Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = in situ derivatization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1464 KB  
Article
GC-MS Analysis with In Situ Derivatization for Managing Toxic Oxidative Hair Dye Ingredients in Hair Products
by Geon Park, Won-Young Cho, Jisu Park, Yujin Jeong, Jihwan Kim, Hyo Joon Park, Kyung Hyun Min and Wonwoong Lee
Chemosensors 2025, 13(3), 94; https://doi.org/10.3390/chemosensors13030094 - 6 Mar 2025
Cited by 1 | Viewed by 1408
Abstract
Hair care products that have oxidative hair dye ingredients have been widely used to permanently change hair color for the characteristic and younger appearance of people and/or their companion animals. In the European Union and the Republic of Korea, these ingredients have been [...] Read more.
Hair care products that have oxidative hair dye ingredients have been widely used to permanently change hair color for the characteristic and younger appearance of people and/or their companion animals. In the European Union and the Republic of Korea, these ingredients have been carefully used or prohibited for cosmetic products according to their genotoxic potential. There is a growing demand for reliable quantification methods to monitor oxidative hair dye ingredients in hair care products. However, accurately quantifying oxidative dyes in cosmetic samples is challenging due to their high reactivity and chemical instability under both basic and ambient conditions. For this reason, for the quantification methods, elaborate sample preparation procedures should be accompanied by chemical derivatization to avoid chemical reactions between hair dye ingredients, before instrumental analysis. Therefore, this study utilized a gas chromatography–mass spectrometry (GC-MS) method combined with in situ chemical derivatization to quantify 26 oxidative hair dye ingredients in hair care products. In situ derivatization using acetic anhydride provided the characteristic [M-CH2CO]+ ions at m/z (M-42), produced by the loss of a ketene from the hair dye ingredient derivatives. These characteristic ions can be used to establish a selective ion monitoring (SIM) mode of GC-MS. The established method was successfully applied to hair dye products (n = 13) and hair coloring shampoos (n = 12). Most products contained unintended hair dye ingredients including catechol without labeling. It was cautiously speculated that these unintended hair dye ingredients might be caused by biodegradation due to various enzymes in natural product extracts. This study presents a reliable GC-MS method with in situ derivatization to quantify 26 oxidative hair dye ingredients in hair care products, addressing challenges related to their chemical instability. This method is crucial for public health and regulatory compliance. Full article
Show Figures

Figure 1

15 pages, 4306 KB  
Article
Immunosensor with Enhanced Electrochemiluminescence Signal Using Platinum Nanoparticles Confined within Nanochannels for Highly Sensitive Detection of Carcinoembryonic Antigen
by Huihua Zhang, Chaoyan Zhang, Hui Qu and Fengna Xi
Molecules 2023, 28(18), 6559; https://doi.org/10.3390/molecules28186559 - 11 Sep 2023
Cited by 13 | Viewed by 2511
Abstract
Rapid, highly sensitive, and accurate detection of tumor biomarkers in serum is of great significance in cancer screening, early diagnosis, and postoperative monitoring. In this study, an electrochemiluminescence (ECL) immunosensing platform was constructed by enhancing the ECL signal through in situ growth of [...] Read more.
Rapid, highly sensitive, and accurate detection of tumor biomarkers in serum is of great significance in cancer screening, early diagnosis, and postoperative monitoring. In this study, an electrochemiluminescence (ECL) immunosensing platform was constructed by enhancing the ECL signal through in situ growth of platinum nanoparticles (PtNPs) in a nanochannel array, which can achieve highly sensitive detection of the tumor marker carcinoembryonic antigen (CEA). An inexpensive and readily available indium tin oxide (ITO) glass electrode was used as the supporting electrode, and a layer of amino-functionalized vertically ordered mesoporous silica film (NH2-VMSF) was grown on its surface using an electrochemically assisted self-assembly method (EASA). The amino groups within the nanochannels served as anchoring sites for the one-step electrodeposition of PtNPs, taking advantage of the confinement effect of the ultrasmall nanochannels. After the amino groups on the outer surface of NH2-VMSF were derivatized with aldehyde groups, specific recognition antibodies were covalently immobilized followed by blocking nonspecific binding sites to create an immunorecognition interface. The PtNPs, acting as nanocatalysts, catalyzed the generation of reactive oxygen species (ROS) with hydrogen peroxide (H2O2), significantly enhancing the ECL signal of the luminol. The ECL signal exhibited high stability during continuous electrochemical scanning. When the CEA specifically bound to the immunorecognition interface, the resulting immune complexes restricted the diffusion of the ECL emitters and co-reactants towards the electrode, leading to a reduction in the ECL signal. Based on this immune recognition-induced signal-gating effect, the immunosensor enabled ECL detection of CEA with a linear range of 0.1 pg mL−1 to 1000 ng mL−1 with a low limit of detection (LOD, 0.03 pg mL−1). The constructed immunosensor demonstrated excellent selectivity and can achieve CEA detection in serum. Full article
(This article belongs to the Special Issue Sensors and Analytical Techniques in Biochemistry)
Show Figures

