Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = hydrogenase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2194 KB  
Article
Methylocystis hydrogenophila sp. nov.—A Type IIa Methanotrophic Bacterium Able to Utilize Hydrogen as an Alternative Energy Source
by Kangli Guo, Thomas Heimerl, Anna Hakobyan, Dongfei Han and Werner Liesack
Microorganisms 2025, 13(10), 2309; https://doi.org/10.3390/microorganisms13102309 - 5 Oct 2025
Viewed by 227
Abstract
A novel species of the genus Methylocystis is proposed based on polyphasic evidence from strain SC2T, isolated from the heavily polluted Saale River near Wichmar, Germany. Digital DNA–DNA hybridization and phylogenomic analyses demonstrate that strain SC2T represents a distinct species [...] Read more.
A novel species of the genus Methylocystis is proposed based on polyphasic evidence from strain SC2T, isolated from the heavily polluted Saale River near Wichmar, Germany. Digital DNA–DNA hybridization and phylogenomic analyses demonstrate that strain SC2T represents a distinct species within the genus, clearly separated from its closest relatives, namely Methylocystis suflitae NLS-7T, Methylocystis rosea SV97T, Methylocystis silviterrae FST, and Methylocystis hirsuta CSC1T. As is typical of the family Methylocystaceae, cells possess intracytoplasmic membranes arranged parallel to the cytoplasmic membrane, and the dominant fatty acids are C18:1ω8c and C18:1ω7c. The strain grows aerobically on methane as the primary carbon and energy source and expresses both low- and high-affinity particulate methane monooxygenase (pMMO), but lacks the soluble form. The species epithet reflects the strain’s ability to utilize hydrogen as an alternative energy source. A further feature is its use of asparagine as an osmoprotectant, enhancing salt tolerance. Genomic analysis reveals complete pathways for nitrogen fixation, denitrification, and hydrogen oxidation. These genetic and physiological characteristics support the designation of a novel species, for which the name Methylocystis hydrogenophila sp. nov. is proposed. The type strain is SC2T (=DSM 114506 = NCIMB 15437). Full article
(This article belongs to the Section Microbial Biotechnology)
20 pages, 1498 KB  
Article
Predicting the Structure of Hydrogenase in Microalgae: The Case of Nannochloropsis salina
by Simone Botticelli, Cecilia Faraloni and Giovanni La Penna
Hydrogen 2025, 6(4), 77; https://doi.org/10.3390/hydrogen6040077 - 2 Oct 2025
Viewed by 256
Abstract
The production of green hydrogen by microalgae is a promising strategy to convert energy of sun light into a carbon-free fuel. Many problems must be solved before large-scale industrial applications. One solution is to find a microalgal species that is easy to grow, [...] Read more.
The production of green hydrogen by microalgae is a promising strategy to convert energy of sun light into a carbon-free fuel. Many problems must be solved before large-scale industrial applications. One solution is to find a microalgal species that is easy to grow, easy to manipulate, and that can produce hydrogen open-air, thus in the presence of oxygen, for periods of time as long as possible. In this work we investigate by means of predictive computational models, the [FeFe] hydrogenase enzyme of Nannochloropsis salina, a promising microcalga already used to produce high-value products in salt water. Catalysis of water reduction to hydrogen by [FeFe] hydrogenase occurs in a peculiar iron-sulfur cluster (H-cluster) contained into a conserved H-domain, well represented by the known structure of the single-domain enzyme in Chlamydomonas reinhardtii (457 residues). By combining advanced deep-learning and molecular simulation methods we propose for N. salina a two-domain enzyme architecture hosting five iron-sulfur clusters. The enzyme organization is allowed by the protein size of 708 residues and by its sequence rich in cysteine and histidine residues mostly binding Fe atoms. The structure of an extended F-domain, containing four auxiliary iron-sulfur clusters and interacting with both the reductant ferredoxin and the H-domain, is thus predicted for the first time for microalgal [FeFe] hydrogenase. The structural study is the first step towards further studies of the microalga as a microorganism producing pure hydrogen gas. Full article
Show Figures

