be validated for inorganic substances. In our study, a transcriptomic analysis and immunofluorescence staining were performed to compare the effects of food-grade TiO2 (fg-TiO2) on enteroid-derived monolayers (EDMs) from murine intestinal organoids to the known impacts of TiO2 on intestinal epithelium. After their ability to respond to a pro-inflammatory cytokine cocktail was validated, EDMs were exposed to 0, 0.1, 1, or 10 µg fg-TiO2/mL for 24 h. A dose-related increase of the muc2, vilin 1, and chromogranin A gene markers of cell differentiation was observed. In addition, fg-TiO2 induced apoptosis and dose-dependent genotoxicity, while a decreased expression of genes encoding for antimicrobial peptides, and of genes related to tight junction function, was observed. These results validated the use of EDMs as a reliable model for the toxicity testing of foodborne NPs likely to affect the intestinal barrier. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 239 KiB  
Review
Recent Advances in the Gastrointestinal Complex in Vitro Model for ADME Studies
by Kazuyoshi Michiba, Kengo Watanabe, Tomoki Imaoka and Daisuke Nakai
Pharmaceutics 2024, 16(1), 37; https://doi.org/10.3390/pharmaceutics16010037 - 27 Dec 2023
Cited by 2 | Viewed by 1782
Abstract
Intestinal absorption is a complex process involving the permeability of the epithelial barrier, efflux transporter activity, and intestinal metabolism. Identifying the key factors that govern intestinal absorption for each investigational drug is crucial. To assess and predict intestinal absorption in humans, it is [...] Read more.
Intestinal absorption is a complex process involving the permeability of the epithelial barrier, efflux transporter activity, and intestinal metabolism. Identifying the key factors that govern intestinal absorption for each investigational drug is crucial. To assess and predict intestinal absorption in humans, it is necessary to leverage appropriate in vitro systems. Traditionally, Caco-2 monolayer systems and intestinal Ussing chamber studies have been considered the ‘gold standard’ for studying intestinal absorption. However, these methods have limitations that hinder their universal use in drug discovery and development. Recently, there has been an increasing number of reports on complex in vitro models (CIVMs) using human intestinal organoids derived from intestinal tissue specimens or iPSC-derived enterocytes plated on 2D or 3D in microphysiological systems. These CIVMs provide a more physiologically relevant representation of key ADME-related proteins compared to conventional in vitro methods. They hold great promise for use in drug discovery and development due to their ability to replicate the expressions and functions of these proteins. This review highlights recent advances in gut CIVMs employing intestinal organoid model systems compared to conventional methods. It is important to note that each CIVM should be tailored to the investigational drug properties and research questions at hand. Full article
19 pages, 4903 KiB  
Article
A Colonic Organoid Model Challenged with the Large Toxins of Clostridioides difficile TcdA and TcdB Exhibit Deregulated Tight Junction Proteins
by Martina Schneemann, Lucas Heils, Verena Moos, Franziska Weiß, Susanne M. Krug, January Weiner, Dieter Beule, Ralf Gerhard, Jörg-Dieter Schulzke and Roland Bücker
Toxins 2023, 15(11), 643; https://doi.org/10.3390/toxins15110643 - 4 Nov 2023
Cited by 1 | Viewed by 2604
Abstract
Background: Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. Lack of functional studies in organoid models of the gut prompted us to elucidate the toxin’s effects on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. Methods: [...] Read more.
Background: Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. Lack of functional studies in organoid models of the gut prompted us to elucidate the toxin’s effects on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. Methods: Human adult colon organoids were cultured on membrane inserts. Tight junction (TJ) proteins and actin cytoskeleton were analyzed for expression via Western blotting and via confocal laser-scanning microscopy for subcellular localization. Results: Polarized intestinal organoid monolayers were established from stem cell-containing colon organoids to apply toxins from the apical side and to perform functional measurements in the organoid model. The toxins caused a reduction in transepithelial electrical resistance in human colonic organoid monolayers with sublethal concentrations. Concomitantly, we detected increased paracellular permeability fluorescein and FITC-dextran-4000. Human colonic organoid monolayers exposed to the toxins exhibited redistribution of barrier-forming TJ proteins claudin-1, -4 and tricellulin, whereas channel-forming claudin-2 expression was increased. Perijunctional F-actin cytoskeleton organization was affected. Conclusions: Adult stem cell-derived human colonic organoid monolayers were applicable as a colon infection model for electrophysiological measurements. The TJ changes noted can explain the epithelial barrier dysfunction and diarrhea in patients, as well as increased entry of luminal antigens triggering inflammation. Full article
(This article belongs to the Special Issue Enterotoxins and Mucosal Pathomechanisms)
Show Figures

