Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = infiltration-metasomatic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 83957 KB  
Article
Stealth Metasomatism in Granulites from Ivrea (NW Italy): Hydration of the (Variscan) Lower Crust by Melt Flow
by Stylianos Karastergios, Simona Ferrando, Barbara E. Kunz and Maria Luce Frezzotti
Geosciences 2024, 14(8), 218; https://doi.org/10.3390/geosciences14080218 - 16 Aug 2024
Viewed by 6756
Abstract
Granulites and associated dykes from the less well-studied southern Ivrea–Verbano Zone (around Ivrea town) are characterized by combining field, macro, micro and chemical (major and trace-element mineral composition) data to identify chemical and rheological variations in the lower crust that could be relevant [...] Read more.
Granulites and associated dykes from the less well-studied southern Ivrea–Verbano Zone (around Ivrea town) are characterized by combining field, macro, micro and chemical (major and trace-element mineral composition) data to identify chemical and rheological variations in the lower crust that could be relevant for geodynamic implications. The Ivrea granulites are similar to those in the Lower Mafic Complex of the central Ivrea–Verbano Zone. The mafic lithologies experienced stealth metasomatism (pargasitic amphibole and An-rich plagioclase) that occurred, at suprasolidus conditions, by a pervasive reactive porous flow of mantle-derived orogenic (hydrous) basaltic melts infiltrated along, relatively few, deformation-assisted channels. The chemical composition of the metasomatic melts is similar to that of melts infiltrating the central and northern Ivrea–Verbano Zone. This widespread metasomatism, inducing a massive regional hydration of the lowermost Southalpine mafic crust, promoted a plastic behavior in the lowermost part of the crust during the Early Mesozoic and, ultimately, the Triassic extension of the Variscan crust and the beginning of the Alpine cycle. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

23 pages, 5679 KB  
Article
Mineralogical and Geochemical Response to Fluid Infiltration into Cambrian Orthopyroxene-Bearing Granitoids and Gneisses, Dronning Maud Land, Antarctica
by Ane K. Engvik, Fernando Corfu, Ilka C. Kleinhanns, Heinrich Taubald and Synnøve Elvevold
Minerals 2024, 14(8), 772; https://doi.org/10.3390/min14080772 - 29 Jul 2024
Cited by 1 | Viewed by 1197
Abstract
Fluid infiltration into Proterozoic and Early Palaeozoic dry, orthopyroxene-bearing granitoids and gneisses in Dronning Maud Land, Antarctica, has caused changes to rock appearance, mineralogy, and rock chemistry. The main mineralogical changes are the replacement of orthopyroxene by hornblende and biotite, ilmenite by titanite, [...] Read more.
Fluid infiltration into Proterozoic and Early Palaeozoic dry, orthopyroxene-bearing granitoids and gneisses in Dronning Maud Land, Antarctica, has caused changes to rock appearance, mineralogy, and rock chemistry. The main mineralogical changes are the replacement of orthopyroxene by hornblende and biotite, ilmenite by titanite, and various changes in feldspar structure and composition. Geochemically, these processes resulted in general gains of Si, mostly of Al, and marginally of K and Na but losses of Fe, Mg, Ti, Ca, and P. The isotopic oxygen composition (δ18OSMOW = 6.0‰–9.9‰) is in accordance with that of the magmatic precursor, both for the host rock and infiltrating fluid. U-Pb isotopes in zircon of the altered and unaltered syenite to quartz-monzonite indicate a primary crystallization age of 520.2 ± 1.0 Ma, while titanite defines alteration at 485.5 ± 1.4 Ma. Two sets of gneiss samples yield a Rb-Sr age of 517 ± 6 Ma and a Sm-Nd age of 536 ± 23 Ma. The initial Sr and Nd isotopic ratios suggest derivation of the gneisses from a relatively juvenile source but with a very strong metasomatic effect that introduced radiogenic Sr into the system. The granitoid data indicate instead a derivation from Mid-Proterozoic crust, probably with additions of mantle components. Full article
Show Figures