Figure 1

36 pages, 2410 KB  
Review
Catalytic Innovations for High-Yield Biohydrogen Production in Integrated Dark Fermentation and Microbial Electrolysis Systems
by Chetan Pandit, Siddhant Srivastava and Chang-Tang Chang
Catalysts 2025, 15(9), 848; https://doi.org/10.3390/catal15090848 - 3 Sep 2025
Viewed by 913
Abstract
Biohydrogen, a low-carbon footprint technology, can play a significant role in decarbonizing the energy system. It uses existing infrastructure, is easily transportable, and produces no greenhouse gas emissions. Four technologies can be used to produce biohydrogen: photosynthetic biohydrogen, dark fermentation (DF), photo-fermentation, and [...] Read more.
Biohydrogen, a low-carbon footprint technology, can play a significant role in decarbonizing the energy system. It uses existing infrastructure, is easily transportable, and produces no greenhouse gas emissions. Four technologies can be used to produce biohydrogen: photosynthetic biohydrogen, dark fermentation (DF), photo-fermentation, and microbial electrolysis cells (MECs). DF produces more biohydrogen and is flexible with organic substrates, making it a sustainable method of waste repurposing. However, low achievable biohydrogen yields are a common issue. To overcome this, catalytic mechanisms, including enzymatic systems such as [Fe-Fe]- and [Ni-Fe]-hydrogenases in DF and electroactive microbial consortia in MECs, alongside advanced electrode catalysts which collectively surmount thermodynamic and kinetic constraints, and the two stage system, such as DF connection to photo-fermentation and anaerobic digestion (AD) to microbial electrolysis cells (MECs), have been investigated. MECs can generate biohydrogen at better yields by using sugars or organic acids, and combining DF and MEC technologies could improve biohydrogen production. As such, this review highlights the challenges and possible solutions for coupling DF–MEC while also offering knowledge regarding the technical and microbiological aspects. Full article
Show Figures

Figure 1

21 pages, 8482 KB  
Article
Comparative Genomics of Sigma Factors in Acidithiobacillia Sheds Light into the Transcriptional Regulatory Networks Involved in Biogeochemical Dynamics in Extreme Acidic Environments
by Pedro Sepúlveda-Rebolledo, Carolina González-Rosales, Mark Dopson, Ernesto Pérez-Rueda, David S. Holmes and Jorge H. Valdés
Microorganisms 2025, 13(6), 1199; https://doi.org/10.3390/microorganisms13061199 - 24 May 2025
Viewed by 1016
Abstract
Extreme acidophiles from the Acidithiobacillia class thrive in highly acidic environments where they rely on diverse regulatory mechanisms for adaptation. These mechanisms include sigma factors, transcription factors (TFs), and transcription factor binding sites (TFBS), which control essential pathways. Comparative genomics and bioinformatics analyses [...] Read more.
Extreme acidophiles from the Acidithiobacillia class thrive in highly acidic environments where they rely on diverse regulatory mechanisms for adaptation. These mechanisms include sigma factors, transcription factors (TFs), and transcription factor binding sites (TFBS), which control essential pathways. Comparative genomics and bioinformatics analyses identified sigma factors and TFs in Acidithiobacillia, showing similarities but key differences from reference neutrophiles. This study highlights sigma54-dependent one- and two-component systems that are crucial for survival in energy acquisition from sulfur compounds and hydrogen as well as nutrient assimilation. Furthermore, the data suggested evolutionary divergence in regulatory elements distinguishes S-oxidizing from Fe-S-oxidizing members of Acidithiobacillia. Conservation of gene clusters, synteny, and phylogenetic analyses supported the expected phenotypes in each species. Notable examples include HupR’s role in hydrogenase-2 oxidation in Fe-S-oxidizers, TspR/TspS regulation of the sulfur oxidation complex, and FleR/FleS control of flagellar motility in S-oxidizers. These regulatory mechanisms act as master controllers of bacterial activity, reflecting adaptation to distinct metabolic needs within Acidithiobacillia. Full article
(This article belongs to the Special Issue Bioinformatics and Omic Data Analysis in Microbial Research)
Show Figures