Figure 1

31 pages, 28033 KiB  
Article
Canine Intestinal Organoids as a Novel In Vitro Model of Intestinal Drug Permeability: A Proof-of-Concept Study
by Dipak Kumar Sahoo, Marilyn N. Martinez, Kimberly Dao, Vojtech Gabriel, Christopher Zdyrski, Albert E. Jergens, Todd Atherly, Chelsea A. Iennarella-Servantez, Laura E. Burns, Dwayne Schrunk, Donna A. Volpe, Karin Allenspach and Jonathan P. Mochel
Cells 2023, 12(9), 1269; https://doi.org/10.3390/cells12091269 - 27 Apr 2023
Cited by 12 | Viewed by 4123
Abstract
A key component of efforts to identify the biological and drug-specific aspects contributing to therapeutic failure or unexpected exposure-associated toxicity is the study of drug–intestinal barrier interactions. While methods supporting such assessments are widely described for human therapeutics, relatively little information is available [...] Read more.
A key component of efforts to identify the biological and drug-specific aspects contributing to therapeutic failure or unexpected exposure-associated toxicity is the study of drug–intestinal barrier interactions. While methods supporting such assessments are widely described for human therapeutics, relatively little information is available for similar evaluations in support of veterinary pharmaceuticals. There is, therefore, a critical need to develop novel approaches for evaluating drug–gut interactions in veterinary medicine. Three-dimensional (3D) organoids can address these difficulties in a reasonably affordable system that circumvents the need for more invasive in vivo assays in live animals. However, a first step in developing such systems is understanding organoid interactions in a 2D monolayer. Given the importance of orally administered medications for meeting the therapeutic need of companion animals, we demonstrate growth conditions under which canine-colonoid-derived intestinal epithelial cells survive, mature, and differentiate into confluent cell systems with high monolayer integrity. We further examine the applicability of this canine-colonoid-derived 2D model to assess the permeability of three structurally diverse, passively absorbed β-blockers (e.g., propranolol, metoprolol, and atenolol). Both the absorptive and secretive apparent permeability (Papp) of these drugs at two different pH conditions were evaluated in canine-colonoid-derived monolayers and compared with that of Caco-2 cells. This proof-of-concept study provides promising preliminary results with regard to the utility of canine-derived organoid monolayers for species-specific assessments of therapeutic drug passive permeability. Full article
Show Figures

Figure 1

23 pages, 2434 KiB  
Review
Induced Pluripotent Stem Cell-Derived Organoids: Their Implication in COVID-19 Modeling
by Mária Csöbönyeiová, Martin Klein, Marcela Kuniaková, Ivan Varga and Ľuboš Danišovič
Int. J. Mol. Sci. 2023, 24(4), 3459; https://doi.org/10.3390/ijms24043459 - 9 Feb 2023
Cited by 2 | Viewed by 3803
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant global health issue. This novel virus’s high morbidity and mortality rates have prompted the scientific community to quickly find the best COVID-19 model [...] Read more.
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant global health issue. This novel virus’s high morbidity and mortality rates have prompted the scientific community to quickly find the best COVID-19 model to investigate all pathological processes underlining its activity and, more importantly, search for optimal drug therapy with minimal toxicity risk. The gold standard in disease modeling involves animal and monolayer culture models; however, these models do not fully reflect the response to human tissues affected by the virus. However, more physiological 3D in vitro culture models, such as spheroids and organoids derived from induced pluripotent stem cells (iPSCs), could serve as promising alternatives. Different iPSC-derived organoids, such as lung, cardiac, brain, intestinal, kidney, liver, nasal, retinal, skin, and pancreatic organoids, have already shown immense potential in COVID-19 modeling. In the present comprehensive review article, we summarize the current knowledge on COVID-19 modeling and drug screening using selected iPSC-derived 3D culture models, including lung, brain, intestinal, cardiac, blood vessels, liver, kidney, and inner ear organoids. Undoubtedly, according to reviewed studies, organoids are the state-of-the-art approach to COVID-19 modeling. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Graphical abstract

