Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (723)

Search Parameters:
Keywords = inelastic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1231 KB  
Review
X-Ray Absorption and Emission Spectroscopy in Pharmaceutical Applications: From Local Atomic Structure Elucidation to Protein-Metal Complex Analysis—A Review
by Klaudia Wojtaszek, Krzysztof Tyrała and Ewelina Błońska-Sikora
Appl. Sci. 2025, 15(19), 10784; https://doi.org/10.3390/app151910784 (registering DOI) - 7 Oct 2025
Abstract
X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are analytical techniques enabling precise analysis of the electronic structure and local atomic environment in chemical compounds and materials. Their application spans materials science, chemistry, biology, and environmental sciences, supporting studies on catalytic mechanisms, [...] Read more.
X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) are analytical techniques enabling precise analysis of the electronic structure and local atomic environment in chemical compounds and materials. Their application spans materials science, chemistry, biology, and environmental sciences, supporting studies on catalytic mechanisms, redox processes, and metal speciation. A key advantage of both techniques is element selectivity, allowing the analysis of specific elements without matrix interference. Their high sensitivity to chemical state and coordination enables determination of oxidation states, electronic configuration, and local geometry. These methods are applicable to solids, liquids, and gases without special sample preparation. Modern XAS and XES studies are typically performed using synchrotron radiation, which provides an intense, monochromatic X-ray source and allows advanced in situ and operando experiments. Sub-techniques such as XANES (X-ray absorption near-edge structure), EXAFS (Extended X-ray Absorption Fine Structure), and RIXS (resonant inelastic X-ray scattering) offer enhanced insights into oxidation states, local structure, and electronic excitations. Despite their broad scientific use, applications in pharmaceutical research remain limited. Nevertheless, recent studies highlight their potential in analyzing crystalline active pharmaceutical ingredients (APIs), drug–biomolecule interactions, and differences in drug activity. This review introduces the fundamental aspects of XAS and XES, with an emphasis on practical considerations for pharmaceutical applications, including experimental design and basic spectral interpretation. Full article
(This article belongs to the Special Issue Contemporary Pharmacy: Advances and Challenges)
16 pages, 1356 KB  
Article
Predictive Numerical Modeling of Inelastic Buckling for Process Optimization in Cold Forging of Aluminum, Stainless Steel, and Copper
by Dan Lagat, Huzeifa Munawar, Eliakim Akhusama, Alfayo Alugongo and Hilary Rutto
Processes 2025, 13(10), 3177; https://doi.org/10.3390/pr13103177 - 7 Oct 2025
Abstract
The growing demand for precision and consistency in the forging industry has heightened the need for predictive simulation tools. While extensive research has focused on parameters such as flow stress, die wear, billet fracture, and residual stresses, the phenomenon of billet buckling, especially [...] Read more.
The growing demand for precision and consistency in the forging industry has heightened the need for predictive simulation tools. While extensive research has focused on parameters such as flow stress, die wear, billet fracture, and residual stresses, the phenomenon of billet buckling, especially during cold upset forging, remains underexplored. Most existing models address only elastic buckling for slender billets using classical approaches like Euler and Rankine-Gordon formulae, which are not suitable for inelastic deformation in shorter billets. This study presents a numerical model developed to analyze inelastic buckling during cold forging and to determine associated stresses and deflection characteristics. The model was validated through finite element simulations across a range of billet geometries (10–40 mm diameter, 120 mm length), materials (aluminum, stainless steel, and copper), and friction coefficients (µ = 0.12, 0.16, and 0.35). Stress distributions were evaluated against die stroke, with particular emphasis on the influence of strain hardening and geometry. The results showed that billet geometry and strain-hardening exponent significantly affect buckling behavior, whereas friction had a secondary effect, mainly altering overall stress levels. A nonlinear regression approach incorporating material properties, geometric parameters, and friction was used to formulate the numerical model. The developed model effectively estimated buckling stresses across various conditions but could not precisely predict buckling points based on stress differentials. This work contributes a novel framework for integrating material, geometric, and process variables into stress prediction during forging, advancing defect control strategies in industrial metal forming. Full article
Show Figures