Figure 1

19 pages, 1301 KB  
Article
Quality Control in Targeted GC-MS for Amino Acid-OMICS
by Dimitrios Tsikas and Bibiana Beckmann
Metabolites 2023, 13(9), 986; https://doi.org/10.3390/metabo13090986 - 31 Aug 2023
Cited by 3 | Viewed by 2178
Abstract
Gas chromatography-mass spectrometry (GC-MS) is suitable for the analysis of non-polar analytes. Free amino acids (AA) are polar, zwitterionic, non-volatile and thermally labile analytes. Chemical derivatization of AA is indispensable for their measurement by GC-MS. Specific conversion of AA to their unlabeled methyl [...] Read more.
Gas chromatography-mass spectrometry (GC-MS) is suitable for the analysis of non-polar analytes. Free amino acids (AA) are polar, zwitterionic, non-volatile and thermally labile analytes. Chemical derivatization of AA is indispensable for their measurement by GC-MS. Specific conversion of AA to their unlabeled methyl esters (d0Me) using 2 M HCl in methanol (CH3OH) is a suitable derivatization procedure (60 min, 80 °C). Performance of this reaction in 2 M HCl in tetradeutero-methanol (CD3OD) generates deuterated methyl esters (d3Me) of AA, which can be used as internal standards in GC-MS. d0Me-AA and d3Me-AA require subsequent conversion to their pentafluoropropionyl (PFP) derivatives for GC-MS analysis using pentafluoropropionic anhydride (PFPA) in ethyl acetate (30 min, 65 °C). d0Me-AA-PFP and d3Me-AA-PFP derivatives of AA are readily extractable into water-immiscible, GC-compatible organic solvents such as toluene. d0Me-AA-PFP and d3Me-AA-PFP derivatives are stable in toluene extracts for several weeks, thus enabling high throughput quantitative measurement of biological AA by GC-MS using in situ prepared d3Me-AA as internal standards in OMICS format. Here, we describe the development of a novel OMICS-compatible QC system and demonstrate its utility for the quality control of quantitative analysis of 21 free AA and metabolites in human plasma samples by GC-MS as Me-PFP derivatives. The QC system involves cross-standardization of the concentrations of the AA in their aqueous solutions at four concentration levels and a quantitative control of AA at the same four concentration levels in pooled human plasma samples. The retention time (tR)-based isotope effects (IE) and the difference (δ(H/D) of the retention times of the d0Me-AA-PFP derivatives (tR(H)) and the d3Me-AA-PFP derivatives (tR(D)) were determined in study human plasma samples of a nutritional study (n = 353) and in co-processed QC human plasma samples (n = 64). In total, more than 400 plasma samples were measured in eight runs in seven working days performed by a single person. The proposed QC system provides information about the quantitative performance of the GC-MS analysis of AA in human plasma. IE, δ(H/D) and a massive drop of the peak area values of the d3Me-AA-PFP derivatives may be suitable as additional parameters of qualitative analysis in targeted GC-MS amino acid-OMICS. Full article
(This article belongs to the Special Issue Analytical Developments in Mapping the Polar Metabolome)
Show Figures