33 pages, 22093 KiB  
Article
Hypoxia-Driven Changes in a Human Intestinal Organoid Model and the Protective Effects of Hydrolyzed Whey
by Ilse H. de Lange, Charlotte van Gorp, Kimberly R. I. Massy, Lilian Kessels, Nico Kloosterboer, Ann Bjørnshave, Marie Stampe Ostenfeld, Jan G. M. C. Damoiseaux, Joep P. M. Derikx, Wim G. van Gemert and Tim G. A. M. Wolfs
Nutrients 2023, 15(2), 393; https://doi.org/10.3390/nu15020393 - 12 Jan 2023
Cited by 3 | Viewed by 3333
Abstract
Many whey proteins, peptides and protein-derived amino acids have been suggested to improve gut health through their anti-oxidant, anti-microbial, barrier-protective and immune-modulating effects. Interestingly, although the degree of hydrolysis influences peptide composition and, thereby, biological function, this important aspect is often overlooked. In [...] Read more.
Many whey proteins, peptides and protein-derived amino acids have been suggested to improve gut health through their anti-oxidant, anti-microbial, barrier-protective and immune-modulating effects. Interestingly, although the degree of hydrolysis influences peptide composition and, thereby, biological function, this important aspect is often overlooked. In the current study, we aimed to investigate the effects of whey protein fractions with different degrees of enzymatic hydrolysis on the intestinal epithelium in health and disease with a novel 2D human intestinal organoid (HIO) monolayer model. In addition, we aimed to assess the anti-microbial activity and immune effects of the whey protein fractions. Human intestinal organoids were cultured from adult small intestines, and a model enabling apical administration of nutritional components during hypoxia-induced intestinal inflammation and normoxia (control) in crypt-like and villus-like HIO was established. Subsequently, the potential beneficial effects of whey protein isolate (WPI) and two whey protein hydrolysates with a 27.7% degree of hydrolysis (DH28) and a 50.9% degree of hydrolysis (DH51) were assessed. In addition, possible immune modulatory effects on human peripheral immune cells and anti-microbial activity on four microbial strains of the whey protein fractions were investigated. Exposure to DH28 prevented paracellular barrier loss of crypt-like HIO following hypoxia-induced intestinal inflammation with a concomitant decrease in hypoxia inducible factor 1 alpha (HIF1α) mRNA expression. WPI increased Treg numbers and Treg expression of cluster of differentiation 25 (CD25) and CD69 and reduced CD4+ T cell proliferation, whereas no anti-microbial effects were observed. The observed biological effects were differentially mediated by diverse whey protein fractions, indicating that (degree of) hydrolysis influences their biological effects. Moreover, these new insights may provide opportunities to improve immune tolerance and promote intestinal health. Full article
Show Figures