Figure 1

15 pages, 3190 KB  
Review
Analysis of Mechanisms for Electron Uptake by Methanothrix harundinacea 6Ac During Direct Interspecies Electron Transfer
by Lei Wang, Xiaoman Shan, Yanhui Xu, Quan Xi, Haiming Jiang and Xia Li
Int. J. Mol. Sci. 2025, 26(9), 4195; https://doi.org/10.3390/ijms26094195 - 28 Apr 2025
Viewed by 903
Abstract
Direct interspecies electron transfer (DIET) is a syntrophic metabolism wherein free electrons are directly transferred between microorganisms without the mediation of intermediates such as molecular hydrogen or formate. Previous research has demonstrated that Methanothrix harundinacea 6Ac is capable of reducing carbon dioxide through [...] Read more.
Direct interspecies electron transfer (DIET) is a syntrophic metabolism wherein free electrons are directly transferred between microorganisms without the mediation of intermediates such as molecular hydrogen or formate. Previous research has demonstrated that Methanothrix harundinacea 6Ac is capable of reducing carbon dioxide through DIET. However, the mechanisms underlying electron uptake in M. harundinacea 6Ac during DIET remain poorly understood. This study aims to elucidate the electron and proton flux in M. harundinacea 6Ac during DIET and to propose a model for electron uptake in this organism, primarily based on the analysis of gene transcript levels, genomic characteristics of M. harundinacea 6Ac, and the pathways generating fully reduced ferridoxin (Fdred2−), reduced coenzyme F420 (F420H2), coenzyme M (CoM-SH), and coenzyme B (CoB-SH) during DIET. The findings suggest that membrane-bound heterodisulfide reductase (HdrED), F420H2-dehydrogenase lacking subunit F (Fpo), and cytoplasmic heterodisulfide reductase (HdrABC)-subunit B of F420-reducing hydrogenase (FrhB) complex play critical roles in electron uptake in M. harundinacea 6Ac during DIET. Specifically, Fpo is responsible for generating Fdred2− with reduced methanophenazine (MPH2), driven by a proton motive force, while HdrED facilitates the reduction of heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB) to CoM-SH and CoB-SH using MPH2. Additionally, cytoplasmic heterodisulfide reductase HdrABC and subunit B of coenzyme F420-hydrogenase complex (HdrABC-FrhB complex) catalyzes the reduction of oxidized coenzyme F420 (F420) to F420H2, utilizing CoM-SH, CoB-SH, and Fdred2−. This study represents the first genetics-based functional characterization of electron and proton flux in M. harundinacea 6Ac during DIET, providing a model for further investigation of electron uptake in Methanosaeta species. Furthermore, it deepens our understanding of the mechanisms underlying electron uptake in methanogens during DIET. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