Figure 1

18 pages, 2798 KB  
Article
Exploring Low Energy Excitations in the d5 Iridate Double Perovskites La2BIrO6 (B = Zn, Mg)
by Abhisek Bandyopadhyay, Dheeraj Kumar Pandey, Carlo Meneghini, Anna Efimenko, Marco Moretti Sala and Sugata Ray
Condens. Matter 2025, 10(4), 53; https://doi.org/10.3390/condmat10040053 - 6 Oct 2025
Abstract
We experimentally investigate the structural, magnetic, transport, and electronic properties of two d5 iridate double perovskite materials La2BIrO6 (B = Mg, Zn). Notably, despite similar crystallographic structure, the two compounds show distinctly different magnetic behaviors. The M [...] Read more.
We experimentally investigate the structural, magnetic, transport, and electronic properties of two d5 iridate double perovskite materials La2BIrO6 (B = Mg, Zn). Notably, despite similar crystallographic structure, the two compounds show distinctly different magnetic behaviors. The M = Mg compound shows an antiferromagnetic-like linear field-dependent isothermal magnetization below its transition temperature, whereas the M = Zn counterpart displays a clear hysteresis loop followed by a noticeable coercive field, indicative of ferromagnetic components arising from a non-collinear Ir spin arrangement. The local structure studies authenticate perceptible M/Ir antisite disorder in both systems, which complicates the magnetic exchange interaction scenario by introducing Ir-O-Ir superexchange pathways in addition to the nominal Ir-O-B-O-Ir super-superexchange interactions expected for an ideally ordered structure. While spin–orbit coupling (SOC) plays a crucial role in establishing insulating behavior for both these compounds, the rotational and tilting distortions of the IrO6 (and MO6) octahedral units further lift the ideal cubic symmetry. Finally, by measuring the Ir-L3 edge resonant inelastic X-ray scattering (RIXS) spectra for both the compounds, giving evidence of spin–orbit-derived low-energy inter-J-state (intra t2g) transitions (below ~1 eV), the charge transfer (O 2p → Ir 5d), and the crystal field (Ir t2geg) excitations, we put forward a qualitative argument for the interplay among effective SOC, non-cubic crystal field, and intersite hopping in these two compounds. Full article
(This article belongs to the Section Quantum Materials)
13 pages, 2571 KB  
Article
Operando NRVS on LiFePO4 Battery with 57Fe Phonon DOS
by Alexey Rulev, Nobumoto Nagasawa, Haobo Li, Hongxin Wang, Stephen P. Cramer, Qianli Chen, Yoshitaka Yoda and Artur Braun
Crystals 2025, 15(10), 841; https://doi.org/10.3390/cryst15100841 - 27 Sep 2025
Abstract
The vibration properties of materials play a role in their conduction of electric charges. Ionic conductors such as electrodes and solid electrolytes are also relevant in this respect. The vibration properties are typically assessed with infrared and Raman spectroscopy, and inelastic neutron scattering, [...] Read more.
The vibration properties of materials play a role in their conduction of electric charges. Ionic conductors such as electrodes and solid electrolytes are also relevant in this respect. The vibration properties are typically assessed with infrared and Raman spectroscopy, and inelastic neutron scattering, which all allow for the derivation of the phonon density of states (PDOS) in part of a full portion of the Brioullin zone. Nuclear resonant vibration spectroscopy (NRVS) is a novel method that produces the element-specific PDOS from Mössbauer-active isotopes in a compound. We employed NRVS operando on a pouch cell battery containing a Li57FePO4 electrode, and thus could derive the PDOS of the 57Fe in the electrode during charging and discharging. The spectra reveal reversible vibrational changes associated with the two-phase conversion between LiFePO4 and FePO4, as well as signatures of metastable intermediate states. We demonstrate how the NRVS data can be used to tune the atomistic simulations to accurately reconstruct the full vibration structures of the battery materials in operando conditions. Unlike optical techniques, NRVS provides bulk-sensitive, element-specific access to the full phonon spectrum under realistic operando conditions. These results establish NRVS as a powerful method to probe lattice dynamics in working batteries and to advance the understanding of ion transport and phase transformation mechanisms in electrode materials. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