Figure 1

14 pages, 3557 KB  
Article
Selective Aqueous Extraction and Green Spectral Analysis of Furfural as an Aging Indicator in Power Transformer Insulating Fluid
by Hyunjoo Park, Eunyoung Kim, Byeong Sub Kwak, Taehyun Jun, Riko Kawano and Sang-Hyun Pyo
Separations 2023, 10(7), 381; https://doi.org/10.3390/separations10070381 - 28 Jun 2023
Cited by 3 | Viewed by 2462
Abstract
Furfural is an intermediary and aldehyde compound degraded from paper insulation, which is used with liquid fluid in power transformers. It can be utilized as an important indicator to evaluate the degradation degree of the paper insulation and the condition of transformers to [...] Read more.
Furfural is an intermediary and aldehyde compound degraded from paper insulation, which is used with liquid fluid in power transformers. It can be utilized as an important indicator to evaluate the degradation degree of the paper insulation and the condition of transformers to predict their lifetime. However, the conventional methods are inevitably inconvenient as they require additional derivatization with hazardous agents and time-consuming chromatographic separation and processes. In this work, a facile and green analysis method for the determination of furfural concentration in the insulating fluid of operating power transformers was developed. As furfural was selectively extracted from the insulting fluid by deionized water, the aqueous solution could be directly subjected to a UV spectral analysis without any derivatization using hazardous agents or hindrance of the fluid in the UV spectrum. The results showed that the spectral method could obtain a favorable linear relationship between the concentration of furfural and its characteristic absorbance at 280 nm (λ max). The limit of detection (LOD) was below 0.1 ppm, which is a sufficient detection level to evaluate the condition of the insulating fluid. Furthermore, the method was compared with the conventional HPLC and colorimetric analyses, revealing satisfactory accuracy and verification of the results. It is possible to measure the furfural concentration in situ using a portable UV-spectrometer at a single wavelength, 280 nm, after simple extraction in the field. This approach offers a novel and green analytical method to quantitatively determine the aromatic furan compounds in a power transformer’s insulating fluid in place without the use of an organic extraction solvent or hazardous reagents for derivatization and analysis. Full article
(This article belongs to the Collection State of the Art in Separation and Analysis of Energies)
Show Figures

Figure 1

11 pages, 1542 KB  
Article
Ketones in Low-Temperature Oxidation Products of Crude Oil
by Shuai Ma, Yunyun Li, Rigu Su, Jianxun Wu, Lingyuan Xie, Junshi Tang, Xusheng Wang, Jingjun Pan, Yuanfeng Wang, Quan Shi, Guangzhi Liao and Chunming Xu
Processes 2023, 11(6), 1664; https://doi.org/10.3390/pr11061664 - 30 May 2023
Cited by 5 | Viewed by 2896
Abstract
Ketone compounds are oxidation products of crude oil in the in-situ combustion (ISC) process. Revealing the molecular composition of ketones can provide theoretical guidance for understanding the oxidation process of crude oil and valuable clues for studying the combustion state of crude oil [...] Read more.
Ketone compounds are oxidation products of crude oil in the in-situ combustion (ISC) process. Revealing the molecular composition of ketones can provide theoretical guidance for understanding the oxidation process of crude oil and valuable clues for studying the combustion state of crude oil in the reservoir. In this study, low-temperature oxidation (LTO) processes were simulated in thermal oxidation experiments to obtain thermally oxidized oil at different temperatures (170 °C, 220 °C, 270 °C, and 320 °C). A combination of chemical derivatization and positive-ion electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze the molecular composition of different kinds of ketones (fatty ketones, naphthenic ketones, and aromatic ketones) in the oxidized oils at different temperatures. The results showed that the concentration of aliphatic ketones and aliphatic cyclic ketones in the product oils decreased with the increase in temperature, while aromatic ketones increased with the increase in temperature. At the same oxidation temperature, the content of ketones follows this order: fatty ketones < cycloalkanes < aromatic ketones. The concentrations of ketones reached their maximum value at 170 °C and decreased at high temperatures due to over-oxidation. It was also found that nitrogen-containing compounds are more easily oxidized to ketone compounds than their hydrocarbon counterparts in the LTO process. Full article
Show Figures