19 pages, 3821 KB  
Article
Analysis of the Genomes and Adaptive Traits of Skermanella cutis sp. nov., a Human Skin Isolate, and the Type Strains Skermanella rosea and Skermanella mucosa
by Yujin Choi, Munkhtsatsral Ganzorig and Kyoung Lee
Microorganisms 2025, 13(1), 94; https://doi.org/10.3390/microorganisms13010094 - 6 Jan 2025
Cited by 3 | Viewed by 1444
Abstract
The genus Skermanella comprises important soil bacteria that are often associated with the crop rhizospheres, but its physiological traits remain poorly understood. This study characterizes Skermanella sp. TT6T, isolated from human skin, with a focus on its metabolic and environmental adaptations. [...] Read more.
The genus Skermanella comprises important soil bacteria that are often associated with the crop rhizospheres, but its physiological traits remain poorly understood. This study characterizes Skermanella sp. TT6T, isolated from human skin, with a focus on its metabolic and environmental adaptations. Genome sequencing and phylogenomic analyses revealed that the strain TT6T is most closely related to S. rosea M1T, with average nucleotide identity and digital DNA–DNA hybridization values of 94.14% (±0.5%) and 64.7%, respectively. Comparative genomic analysis showed that the strains TT6T, S. rosea M1T and S. mucosa 8-14-6T share the Calvin cycle, and possess photosynthetic genes associated with the purple bacteria-type photosystem II. The strains TT6T and S. rosea M1T exhibited growth in a nitrogen-free medium under microaerobic conditions, which were generated in test tubes containing 0.1% soft agar. Under these conditions, with nitrate as a nitrogen source, S. rosea M1T formed gases, indicating denitrification. Strain TT6T also contains gene clusters involved in trehalose and carotenoid biosynthesis, along with salt-dependent colony morphology changes, highlighting its adaptive versatility. Genomic analyses further identified pathways related to hydrogenase and sulfur oxidation. Phenotypic and chemotaxonomic traits of strain TT6T were also compared with closely related type strains, confirming its genotypic and phenotypic distinctiveness. The new species, Skermanella cutis sp. nov., is proposed, with TT6T (=KCTC 82306T = JCM 34945T) as the type strain. This study underscores the agricultural and ecological significance of the genus Skermanella. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 1809 KB  
Article
Quantum Chemical Topological Analysis of [2Fe2S] Core in Novel [FeFe]-Hydrogenase Mimics
by Piotr Matczak
Crystals 2025, 15(1), 52; https://doi.org/10.3390/cryst15010052 - 3 Jan 2025
Viewed by 1142
Abstract
Synthetic mimics of the active site of [FeFe]-hydrogenase enzymes are important in the context of catalytic hydrogen production for future energetic applications. Providing a detailed quantum chemical description of the catalytic center of such mimics contributes to a better understanding of their behavior [...] Read more.
Synthetic mimics of the active site of [FeFe]-hydrogenase enzymes are important in the context of catalytic hydrogen production for future energetic applications. Providing a detailed quantum chemical description of the catalytic center of such mimics contributes to a better understanding of their behavior in hydrogen production processes. In this work, the analysis of bonds in the butterfly [2Fe2S] core in a series of complexes based on recently synthesized [FeFe]-hydrogenase mimics has been carried out using a wide range of quantum chemical topological methods. This series includes hexacarbonyl diiron dithiolate-bridged complexes with the bridging ligand bearing a five-membered carbon ring functionalized with diverse groups. The quantum theory of atoms in molecules (QTAIM) and the electron localization function (ELF) provided detailed characteristics of Fe–Fe and Fe–S bonds in the [2Fe2S] core of the complexes. A relatively small amount of strongly delocalized electron charge is attributed to the Fe–Fe bond. It was established how the topological parameters of the Fe–Fe and Fe–S bonds are affected by the five-membered carbon ring and its functionalization in the bridging dithiolate ligand. Next, one of the first applications of the interacting quantum atoms (IQA) method to [FeFe]-hydrogenase mimics was presented. The pairwise interaction between the metal centers in the [2Fe2S] core turns out to be destabilizing in contrast to the Fe–S interactions responsible for the stabilization of the entire core. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