14 pages, 926 KB  
Review
Biomedical Applications of Raman Spectroscopy: A Review
by Sara Pimenta and José H. Correia
Photochem 2025, 5(4), 29; https://doi.org/10.3390/photochem5040029 - 26 Sep 2025
Abstract
Raman spectroscopy is a widely used technology in the biomedical field, including specific applications from cancer diagnosis to an active role in the pharmaceutical industry. Despite the extensive use of Raman spectroscopy in research studies, there are still some limitations to its applicability [...] Read more.
Raman spectroscopy is a widely used technology in the biomedical field, including specific applications from cancer diagnosis to an active role in the pharmaceutical industry. Despite the extensive use of Raman spectroscopy in research studies, there are still some limitations to its applicability in daily clinical diagnosis. This review initially presents the main principles of Raman spectroscopy and then its most relevant applications in the biomedical field, exploring the main advantages, challenges, and limitations. Additionally, other Raman-based techniques are identified as alternatives to the conventional technique. Overall, this review aims to present the currently available applications of Raman spectroscopy in the biomedical field and future appropriate perspectives, as possible guidance for new Raman-based biomedical devices. Full article
Show Figures

Figure 1

42 pages, 2695 KB  
Review
Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Evaluation of Spectroscopic Methods for Examining Structure and Dynamics of Nanosponges
by Bartłomiej Pyrak, Karolina Rogacka-Pyrak and Tomasz Gubica
Int. J. Mol. Sci. 2025, 26(19), 9342; https://doi.org/10.3390/ijms26199342 - 24 Sep 2025
Viewed by 16
Abstract
Cyclodextrin-based nanosponges (CDNSs) are novel polymers composed of cross-linked cyclodextrin (CD) macrocyclic units, whose characteristics make them great candidates for drug delivery systems with adjustable properties for the drug release process. Examination of the molecular structure and dynamics of CDNSs is a necessary [...] Read more.
Cyclodextrin-based nanosponges (CDNSs) are novel polymers composed of cross-linked cyclodextrin (CD) macrocyclic units, whose characteristics make them great candidates for drug delivery systems with adjustable properties for the drug release process. Examination of the molecular structure and dynamics of CDNSs is a necessary starting point in the first step toward their broad application. Spectroscopic methods are effective analytical tools for probing the structure–property relationships of polymer structures. Infrared (IR) and Raman spectroscopies provide insight into the behavior of hydrogen bond (H-bond) networks influencing the properties of CDNS polymeric networks. Scattering techniques such as inelastic neutron scattering (INS) and Brillouin light scattering (BLS) probe elastic properties, while small-angle neutron scattering (SANS) examines the structural inhomogeneities and water sorption abilities of CDNS materials. Complete evaluation is possible using nuclear magnetic resonance (NMR), which can provide data on CDNS network dynamics. This article summarizes the results of a wide examination of CDNSs with the use of spectroscopic methods and reveals the links between the microscopic behavior and macroscopic properties of CDNSs, enabling the customization of their properties for various biomedical purposes. Full article
(This article belongs to the Special Issue Cyclodextrins: Properties and Applications, 3rd Edition)
Show Figures

Figure 1

28 pages, 3057 KB  
Article
Proton Interactions with Biological Targets: Inelastic Cross Sections, Stopping Power, and Range Calculations
by Camila Strubbia Mangiarelli, Verónica B. Tessaro, Michaël Beuve and Mariel E. Galassi
Atoms 2025, 13(10), 83; https://doi.org/10.3390/atoms13100083 - 24 Sep 2025
Viewed by 33
Abstract
Proton therapy enables precise dose delivery to tumors while sparing healthy tissues, offering significant advantages over conventional radiotherapy. Accurate prediction of biological doses requires detailed knowledge of radiation interactions with biological targets, especially DNA, a key site of radiation-induced damage. While most biophysical [...] Read more.
Proton therapy enables precise dose delivery to tumors while sparing healthy tissues, offering significant advantages over conventional radiotherapy. Accurate prediction of biological doses requires detailed knowledge of radiation interactions with biological targets, especially DNA, a key site of radiation-induced damage. While most biophysical models (LEM, mMKM, NanOx) rely on water as a surrogate, this simplification neglects the complexity of real biomolecules. In this work, we calculate the stopping power and range of protons in liquid water, dry DNA, and hydrated DNA using semi-empirical cross sections for ionization, electronic excitation, electron capture, and electron loss by protons and neutral hydrogen in the 10 keV–100 MeV energy range. Additionally, ionization cross sections for uracil are computed to explore potential differences between DNA and RNA damage. Our results show excellent agreement with experimental and ab initio data, highlighting significant deviations in stopping power and range between water and DNA. Notably, the stopping power of DNA exceeds that of water at most energies, reducing proton ranges in dry and hydrated DNA by up to 20% and 26%, respectively. These findings provide improved input for Monte Carlo simulations and biophysical models, enhancing RBE predictions and dose accuracy in hadrontherapy. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