Figure 1

19 pages, 1741 KB  
Article
Perfluorosulfonic Acid Membranes Modified with Polyaniline and Hydrothermally Treated for Potentiometric Sensor Arrays for the Analysis of Combination Drugs
by Anna Parshina, Anastasia Yelnikova, Tatyana Kolganova, Tatyana Titova, Polina Yurova, Irina Stenina, Olga Bobreshova and Andrey Yaroslavtsev
Membranes 2023, 13(3), 311; https://doi.org/10.3390/membranes13030311 - 8 Mar 2023
Cited by 7 | Viewed by 2130
Abstract
A novel potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. The potentiometric sensors (Donnan potential (DP) was used as an analytical signal) with an inner reference solution were based on perfluorosulfonic acid (PFSA) membranes modified with polyaniline [...] Read more.
A novel potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. The potentiometric sensors (Donnan potential (DP) was used as an analytical signal) with an inner reference solution were based on perfluorosulfonic acid (PFSA) membranes modified with polyaniline (PANI) by in situ oxidative polymerization. The order of the membrane treatment with precursor solutions and their concentrations was varied. Additionally, the PFSA/PANI composite membranes were hydrothermally treated at 120 °C. The influence of the preparation conditions and the composition of membranes on their sorption and transport properties was studied. We estimated the factors affecting the sensitivity of DP-sensors based on the PFSA/PANI composite membranes to ions of sulfamethoxazole and trimethoprim simultaneously presented in solutions. A developed multisensory system provided a simultaneous determination of two analytes in aqueous solutions without preliminary separation, derivatization, or probe treatment. The re-estimation of the calibration characteristics of the multisensory system did not show a statistically significant difference after a year of its use. The limits of detection of sulfamethoxazole and trimethoprim were 1.4 × 10−6 and 8.5 × 10−8 M, while the relative errors of their determination in the combination drug were 4 and 5% (at 5 and 6% relative standard deviation), respectively. Full article
(This article belongs to the Special Issue Membrane-Based Technologies in Pharmaceutical Sciences)
Show Figures

Figure 1

12 pages, 3879 KB  
Communication
Gas Chromatography Fingerprint of Martian Amino Acids before Analysis of Return Samples
by Rihab Fkiri, Ramzi Timoumi, Guillaume Rioland, Pauline Poinot, Fabien Baron, Brian Gregoire and Claude Geffroy-Rodier
Chemosensors 2023, 11(2), 76; https://doi.org/10.3390/chemosensors11020076 - 18 Jan 2023
Cited by 3 | Viewed by 2504
Abstract
Within the perspective of the current and future space missions, the detection and separation of building blocks such as amino acids are important subjects which are becoming fundamental in the search for the origin of life and traces of life in the solar [...] Read more.
Within the perspective of the current and future space missions, the detection and separation of building blocks such as amino acids are important subjects which are becoming fundamental in the search for the origin of life and traces of life in the solar system. In this work, we have developed and optimized a strategy adapted to space experimentation to detect the presence of amino acid-like compounds using gas chromatography coupled to mass spectrometry (GC-MS). Selected derivatization methods meet the instrument design constraints imposed on in situ extraterrestrial experiments. Coupled to a fast selective extraction, GC analysis would be highly efficient for the detection of organic materials. In the future, the corresponding GC-MS TIC could facilitate simple and fast selection of sediments/dust samples onboard GC-MS-equipped rovers for sample return-to-Earth missions. Full article
(This article belongs to the Special Issue GC, MS and GC-MS Analytical Methods: Opportunities and Challenges)
Show Figures

Figure 1

22 pages, 9041 KB  
Article
[3 + 2] Cycloadditions in Asymmetric Synthesis of Spirooxindole Hybrids Linked to Triazole and Ferrocene Units: X-ray Crystal Structure and MEDT Study of the Reaction Mechanism
by Hessa H. Al-Rasheed, Abdullah Mohammed Al-Majid, M. Ali, Matti Haukka, Sherif Ramadan, Saied M. Soliman, Ayman El-Faham, Luis R. Domingo and Assem Barakat
Symmetry 2022, 14(10), 2071; https://doi.org/10.3390/sym14102071 - 5 Oct 2022
Cited by 3 | Viewed by 2449
Abstract
Derivatization of spirooxindole having triazole and ferrocene units was achieved by the [3 + 2] cycloaddition (32CA) reaction approach. Reacting the respective azomethine ylide (AY) intermediate generated in situ with the ethylene derivative produced novel asymmetric cycloadducts with four contiguous asymmetric carbons in [...] Read more.
Derivatization of spirooxindole having triazole and ferrocene units was achieved by the [3 + 2] cycloaddition (32CA) reaction approach. Reacting the respective azomethine ylide (AY) intermediate generated in situ with the ethylene derivative produced novel asymmetric cycloadducts with four contiguous asymmetric carbons in an overall high chemical yield with excellent regioselectivity and diastereoselectivity. X-Ray single-crystal structure analyses revealed, with no doubt, the success of the synthesis of the target compounds. The 32CA reaction of AY 5b with ferrocene ethylene 1 has been studied within MEDT. This 32CA reaction proceeds via a two-stage one-step mechanism involving a high asynchronous transition state structure, resulting from the nucleophilic attack of AY 5b on the β-conjugated position of ferrocene ethylene 1. The supernucleophilic character of AY 5b and the strong electrophilic character of ferrocene ethylene 1 account for the high polar character of this 32CA reaction. Further, Hirshfeld analyses were used to describe the molecular packing of compounds 4b, 4e, 4h and 4i. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry Applied in Chemical Synthesis)
Show Figures