Figure 1

17 pages, 3547 KiB  
Article
Protective Effect of Irsogladine against Aspirin-Induced Mucosal Injury in Human Induced Pluripotent Stem Cell-Derived Small Intestine
by Takuya Kanno, Takahito Katano, Isamu Ogawa, Takahiro Iwao, Tamihide Matsunaga and Hiromi Kataoka
Medicina 2023, 59(1), 92; https://doi.org/10.3390/medicina59010092 - 31 Dec 2022
Cited by 2 | Viewed by 2888
Abstract
Background and Objectives: Acetylsalicylic acid (ASA) is widely used for preventing cerebrovascular and cardiovascular diseases. Gastrointestinal (GI) tract injury is one of the major complications of aspirin use, potentially leading to severe GI bleeding. However, no drugs for preventing aspirin-induced small intestinal [...] Read more.
Background and Objectives: Acetylsalicylic acid (ASA) is widely used for preventing cerebrovascular and cardiovascular diseases. Gastrointestinal (GI) tract injury is one of the major complications of aspirin use, potentially leading to severe GI bleeding. However, no drugs for preventing aspirin-induced small intestinal injury have been developed. The aim of this study was to establish a human experimental model for investigating aspirin-induced small intestinal mucosal injury. In addition, we evaluated the protective effect of Irsogladine against aspirin-induced small intestinal mucosal injury using human induced pluripotent stem cell-derived 2D monolayer crypt-villus structural small intestine (2D-hiPSC-SI). Materials and Methods: Human iPS cell-derived intestinal organoids were seeded and cultured in Air-liquid interface. The permeability of 2D-hiPSC-SI was evaluated using Lucifer yellow. Changes in structure and mucosal permeability of 2D-hiPSC-SI after addition of aspirin were confirmed over time, and changes in intestinal epithelium-related markers were evaluated by real-time qPCR and Immunofluorescence staining. The effect of Irsogladine on prevention of aspirin mucosal injury was examined by adding Irsogladine to the culture medium. Results: Cultured 2D-hiPSC-SI showed multi-lineage differentiation into small intestinal epithelium comprised of absorptive cells, goblet cells, enteroendocrine cells, and Paneth cells, which express CD10, MUC2, chromogranin A, and lysozyme, respectively. RNA in situ hybridization revealed intestinal stem cells that express Lgr5. ASA administration induced an increase in the mucosal permeability of 2D-hiPSC-SI. ASA-injured 2D-hiPSC-SI showed decreased mRNA expression of multi-lineage small intestinal cell markers as well as intestinal stem cell marker Lgr5. Administration of Irsogladine on the basal side of the 2D-hiPSC-SI resulted in significant increases in Mki67 and Muc2 mRNA expression by 2D-hiPSCs at 48 h compared with the control group. Administration of 400 µg/mL Irsogladine to the ASA-induced small intestinal injury model resulting in significantly decreased mucosal permeability of 2D-hiPSC-SI. In immunofluorescence staining, Irsogladine significantly increased the fluorescence intensity of MUC2 under normal conditions and administration of 400 µg/mL ASA. Conclusions: we established a novel ASA-induced small intestinal injury model using human iPSC-derived small intestine. Irsogladine maintains mucosal permeability and goblet cell differentiation against ASA-induced small intestinal injury. Full article
(This article belongs to the Special Issue Intestinal Permeability and Approach to Healing the Gut)
Show Figures

Figure 1

17 pages, 2371 KiB  
Article
Fecal Luminal Factors from Patients with Gastrointestinal Diseases Alter Gene Expression Profiles in Caco-2 Cells and Colonoids
by Luiza Moraes Holst, Cristina Iribarren, Maria Sapnara, Otto Savolainen, Hans Törnblom, Yvonne Wettergren, Hans Strid, Magnus Simrén, Maria K. Magnusson and Lena Öhman
Int. J. Mol. Sci. 2022, 23(24), 15505; https://doi.org/10.3390/ijms232415505 - 7 Dec 2022
Cited by 6 | Viewed by 3161
Abstract
Previous in vitro studies have shown that the intestinal luminal content, including metabolites, possibly regulates epithelial layer responses to harmful stimuli and promotes disease. Therefore, we aimed to test the hypothesis that fecal supernatants from patients with colon cancer (CC), ulcerative colitis (UC) [...] Read more.
Previous in vitro studies have shown that the intestinal luminal content, including metabolites, possibly regulates epithelial layer responses to harmful stimuli and promotes disease. Therefore, we aimed to test the hypothesis that fecal supernatants from patients with colon cancer (CC), ulcerative colitis (UC) and irritable bowel syndrome (IBS) contain distinct metabolite profiles and establish their effects on Caco-2 cells and human-derived colon organoids (colonoids). The metabolite profiles of fecal supernatants were analyzed by liquid chromatography–mass spectrometry and distinguished patients with CC (n = 6), UC (n = 6), IBS (n = 6) and healthy subjects (n = 6). Caco-2 monolayers and human apical-out colonoids underwent stimulation with fecal supernatants from different patient groups and healthy subjects. Their addition did not impair monolayer integrity, as measured by transepithelial electrical resistance; however, fecal supernatants from different patient groups and healthy subjects altered the gene expression of Caco-2 monolayers, as well as colonoid cultures. In conclusion, the stimulation of Caco-2 cells and colonoids with fecal supernatants derived from CC, UC and IBS patients altered gene expression profiles, potentially reflecting the luminal microenvironment of the fecal sample donor. This experimental approach allows for investigating the crosstalk at the gut barrier and the effects of the gut microenvironment in the pathogenesis of intestinal diseases. Full article
Show Figures