10 pages, 7955 KB  
Article
Investigating the Effect of Pseudo-Haptics on Perceptions Toward Onomatopoeia Text During Finger-Point Tracing
by Satoshi Saga and Kanta Shirakawa
Multimodal Technol. Interact. 2025, 9(10), 100; https://doi.org/10.3390/mti9100100 - 23 Sep 2025
Viewed by 162
Abstract
With the advancement of haptic technology, the use of pseudo-haptics to provide tactile feedback without physical contact has garnered significant attention. This paper aimed to investigate whether sliding fingers over onomatopoetic text strings with pseudo-haptic effects induces change in perception toward their symbolic [...] Read more.
With the advancement of haptic technology, the use of pseudo-haptics to provide tactile feedback without physical contact has garnered significant attention. This paper aimed to investigate whether sliding fingers over onomatopoetic text strings with pseudo-haptic effects induces change in perception toward their symbolic semantics. To address this, we conducted an experiment using finger-point reading as our subject matter. The experimental results confirmed that the “neba-neba,” “puru-puru,” and “fusa-fusa” effects create a pseudo-haptic feeling for the associated texts on the “hard–soft,” “slippery–sticky,” and “elastic–inelastic” adjective pairs. Specifically, for “hard–soft,” it was found that the proposed effects could consistently produce an impact. Full article
Show Figures

Figure 1

31 pages, 10806 KB  
Article
Study on the Mechanical Behavior of a Large-Segment Fully Prefabricated Subway Station During the Construction Process
by Zhongsheng Tan, Yuanzhuo Li, Xiaomin Fan and Jian Wang
Appl. Sci. 2025, 15(18), 9941; https://doi.org/10.3390/app15189941 - 11 Sep 2025
Viewed by 292
Abstract
In response to issues of long construction cycles, high pollution, and labor shortages in traditional cast in situ subway station construction, a refined 3D model of a large-segment prefabricated subway station was established using ABAQUS software 2024, with mechanical behavior throughout the construction [...] Read more.
In response to issues of long construction cycles, high pollution, and labor shortages in traditional cast in situ subway station construction, a refined 3D model of a large-segment prefabricated subway station was established using ABAQUS software 2024, with mechanical behavior throughout the construction process studied based on the Shenzhen Huaxia Station project case. The model incorporates a concrete inelastic damage constitutive model and a steel elastic–plastic model, accurately simulates key components, including dry joints of mortise–tenon grooves, prestressed reinforcement, and bolted connections, and implements a seven-phase construction sequence. Research findings indicate the following: (1) During component assembly, the roof vault settlement remains ≤3.8 mm, but backfilling significantly increases displacements (roof settlement reaches 45 mm, middle slab deflection measures 66.91 mm). (2) Longitudinal mortise–tenon joints develop stress concentrations due to stiffness disparities, with mid-column installation slots identified as vulnerable zones exhibiting maximum Von Mises stress of 32 MPa. (3) Mid-column eccentricity induces structural asymmetry, causing increased deflection in longer-span middle slabs, corbel contact stress differentials up to 6 MPa, and bolt tensile stresses exceeding 1.1 GPa. (4) The arched roof effectively transfers loads via three-hinged arch mechanisms, though spandrel horizontal displacement triggers 5 cm rebound in diaphragm wall displacement. Conclusions confirm overall the stability of the prefabricated structure while recommending the optimization of member stiffness matching, avoidance of asymmetric designs, and localized reinforcement for mortise–tenon edges and mid-column joints. Results provide valuable references for analogous projects. Full article
Show Figures

Figure 1

16 pages, 1251 KB  
Article
Carbon Pricing and the Truckload Spot Market
by Andrew Balthrop, Justin T. Kistler, Yemisi Bolumole, Alex Scott and Chad W. Autry
Logistics 2025, 9(3), 121; https://doi.org/10.3390/logistics9030121 - 28 Aug 2025
Viewed by 716
Abstract
Background: Carbon pricing in the form of fuel taxes is an important tool for abating climate change. This study examines the impact and pass-through of fuel taxes in the truckload freight market. Methods: State-level truckload market data, integrated with retail diesel prices, are [...] Read more.
Background: Carbon pricing in the form of fuel taxes is an important tool for abating climate change. This study examines the impact and pass-through of fuel taxes in the truckload freight market. Methods: State-level truckload market data, integrated with retail diesel prices, are analyzed using fixed-effects regression modeling. Results: Taxes and fuel costs are not only passed on by diesel retailers to motor carriers; the results reveal the overshifting of diesel taxes from motor carriers to shippers. Conclusions: The findings are consistent with inelastic short-term demand for long-haul carriage, indicating that relatively large price increases will be necessary to reduce diesel consumption in the trucking industry. Full article
Show Figures