Figure 1

16 pages, 13727 KB  
Article
GC-MS Studies on the Conversion and Derivatization of γ-Glutamyl Peptides to Pyroglutamate (5-Oxo-Proline) Methyl Ester Pentafluoropropione Amide Derivatives
by Alexander Bollenbach and Dimitrios Tsikas
Molecules 2022, 27(18), 6020; https://doi.org/10.3390/molecules27186020 - 15 Sep 2022
Cited by 7 | Viewed by 2940
Abstract
Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, γ-Glu-Cys-Gly) is the most abundant intra-cellular dicarboxylic tripeptide with multiple physiological roles. In biological samples, glutathione exists in its reduced form GSH and in two stable oxidized forms, i.e., in its symmetric disulfide form GSSG and as S-glutathionyl residue in [...] Read more.
Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, γ-Glu-Cys-Gly) is the most abundant intra-cellular dicarboxylic tripeptide with multiple physiological roles. In biological samples, glutathione exists in its reduced form GSH and in two stable oxidized forms, i.e., in its symmetric disulfide form GSSG and as S-glutathionyl residue in proteins. S-Glutathionylation is a post-translational modification, which is involved in several pathophysiological processes, including oxidative stress. The GSH-to-GSSG molar ratio is widely used as a measure of oxidative stress. γ-Glutamyl is the most characteristic structural moiety of GSH. We performed gas chromatography-mass spectrometry (GC-MS) studies for the development of a highly specific qualitative and quantitative method for γ-glutamyl peptides. We discovered intra-molecular conversion of GSH, GSSG, γ-Glu-Cys and of ophthalmic acid (OPH; γ-glutamyl-α-amino-n-butyryl-glycine) to pyroglutamate (pGlu; 5-oxo-proline, also known as pidolic acid) during their derivatization with 2 M HCl/CH3OH (60 min, 80 °C). For GC-MS analysis, the methyl esters (Me) were further derivatized with pentafluoropropionic (PFP) anhydride in ethyl acetate (1:4, v/v; 30 min, 65 °C) to their PFP derivatives. At longer reaction times, pGlu is hydrolyzed to Glu. Internal standards were prepared by derivatizing GSH, GSSG, γ-Glu-Cys and OPH in 2 M HCl/CD3OD. Quantification of the Me-PFP derivative of pGlu was performed in the electron-capture negative-ion chemical ionization (ECNICI) mode by selected-ion monitoring (SIM) of the mass-to-charge (m/z) ions 269 for unlabeled pGlu (d0Me-PFP-pGlu) and m/z 272 for the in situ prepared deuterium-labeled pGlu (d3Me-PFP-pGlu). Although not inherent to the analysis of small peptides, the present GC-MS method is useful to study several biochemical aspects of GSH. Using pentafluorobenzyl bromide (PFB-Br) as the derivatization reagent, we found that synthetic pGlu is converted in aqueous acetone (60 min, 50 °C) into its pentafluorobenzyl (PFB) ester (PFB-pGlu). This derivatization procedure is useful for the GC-MS analysis of free pGlu in the ECNICI mode. Quantitative analysis of PFB-pGlu by GC-MS requires the use of stable-isotope labeled analogs of pGlu as an internal standard. Full article
(This article belongs to the Special Issue Derivatization in Analytical Chemistry-II)
Show Figures