17 pages, 7380 KB  
Article
Promoting or Inhibiting: New Insights into the Role of Formate in Syntrophic Propionate Metabolism
by Yanlin Li, Guanjing Cai, Xiaofang Pan, Nan Lv, Lin Feng, Gefu Zhu, Zunjing Lv and Zhilong Ye
Water 2024, 16(24), 3551; https://doi.org/10.3390/w16243551 - 10 Dec 2024
Cited by 1 | Viewed by 1533
Abstract
Anaerobic digestion is a critical technology for pollution control, resource capacity enhancement, and sludge management, necessitating improvements in its efficiency. Formate serves as an electron carrier in syntrophic oxidation of volatile fatty acids (VFAs) during anaerobic digestion. The accumulation of formate can exert [...] Read more.
Anaerobic digestion is a critical technology for pollution control, resource capacity enhancement, and sludge management, necessitating improvements in its efficiency. Formate serves as an electron carrier in syntrophic oxidation of volatile fatty acids (VFAs) during anaerobic digestion. The accumulation of formate can exert an inhibitory effect on the anaerobic digestion process. However, the stress concentration and the mechanism of the formate are not as simple as theoretical calculations based on thermodynamics. Thus, we investigated the response to different concentrations of formate in the syntrophic oxidation of propionate. The anaerobic sludge system and syntrophic co-culture system were applied. The propionate showed more stable degradation when formate dosage ranged from 5 to 10 mM. However, when the formate dosage reached 50 mM, the concentration of propionate was significantly higher than that of CK group, and the propionate metabolism was significantly inhibited. The reduction in functional flora and homogeneous metabolic pathways were found to be unfavorable for the stable progression of syntrophic propionate metabolism. Thus, the enhancement of homoacetogenesis can be a strategy adopted by the sludge system to alleviate formate stress. The methylmalonyl-CoA (MMC) pathway was inhibited under formate stress; the downregulation of RNA transcription of formate dehydrogenase (FDH) and hydrogenase (Hyd) related to MMC pathway may be the main reason for the inhibition of syntrophic propionate oxidation. The anaerobic sludge experiment and the co-culture experiment elucidated the mechanism of action of formate from both macroscopic rules and microscopic molecular mechanisms, respectively. Full article
(This article belongs to the Special Issue Treatment and Resource Utilization of Urban Sewage Sludge)
Show Figures

Figure 1

15 pages, 1990 KB  
Article
Kinetic Modelling of Ralstonia eutropha H16 Growth on Different Substrates
by Renata Vičević, Anita Šalić, Ana Jurinjak Tušek and Bruno Zelić
Sustainability 2024, 16(23), 10650; https://doi.org/10.3390/su162310650 - 5 Dec 2024
Viewed by 1991
Abstract
Due to environmental pollution and the depletion of fossil fuels, there is growing interest in the development and use of biofuels as environmentally friendly alternatives. One of the most promising biofuels is biohydrogen, hydrogen produced through sustainable processes using microorganisms such as bacteria [...] Read more.
Due to environmental pollution and the depletion of fossil fuels, there is growing interest in the development and use of biofuels as environmentally friendly alternatives. One of the most promising biofuels is biohydrogen, hydrogen produced through sustainable processes using microorganisms such as bacteria and algae. One of the most interesting bacteria for hydrogen production is Ralstonia eutropha H16, known for its ability to produce oxygen-tolerant hydrogenases. These enzymes play a crucial role in biohydrogen metabolism and production. The aim of this work was to determine the optimal conditions (reactor type and synthetic medium composition) for the cultivation of R. eutropha H16. The culture media contained different concentrations of fructose and glycerol (mono- or double-substrate cultivation) and the experiments were carried out in a batch reactor. The initial experiments were carried out with 4 g/L fructose or glycerol in the culture medium at pH 7, T = 30 °C, and 120 rpm. The mathematical model, consisting of the growth kinetics (described by the Monod’s model) and the corresponding mass balances, was proposed. The developed model was validated using two independent experiments with different initial substrate concentrations: 2 g/L glycerol and fructose in one medium and 4 g/L fructose and 1 g/L glycerol in the second. In order to propose the optimal cultivation procedure for future research, the mathematical model simulations were performed for different reactor types (batch, fed-batch, and continuous stirred tank reactors) and different initial substrate concentrations. The most successful experiment was the one with 4 g/L glycerol, where γX = 0.485 ± 0.001 g/L of biomass was achieved. Further calculations showed that the most biomass would be produced at higher glycerol concentrations (at γG = 6.358 g/L, γX = 1.311 g/L should be achieved after 200 h of cultivation) and when using a fed-batch reactor (γX = 0.944 g/L after 200 h of cultivation). Full article
Show Figures