Figure 1

38 pages, 5434 KB  
Review
Chemical Deuteration of α-Amino Acids and Optical Resolution: Overview of Research Developments
by Nageshwar R. Yepuri
Bioengineering 2025, 12(9), 916; https://doi.org/10.3390/bioengineering12090916 - 26 Aug 2025
Viewed by 986
Abstract
Deuterium-labelled amino acids have found extensive applications in such research areas as pharmaceutical, bioanalytical, neutron diffraction, inelastic neutron scattering, in analysis of drug metabolism using mass spectrometry (MS), and, structuring of biomolecules by NMR. For these reasons, interest in new methodologies for the [...] Read more.
Deuterium-labelled amino acids have found extensive applications in such research areas as pharmaceutical, bioanalytical, neutron diffraction, inelastic neutron scattering, in analysis of drug metabolism using mass spectrometry (MS), and, structuring of biomolecules by NMR. For these reasons, interest in new methodologies for the deuterium labelling of amino acids and the extent of their applications are equally rising. The ideal method will be able to label target compounds rapidly and cost-effectively by the direct exchange of a hydrogen atom by a deuterium atom. Most of these exchange reactions can often be carried out directly on the final target compound or a late intermediate in the synthesis, and often D2O can be used as the deuterium source. This review aims to provide a high-level overview of the chemical deuteration of amino acids in various groups (aromatic, heterocyclic, and non-aromatic α-amino acids). It primarily focuses on metal-catalyzed H/D exchange under hydrothermal conditions, with some attention given to studies on stereoselectivity and chemically synthesized perdeuteration and selective deuteration. In addition, we present different methods tested, manipulated, and developed for versatile new scalable protocols for preparation of selective and perdeuterated biologically important amino acids and their enzymatic and kinetic resolution to give pure enantiomers. Different methods for the synthesis of stereocontrolled selective and perdeuterated amino acids, including synthetic, and methods for preparing optically pure amino acids are presented. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Deuterated Biomaterials)
Show Figures

Graphical abstract

23 pages, 713 KB  
Article
Super-Accreting Active Galactic Nuclei as Neutrino Sources
by Gustavo E. Romero and Pablo Sotomayor
Universe 2025, 11(9), 288; https://doi.org/10.3390/universe11090288 - 25 Aug 2025
Viewed by 1582
Abstract
Active galactic nuclei (AGNs) often exhibit broad-line regions (BLRs), populated by high-velocity clouds in approximately Keplerian orbits around the central supermassive black hole (SMBH) at subparsec scales. During episodes of intense accretion at super-Eddington rates, the accretion disk can launch a powerful, radiation-driven [...] Read more.
Active galactic nuclei (AGNs) often exhibit broad-line regions (BLRs), populated by high-velocity clouds in approximately Keplerian orbits around the central supermassive black hole (SMBH) at subparsec scales. During episodes of intense accretion at super-Eddington rates, the accretion disk can launch a powerful, radiation-driven wind. This wind may overtake the BLR clouds, forming bowshocks around them. Two strong shocks arise: one propagating into the wind, and the other into the cloud. If the shocks are adiabatic, electrons and protons can be efficiently accelerated via a Fermi-type mechanism to relativistic energies. In sufficiently dense winds, the resulting high-energy photons are absorbed and reprocessed within the photosphere, while neutrinos produced in inelastic pp collisions escape. In this paper, we explore the potential of super-accreting AGNs as neutrino sources. We propose a new class of neutrino emitter: an AGN lacking jets and gamma-ray counterparts, but hosting a strong, opaque, disk-driven wind. As a case study, we consider a supermassive black hole with MBH=106M and accretion rates consistent with tidal disruption events (TDEs). We compute the relevant cooling processes for the relativistic particles under such conditions and show that super-Eddington accreting SMBHs can produce detectable neutrino fluxes with only weak electromagnetic counterparts. The neutrino flux may be observable by the next-generation IceCube Observatory (IceCube-Gen2) in nearby galaxies with a high BLR cloud filling factor. For galaxies hosting more massive black holes, detection is also possible with moderate filling factors if the source is sufficiently close, or at larger distances if the filling factor is high. Our model thus provides a new and plausible scenario for high-energy extragalactic neutrino sources, where both the flux and timescale of the emission are determined by the number of clouds orbiting the black hole and the duration of the super-accreting phase. Full article
Show Figures