Figure 1

17 pages, 3208 KB  
Article
USAEME-GC/MS Method for Easy and Sensitive Determination of Nine Bisphenol Analogues in Water and Wastewater
by Dariusz Kiejza, Urszula Kotowska, Weronika Polińska and Joanna Karpińska
Molecules 2022, 27(15), 4977; https://doi.org/10.3390/molecules27154977 - 5 Aug 2022
Cited by 20 | Viewed by 3863
Abstract
A new, simple and sensitive method for isolating nine compounds from the bisphenol group (analogues: A, B, C, E, F, G, Cl2, Z, AP) based on one-step liquid–liquid microextraction with in situ acylation followed by gas chromatography-mass spectrometry was developed and [...] Read more.
A new, simple and sensitive method for isolating nine compounds from the bisphenol group (analogues: A, B, C, E, F, G, Cl2, Z, AP) based on one-step liquid–liquid microextraction with in situ acylation followed by gas chromatography-mass spectrometry was developed and validated using influent and effluent wastewaters. The chemometric approach based on the Taguchi method was used to optimize the main conditions of simultaneous extraction and derivatization. The recoveries of the proposed procedure ranged from 85 to 122%, and the repeatability expressed by the coefficient of variation did not exceed 8%. The method’s limits of detection were in the range of 0.4–64 ng/L, and the method’s limits of quantification ranged from 1.3 to 194 ng/L. The developed method was used to determine the presence of the tested compounds in wastewater from a municipal wastewater treatment plant located in northeastern Poland. From this sample, eight analytes were detected. Concentrations of bisphenol A of 400 ng/L in influent and 100 ng/L in effluent were recorded, whereas other bisphenols reached 67 and 50 ng/L for influent and effluent, respectively. The removal efficiency of bisphenol analogues in the tested wastewater treatment plant ranged from 7 to approximately 88%. Full article
Show Figures

Figure 1

14 pages, 2671 KB  
Article
Using Solid-Phase Microextraction Coupled with Reactive Carbon Fiber Ionization-Mass Spectrometry for the Detection of Aflatoxin B1 from Complex Samples
by Jia-Jen Tsai, Yu-Ting Lai and Yu-Chie Chen
Separations 2022, 9(8), 199; https://doi.org/10.3390/separations9080199 - 2 Aug 2022
Cited by 9 | Viewed by 2876
Abstract
Aflatoxin B1 (AFB1) is a common mycotoxin present in agricultural and food products. Therefore, rapid screening methods must be developed for AFB1 detection with high sensitivity and good selectivity. In this study, we developed an analytical method based on the combination of solid-phase [...] Read more.
Aflatoxin B1 (AFB1) is a common mycotoxin present in agricultural and food products. Therefore, rapid screening methods must be developed for AFB1 detection with high sensitivity and good selectivity. In this study, we developed an analytical method based on the combination of solid-phase microextraction (SPME) with carbon fiber ionization (CFI)-mass spectrometry (MS) to detect the presence of trace AFB1 from complex samples. A pencil lead (type 2B, length: ~2.5 cm) with a sharp end (diameter: ~150 μm) was used as the SPME fiber and the ionization emitter in CFI-MS analysis. Owing to the graphite structure of the pencil lead, AFB1 can be trapped on the pencil lead through π–π interactions. After adsorbing AFB1, the pencil lead was directly introduced in a pipette tip (length: ~0.7 cm; tip inner diameter: ~0.6 mm), placed close (~1 mm) to the inlet of the mass spectrometer, and applied with a high voltage (−4.5 kV) for in situ AFB1 elution and CFI-MS analysis. A direct electric contact on the SPME-CFI setup was not required. Followed by the introduction of an elution solvent (10 μL) (acetonitrile/ethanol/deionized water, 2:2:1 (v/v/v)) to the pipette tip, electrospray ionization was generated from the elution solvent containing AFB1 for CFI-MS analysis. A reactive SPME-CFI-MS strategy was employed to further identify AFB1 and improve elution capacity using our approach. Butylamine was added to the elution solvent, which was then introduced to the pipette tip inserted with the SPME fiber. Butylamine-derivatized AFB1 was readily generated and appeared in the resultant SPME-CFI mass spectrum. The lowest detectable concentration against AFB1 using our approach was ~1.25 nM. Our method can distinguish AFB1 from AFG1 in a mixture and can be used for the detection of trace AFB1 in complex peanut extract samples. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