Figure 1

26 pages, 1818 KB  
Review
Microbes and Parameters Influencing Dark Fermentation for Hydrogen Production
by Soumya Gupta, Annabel Fernandes, Ana Lopes, Laura Grasa and Jesús Salafranca
Appl. Sci. 2024, 14(23), 10789; https://doi.org/10.3390/app142310789 - 21 Nov 2024
Cited by 9 | Viewed by 5097
Abstract
Dark fermentation is a promising method for hydrogen (H2) production utilizing the metabolic pathways of diverse microbial communities. This process can be carried out without the need for light, making it easier and more efficient to operate in different environments and [...] Read more.
Dark fermentation is a promising method for hydrogen (H2) production utilizing the metabolic pathways of diverse microbial communities. This process can be carried out without the need for light, making it easier and more efficient to operate in different environments and at a lower cost. It also utilizes a wide range of substrates, making it highly adaptable to waste-to-energy applications. Clostridium spp. are particularly favored in this method due to their versatile metabolism, ability to utilize a wide range of substrates, and high H2 yields. Anaerobes and facultative anaerobes are mostly used in studies due to their efficient hydrogenase enzyme activity and metabolic pathways. A pH range of 5.5–6.5 and a temperature of 30–37 °C for mesophiles and 55–60 °C for thermophiles are usually preferred in addition to the other parameters such as hydraulic retention time and substrate used. The highest H2 yield of 9.39 mol H2/mol sucrose consumed was obtained by C. beijerinckii using sucrose as a substrate under batch mode conditions at 37 °C and pH 6–7. The review analyzes different bacterial species and examines the influence of optimized parameters required on H2 yield in different bioreactor operating modes. Full article
(This article belongs to the Section Applied Microbiology)
Show Figures

Figure 1

14 pages, 807 KB  
Review
Methanogenesis—General Principles and Application in Wastewater Remediation
by Ana-Katarina Marić, Martina Sudar, Zvjezdana Findrik Blažević and Marija Vuković Domanovac
Energies 2024, 17(21), 5374; https://doi.org/10.3390/en17215374 - 29 Oct 2024
Viewed by 2984
Abstract
The first discovery of methanogens led to the formation of a new domain of life known as Archaea. The Archaea domain exhibits properties vastly different from previously known Bacteria and Eucarya domains. However, for a certain multi-step process, a syntrophic relationship between organisms [...] Read more.
The first discovery of methanogens led to the formation of a new domain of life known as Archaea. The Archaea domain exhibits properties vastly different from previously known Bacteria and Eucarya domains. However, for a certain multi-step process, a syntrophic relationship between organisms from all domains is needed. This process is called methanogenesis and is defined as the biological production of methane. Different methanogenic pathways prevail depending on substrate availability and the employed order of methanogenic Archaea. Most methanogens reduce carbon dioxide to methane with hydrogen through a hydrogenotrophic pathway. For hydrogen activation, a group of enzymes called hydrogenases is required. Regardless of the methanogenic pathway, electrons are carried between microorganisms by hydrogen. Naturally occurring processes, such as methanogenesis, can be engineered for industrial use. With the growth and emergence of new industries, the amount of produced industrial waste is an ever-growing environmental problem. For successful wastewater remediation, a syntrophic correlation between various microorganisms is needed. The composition of microorganisms depends on wastewater type, organic loading rates, anaerobic reactor design, pH, and temperature. The last step of anaerobic wastewater treatment is production of biomethane by methanogenesis, which is thought to be a cost-effective means of energy production for this renewable biogas. Full article
(This article belongs to the Special Issue Advances in Wastewater Treatment 2024)
Show Figures