Figure 1

12 pages, 254 KB  
Article
On Thermodynamical Kluitenberg Theory in General Relativity
by Francesco Farsaci and Patrizia Rogolino
Entropy 2025, 27(8), 833; https://doi.org/10.3390/e27080833 - 6 Aug 2025
Viewed by 337
Abstract
In this paper, we introduce Kluitenberg’s formulation of non-equilibrium thermodynamics with internal variables in the context of a Riemannian space, as required by Einstein’s general relativity. Using the formulation of the second law of thermodynamics in general coordinates with a pseudo-Euclidean metric, we [...] Read more.
In this paper, we introduce Kluitenberg’s formulation of non-equilibrium thermodynamics with internal variables in the context of a Riemannian space, as required by Einstein’s general relativity. Using the formulation of the second law of thermodynamics in general coordinates with a pseudo-Euclidean metric, we derive a Levi-Civita-like energy tensor and propose a generalization of the second law within a Riemannian space, in agreement with Tolman’s approach. In addition, we determine the expression for the entropy density in a general Riemannian space and identify the new variables upon which it depends. This allows us to deduce, within this framework, the equilibrium inelastic and viscous stress tensors as well as the entropy production. These expressions are consistent with the principle of general covariance and Einstein’s equivalence principle. Full article
(This article belongs to the Section Thermodynamics)
21 pages, 14898 KB  
Article
SSI Effects on Constant-Ductility Inelastic Displacement Ratio and Residual Displacement of Self-Centering Systems Under Pulse-Type Ground Motions
by Muberra Eser Aydemir
Appl. Sci. 2025, 15(15), 8661; https://doi.org/10.3390/app15158661 - 5 Aug 2025
Viewed by 298
Abstract
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and [...] Read more.
This study aims to examine the seismic response of self-centering single-degree-of-freedom (SDOF) systems exhibiting flag-shaped hysteretic behavior, while considering soil–structure interaction, in contrast to prior research that predominantly addressed conventional hysteretic behavior and overlooked soil flexibility. The inelastic displacement ratio, residual displacement, and residual displacement ratio are used to analyze the seismic response of interacting structures. These structural response parameters are calculated based on the nonlinear dynamic analyses of SDOF systems subjected to 56 near-fault pulse-type ground motions. Analyses are conducted for varying values of ductility, energy dissipation coefficient, strain hardening ratio, aspect ratio, structural period, and normalized vibration period by pulse period of the record. New formulas to estimate the inelastic displacement ratio and residual displacement of self-centering SDOF systems with soil–structure interaction are developed based on a statistical analysis of the findings. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 7203 KB  
Article
Experimental Lateral Behavior of Porcelain-Clad Cold-Formed Steel Shear Walls Under Cyclic-Gravity Loading
by Caeed Reza Sowlat-Tafti, Mohammad Reza Javaheri-Tafti and Hesam Varaee
Infrastructures 2025, 10(8), 202; https://doi.org/10.3390/infrastructures10080202 - 2 Aug 2025
Viewed by 468
Abstract
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative [...] Read more.
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative porcelain sheathing system for cold-formed steel (CFS) shear walls. Porcelain has no veins thus it offers integrated and reliable strength unlike granite. Four full-scale CFS shear walls incorporating screwed porcelain sheathing (SPS) were tested under combined cyclic lateral and constant gravity loading. The experimental program investigated key seismic characteristics, including lateral stiffness and strength, deformation capacity, failure modes, and energy dissipation, to calculate the system response modification factor (R). The test results showed that configurations with horizontal sheathing, double mid-studs, and three blocking rows improved performance, achieving up to 21.1 kN lateral resistance and 2.5% drift capacity. The average R-factor was 4.2, which exceeds the current design code values (AISI S213: R = 3; AS/NZS 4600: R = 2), suggesting the enhanced seismic resilience of the SPS-CFS system. This study also proposes design improvements to reduce the risk of brittle failure and enhance inelastic behavior. In addition, the results inform discussions on permissible building heights and contribute to the advancement of CFS design codes for seismic regions. Full article
Show Figures

Figure 1

Back to TopTop