12 pages, 2162 KB  
Article
Direct Derivatization in Dried Blood Spots for Oxidized and Reduced Glutathione Quantification in Newborns
by Isabel Ten-Doménech, Álvaro Solaz-García, Inmaculada Lara-Cantón, Alejandro Pinilla-Gonzalez, Anna Parra-Llorca, Máximo Vento, Guillermo Quintás and Julia Kuligowski
Antioxidants 2022, 11(6), 1165; https://doi.org/10.3390/antiox11061165 - 14 Jun 2022
Cited by 10 | Viewed by 2971
Abstract
The glutathione (GSH)-to-glutathione disulfide (GSSG) ratio is an essential node contributing to intracellular redox status. GSH/GSSG determination in whole blood can be accomplished by liquid chromatography–mass spectrometry (LC-MS) after the derivatization of GSH with N-ethylmaleimide (NEM). While this is feasible in a [...] Read more.
The glutathione (GSH)-to-glutathione disulfide (GSSG) ratio is an essential node contributing to intracellular redox status. GSH/GSSG determination in whole blood can be accomplished by liquid chromatography–mass spectrometry (LC-MS) after the derivatization of GSH with N-ethylmaleimide (NEM). While this is feasible in a laboratory environment, its application in the clinical scenario is cumbersome and therefore ranges reported in similar populations differ noticeably. In this work, an LC-MS procedure for the determination of GSH and GSSG in dried blood spot (DBS) samples based on direct in situ GSH derivatization with NEM of only 10 µL of blood was developed. This novel method was applied to 73 cord blood samples and 88 residual blood volumes from routine newborn screening performed at discharge from healthy term infants. Two clinical scenarios simulating conditions of sampling and storage relevant for routine clinical analysis and clinical trials were assessed. Levels of GSH-NEM and GSSG measured in DBS samples were comparable to those obtained by liquid blood samples. GSH-NEM and GSSG median values for cord blood samples were significantly lower than those for samples at discharge. However, the GSH-NEM-to-GSSG ratios were not statistically different between both groups. With DBS testing, the immediate manipulation of samples by clinical staff is reduced. We therefore expect that this method will pave the way in providing an accurate and more robust determination of the GSH/GSSG values and trends reported in clinical trials. Full article
(This article belongs to the Special Issue Oxidative Stress in Fetuses and Newborns)
Show Figures

Figure 1

9 pages, 2623 KB  
Article
In Situ Electrochemical Derivation of Sodium-Tin Alloy as Sodium-Ion Energy Storage Devices Anode with Overall Electrochemical Characteristics
by Liangfeng Niu, Shoujie Guo, Wei Liang, Limin Song, Burong Song, Qianlong Zhang and Lijun Wu
Crystals 2022, 12(5), 575; https://doi.org/10.3390/cryst12050575 - 20 Apr 2022
Cited by 3 | Viewed by 2809
Abstract
Inspired by the fermentation of multiple small bread embryos to form large bread embryos, in this study, the expansion of tin foil inlaid with sodium rings in the process of repeated sodium inlaid and removal was utilized to maximum extent to realize the [...] Read more.
Inspired by the fermentation of multiple small bread embryos to form large bread embryos, in this study, the expansion of tin foil inlaid with sodium rings in the process of repeated sodium inlaid and removal was utilized to maximum extent to realize the formation of sodium-tin alloy anode and the improvement of sodium storage characteristics. The special design of Sn foil inlaid with Na ring realized the in-situ electrochemical formation of fluffy porous sodium-tin alloy, effectively alleviated the volume expansion and shrinkage of non-electrochemical active Sn metal, and inhibited the generation of sodium dendrites. The abundance of sodium ions provided by the Na metal ring compensated for the active sodium components consumed during the repeated formation of SEI. When sodium-tin alloy in situ derived by Sn foil inlaid with Na ring was used as negative electrodes matched with SCDC and Na0.91MnO2 hexagonal tablets (NMO HTs) positive electrodes, the as-assembled sodium-ion energy storage devices present high specific capacity and excellent cycle stability. Full article
(This article belongs to the Special Issue Emerging Low-Dimensional Materials)
Show Figures