Figure 1

26 pages, 18602 KB  
Article
Integration of Phenotypes, Phytohormones, and Transcriptomes to Elucidate the Mechanism Governing Early Physiological Abscission in Coconut Fruits (Cocos nucifera L.)
by Lilan Lu, Zhiguo Dong, Xinxing Yin, Siting Chen and Ambreen Mehvish
Forests 2024, 15(8), 1475; https://doi.org/10.3390/f15081475 - 22 Aug 2024
Cited by 2 | Viewed by 1631
Abstract
The abscission of fruits has a significant impact on yield, which in turn has a corresponding effect on economic benefits. In order to better understand the molecular mechanism of early coconut fruit abscission, the morphological and structural characteristics, cell wall hydrolysis and oxidase [...] Read more.
The abscission of fruits has a significant impact on yield, which in turn has a corresponding effect on economic benefits. In order to better understand the molecular mechanism of early coconut fruit abscission, the morphological and structural characteristics, cell wall hydrolysis and oxidase activities, phytohormones, and transcriptomes were analyzed in the abscission zone (AZ) from early-abscised coconut fruits (AFs) and non-abscised coconut fruits (CFs). These results indicated that the weight and water content of AFs are significantly lower than those of CFs, and the color of AFs is a grayish dark red, with an abnormal AZ structure. Cellulase (CEL), polygalacturonase (PG), pectinesterase (PE), and peroxidase (POD) activities were significantly lower than those of CFs. The levels of auxin (IAA), gibberellin (GA), cytokinins (CKs), and brassinosteroid (BR) in AFs were significantly lower than those in CFs. However, the content of abscisic acid (ABA), ethylene (ETH), jasmonic acid (JA), and salicylic acid (SA) in AFs was significantly higher than in CFs. The transcriptome analysis results showed that 3601 DEGs were functionally annotated, with 1813 DEGs upregulated and 1788 DEGs downregulated. Among these DEGs, many genes were enriched in pathways such as plant hormone signal transduction, carbon metabolism, peroxisome, pentose and gluconate interconversion, MAPK signaling pathway—plant, and starch and sucrose metabolism. Regarding cell wall remodeling-related genes (PG, CEL, PE, POD, xyloglucan endoglucosidase/hydrogenase (XTH), expansin (EXP), endoglucanase, chitinase, and beta-galactosidase) and phytohormone-related genes (IAA, GA, CKs, BR, ABA, JA, SA, and ETH) were significantly differentially expressed in the AZ of AFs. Additionally, BHLH, ERF/AP2, WRKY, bZIP, and NAC transcription factors (TFs) were significantly differently expressed, reflecting their crucial role in regulating the abscission process. This study’s results revealed the molecular mechanism of early fruit abscission in coconuts. This provided a new reference point for further research on coconut organ development and abscission. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 1551 KB  
Review
Light-Driven H2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis
by Michael Hippler and Fatemeh Khosravitabar
Plants 2024, 13(15), 2114; https://doi.org/10.3390/plants13152114 - 30 Jul 2024
Cited by 8 | Viewed by 3515
Abstract
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so [...] Read more.
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O2 sensitive; consequently, the formation of H2 occurs mainly under anoxic conditions. Yet, photo-H2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b6f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H2 photoproduction. Additionally, the CBB cycle competes with H2 photoproduction. Consequently, an in-depth understanding of light-driven H2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H2 production. At the same time, the smart design of photo-H2 production schemes and photo-H2 bioreactors are challenges for efficient up-scaling of light-driven photo-H2 production. Full article
(This article belongs to the Special Issue Microalgae Photobiology, Biotechnology, and Bioproduction)
Show Figures