Figure 1

12 pages, 8865 KiB  
Article
Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers
by Fabiana Ciciriello, Marcel J. C. Bijvelds, Federico Alghisi, Kelly F. Meijsen, Luca Cristiani, Claudio Sorio, Paola Melotti, Alessandro G. Fiocchi, Vincenzina Lucidi and Hugo R. De Jonge
J. Pers. Med. 2022, 12(4), 632; https://doi.org/10.3390/jpm12040632 - 14 Apr 2022
Cited by 17 | Viewed by 3189
Abstract
Background: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CFTR [...] Read more.
Background: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CFTR alleles both by established and novel modulators in patient-derived primary cell cultures (organoids). Presently, we assessed the CFTR-mediated electrical current across rectal organoid-derived epithelial monolayers. This technique, which allows separate measurement of CFTR-dependent chloride or bicarbonate transport, was used to assess the effect of ELX/TEZ/IVA on two rare CFTR variants. Methods: Intestinal organoid cultures were established from rectal biopsies of CF patients carrying the rare missense mutations E193K or R334W paired with F508del. The effect of the CFTR modulator combination ELX/TEZ/IVA on CFTR-mediated Cl and HCO3 secretion was assessed in organoid-derived intestinal epithelial monolayers. Non-CF organoids were used for comparison. Clinical biomarkers (sweat chloride, FEV1) were monitored in patients receiving modulator therapy. Results: ELX/TEZ/IVA markedly enhanced CFTR-mediated bicarbonate and chloride transport across intestinal epithelium of both patients. Consistent with the rescue of CFTR function in cultured intestinal cells, ELX/TEZ/IVA therapy improved biomarkers of CFTR function in the R334W/F508del patient. Conclusions: Current measurements in organoid-derived intestinal monolayers can readily be used to monitor CFTR-dependent epithelial Cl and HCO3 transport. This technique can be explored to assess the functional consequences of rare CFTR mutations and the efficacy of CFTR modulators. We propose that this functional CFTR assay may guide personalized medicine in patients with CF-like clinical manifestations as well as in those carrying rare CFTR mutations. Full article
Show Figures

Figure 1

21 pages, 1615 KiB  
Article
Effects of Human Milk Oligosaccharides on the Adult Gut Microbiota and Barrier Function
by Tanja Šuligoj, Louise Kristine Vigsnæs, Pieter Van den Abbeele, Athanasia Apostolou, Katia Karalis, George M. Savva, Bruce McConnell and Nathalie Juge
Nutrients 2020, 12(9), 2808; https://doi.org/10.3390/nu12092808 - 13 Sep 2020
Cited by 110 | Viewed by 14480
Abstract
Human milk oligosaccharides (HMOs) shape the gut microbiota in infants by selectively stimulating the growth of bifidobacteria. Here, we investigated the impact of HMOs on adult gut microbiota and gut barrier function using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME® [...] Read more.
Human milk oligosaccharides (HMOs) shape the gut microbiota in infants by selectively stimulating the growth of bifidobacteria. Here, we investigated the impact of HMOs on adult gut microbiota and gut barrier function using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), Caco2 cell lines, and human intestinal gut organoid-on-chips. We showed that fermentation of 2’-O-fucosyllactose (2’FL), lacto-N-neotetraose (LNnT), and combinations thereof (MIX) led to an increase of bifidobacteria, accompanied by an increase of short chain fatty acid (SCFA), in particular butyrate with 2’FL. A significant reduction in paracellular permeability of FITC-dextran probe was observed using Caco2 cell monolayers with fermented 2’FL and MIX, which was accompanied by an increase in claudin-8 gene expression as shown by qPCR, and a reduction in IL-6 as determined by multiplex ELISA. Using gut-on-chips generated from human organoids derived from proximal, transverse, and distal colon biopsies (Colon Intestine-Chips), we showed that claudin-5 was significantly upregulated across all three gut-on-chips following treatment with fermented 2’FL under microfluidic conditions. Taken together, these data show that, in addition to their bifidogenic activity, HMOs have the capacity to modulate immune function and the gut barrier, supporting the potential of HMOs to provide health benefits in adults. Full article
Show Figures

Figure 1

Back to TopTop