Figure 1

16 pages, 1113 KB  
Article
In Situ N-Glycosylation Signatures of Epithelial Ovarian Cancer Tissue as Defined by MALDI Mass Spectrometry Imaging
by Marta Grzeski, Eliane T. Taube, Elena I. Braicu, Jalid Sehouli, Véronique Blanchard and Oliver Klein
Cancers 2022, 14(4), 1021; https://doi.org/10.3390/cancers14041021 - 17 Feb 2022
Cited by 18 | Viewed by 3536
Abstract
The particularly high mortality of epithelial ovarian cancer (EOC) is in part linked to limited understanding of its molecular signatures. Although there are data available on in situ N-glycosylation in EOC tissue, previous studies focused primarily on neutral N-glycan species and, [...] Read more.
The particularly high mortality of epithelial ovarian cancer (EOC) is in part linked to limited understanding of its molecular signatures. Although there are data available on in situ N-glycosylation in EOC tissue, previous studies focused primarily on neutral N-glycan species and, hence, still little is known regarding EOC tissue-specific sialylation. In this proof-of-concept study, we implemented MALDI mass spectrometry imaging (MALDI-MSI) in combination with sialic acid derivatization to simultaneously investigate neutral and sialylated N-glycans in formalin-fixed paraffin-embedded tissue microarray specimens of less common EOC histotypes and non-malignant borderline ovarian tumor (BOT). The applied protocol allowed detecting over 50 m/z species, many of which showed differential tissue distribution. Most importantly, it could be demonstrated that α2,6- and α2,3-sialylated N-glycans are enriched in tissue regions corresponding to tumor and adjacent tumor-stroma, respectively. Interestingly, analogous N-glycosylation patterns were observed in tissue cores of BOT, suggesting that regio-specific N-glycan distribution might occur already in non-malignant ovarian pathologies. All in all, our data provide proof that the combination of MALDI-MSI and sialic acid derivatization is suitable for delineating regio-specific N-glycan distribution in EOC and BOT tissues and might serve as a promising strategy for future glycosylation-based biomarker discovery studies. Full article
(This article belongs to the Special Issue Advances in Tumor Glycans)
Show Figures

Figure 1

17 pages, 2589 KB  
Article
Improving Sustainability of the Griess Reaction by Reagent Stabilization on PDMS Membranes and ZnNPs as Reductor of Nitrates: Application to Different Water Samples
by Lusine Hakobyan, Belén Monforte-Gómez, Yolanda Moliner-Martínez, Carmen Molins-Legua and Pilar Campíns-Falcó
Polymers 2022, 14(3), 464; https://doi.org/10.3390/polym14030464 - 24 Jan 2022
Cited by 9 | Viewed by 5993
Abstract
A new approach based on the use of polydimethylsiloxane (PDMS) membranes doped with Griess reagents for in situ determination of NO2 and NO3- in real samples is proposed. The influence of some doping compounds, on the properties of [...] Read more.
A new approach based on the use of polydimethylsiloxane (PDMS) membranes doped with Griess reagents for in situ determination of NO2 and NO3- in real samples is proposed. The influence of some doping compounds, on the properties of the PDMS membranes, such as tetraethyl orthosilicate (TEOS), or/and ionic liquids (OMIM PF6) has been studied. Membrane characterization was performed. To apply the procedure to NO3 determination, dispersed Zn nanoparticles (ZnNPs) were employed. The analytical responses were the absorbance or the RGB components from digital images. Good precision (RSD < 8%) and detection limit of 0.01 and 0.5 mgL−1 for NO2 and NO3, respectively, were achieved. The approach was satisfactory when applied to the determination of NO2 and NO3 in drinking waters, irrigation and river waters, and waters from canned and fresh vegetables. The results obtained were statistically comparable with those by using nitrate ISE or UV measurement. This approach was transferred satisfactory to 96 wells for multianalysis. This study enables the improvement in the on-site determination of NO2 and NO3 in several matrices. It is a sustainable alternative over the reagent derivatizations in solution and presents several advantages such as being versatile, simplicity, low analysis time, cost, and energy efficiency. The response can be detected visually or by portable instruments such as smartphone. Full article
(This article belongs to the Special Issue Advanced Polymer Membranes)
Show Figures

Graphical abstract

Back to TopTop