Figure 1

16 pages, 3210 KB  
Article
Triiron Complexes Featuring Azadiphosphine Related to the Active Site of [FeFe]-Hydrogenases: Their Redox Behavior and Protonation
by Ahmad Hobballah, Catherine Elleouet and Philippe Schollhammer
Molecules 2024, 29(14), 3270; https://doi.org/10.3390/molecules29143270 - 10 Jul 2024
Cited by 2 | Viewed by 1155
Abstract
The design of iron clusters featuring a bimetallic core and several protonation sites in the second coordination sphere of the metal centers is important for modeling the activity of polymetallic active sites such as the H-cluster of [FeFe]-hydrogenases. For this purpose, the syntheses [...] Read more.
The design of iron clusters featuring a bimetallic core and several protonation sites in the second coordination sphere of the metal centers is important for modeling the activity of polymetallic active sites such as the H-cluster of [FeFe]-hydrogenases. For this purpose, the syntheses of complexes [Fe3(CO)5(κ2-PPh2NR2)(μ-pdt)2] (R = Ph (1), Bn (2)) and [Fe3(CO)5(κ2-PPh2NR2)(μ-adtBn)(μ-pdt)] (R = Ph (3), Bn (4)) were carried out by reacting hexacarbonyl precursors [Fe2(CO)6(µ-xdt)] (xdt = pdt (propanedithiolate), adtBn (azadithiolate) with mononuclear complexes [Fe(κ2-pdt)(CO)2(κ2-PPh2NR2)] (PPh2NR2 = (PPhCH2NRCH2)2, R = Ph, Bn) in order to introduce amine functions, through well-known PPh2NR2 diphosphine, into the vicinity of the triiron core. The investigation of the reactivity of these triiron species towards the proton (in the presence of CF3SO3H) and the influence of the pendant amines on the redox properties of these complexes were explored using spectroscopic and electrochemical methods. The protonation sites in such triiron clusters and their relationships were identified. The orientation of the first and second protonation processes depends on the arrangement of the second coordination sphere. The similarities and differences, due to the extended metal nuclearity, with their dinuclear counterparts [Fe2(CO)4(κ2-PPh2NR2)(μ-pdt)], were highlighted. Full article
(This article belongs to the Special Issue Synthesis and Applications of Transition Metal Complexes)
Show Figures

Graphical abstract

18 pages, 11414 KB  
Article
Strawberry Yield Improvement by Hydrogen-Based Irrigation Is Functionally Linked to Altered Rhizosphere Microbial Communities
by Longna Li, Huize Huang, Zhiwei Jin, Ke Jiang, Yan Zeng, Didier Pathier, Xu Cheng and Wenbiao Shen
Plants 2024, 13(13), 1723; https://doi.org/10.3390/plants13131723 - 21 Jun 2024
Cited by 6 | Viewed by 1858
Abstract
Molecular hydrogen (H2) is crucial for agricultural microbial systems. However, the mechanisms underlying its influence on crop yields is yet to be fully elucidated. This study observed that H2-based irrigation significantly increased strawberry (Fragaria × ananassa Duch.) yield [...] Read more.
Molecular hydrogen (H2) is crucial for agricultural microbial systems. However, the mechanisms underlying its influence on crop yields is yet to be fully elucidated. This study observed that H2-based irrigation significantly increased strawberry (Fragaria × ananassa Duch.) yield with/without nutrient fertilization. The reduction in soil available nitrogen (N), phosphorus (P), potassium (K), and organic matter was consistent with the increased expression levels of N/P/K-absorption-related genes in root tissues at the fruiting stage. Metagenomics profiling showed the alterations in rhizosphere microbial community composition achieved by H2, particularly under the conditions without fertilizers. These included the enrichment of plant-growth-promoting rhizobacteria, such as Burkholderia, Pseudomonas, and Cupriavidus genera. Rhizobacteria with the capability to oxidize H2 (group 2a [NiFe] hydrogenase) were also enriched. Consistently, genes related to soil carbon (C) fixation (i.e., rbcL, porD, frdAB, etc.), dissimilar nitrate reduction (i.e., napAB and nrfAH), and P solublization, mineralization, and transportation (i.e., ppx-gppA, appA, and ugpABCE) exhibited higher abundance. Contrary tendencies were observed in the soil C degradation and N denitrification genes. Together, these results clearly indicate that microbe-mediated soil C, N, and P cycles might be functionally altered by H2, thus increasing plant nutrient uptake capacity and horticultural crop yield. Full article
Show Figures

Figure 1

Back to TopTop