Figure 1

21 pages, 20175 KB  
Article
The Geochemical Characteristics of Trace Elements in the Magnetite and Fe Isotope Geochemistry of the Makeng Iron Deposit in Southwest Fujian and Their Significance in Ore Genesis
by Jinjun Yi, Xiaoxiao Shi, Genyuan Ji, Lei Zhang, Sen Wang and Huang Deng
Minerals 2024, 14(3), 217; https://doi.org/10.3390/min14030217 - 21 Feb 2024
Cited by 4 | Viewed by 2142
Abstract
The Makeng iron deposit in southwest Fujian is a significant iron polymetallic deposit containing various types of iron ore, including garnet magnetite, diopside magnetite, and quartz magnetite. The metallogenetic type of the deposit has been a subject of debate, particularly in relation to [...] Read more.
The Makeng iron deposit in southwest Fujian is a significant iron polymetallic deposit containing various types of iron ore, including garnet magnetite, diopside magnetite, and quartz magnetite. The metallogenetic type of the deposit has been a subject of debate, particularly in relation to the genesis of magnetite and the source of iron. In situ microanalysis of trace elements in magnetite from different ores shows relatively low levels of V, Ti, Cu, and Zn, with higher concentrations of Ca and Si, indicating the characteristics of a skarn type deposit. The δ57Fe values of the magnetite range from −0.091‰ to 0.317‰. Combining these data, whole-rock iron isotope analyses, including Juzhou and Dayang granites, diabase, and the Lower Carboniferous Lindi Formation sandstone, suggest that Fe in the magnetite primarily originates from granitic pluton, with potential contributions from diabase and the Lower Carboniferous Lindi Formation sandstone. Combined with field work, these results indicate that Makeng iron deposit is a skarn-type magnetite deposit associated with Yanshanian granitic intrusions. Therefore, the initial ore-forming fluid is postulated to be a high-temperature magmatic hydrothermal fluid with high oxygen fugacity. This fluid infiltrates spaces such as interlayer fracture zones between the Upper Carboniferous Jingshe Formation–Middle Permian Qixia Formation carbonate rocks and the Lower Carboniferous Lindi Formation sandstone, resulting in diverse magnetite ores due to metasomatism. The mineralization process of the Makeng iron deposit is basically the same, as it is composed of typical skarn deposits. Magnetite was mainly formed during calcic skarn formation stage, and this process persisted until the initial phase of the retrograde alteration of skarns. In contrast, sulfide minerals, including molybdenite, sphalerite, and galena, precipitated during the quartz–sulfide stage. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 4244 KB  
Article
Geochemical Characteristics of Garnet from Zinc–Copper Ore Bodies in the Changpo–Tongkeng Deposit and Its Geological Significance
by Lei He, Ting Liang, Denghong Wang, Zheng Zhao, Bosheng Liu, Jinggang Gao and Jubiao Cen
Minerals 2023, 13(7), 937; https://doi.org/10.3390/min13070937 - 13 Jul 2023
Cited by 2 | Viewed by 2630
Abstract
The Changpo–Tongkeng tin polymetallic deposit in Dachang, Guangxi, is a world-class, superlarge, polymetallic tin deposit consisting of lower skarn zinc–copper ore bodies and upper tin polymetallic ore bodies. Garnet is the main gangue mineral in the skarn zinc–copper ore bodies and has a [...] Read more.
The Changpo–Tongkeng tin polymetallic deposit in Dachang, Guangxi, is a world-class, superlarge, polymetallic tin deposit consisting of lower skarn zinc–copper ore bodies and upper tin polymetallic ore bodies. Garnet is the main gangue mineral in the skarn zinc–copper ore bodies and has a granular texture. Based on hand specimens and microscopic observations, the existing garnet can be divided into two generations: an early generation (Grt I) and a late generation (Grt II). The results of electron probe microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in situ microanalysis show that the contents of SiO2 and CaO in the garnets from the two generations present limited variations, while the FeOT and Al2O3 contents vary significantly, indicating the grossular–andradite solid solution series (Gro29–82And12–69). Compared with Grt I (Gro72And25), Grt II (Gro39And59) is Fe-enriched and oscillatory zoning is developed. The total rare earth element (REE) contents in the two generations of garnet are relatively low, showing light rare earth element (LREE) depletion and heavy rare earth element (HREE) enrichment patterns. Grt II has higher REE content than Grt I and exhibits significant negative Eu anomalies (δEu = 0.18–0.44). The contents and variation characteristics of the major and trace elements in the two generations of garnet suggest that there were variable redox conditions and water/rock ratios in the hydrothermal system during the crystallization process of garnet. In the early stage, skarnization was in a relatively closed and low-oxygen fugacity system, with hydrothermal diffusion metasomatism being dominant, forming homogeneous Grt I lacking well-developed zoning. In the late stage of skarnization, the oxygen fugacity of the ore-forming fluids increased, with infiltration metasomatism being dominant, forming Grt II with well-developed oscillatory zoning. The contents of Sn, As, W, In, and Ge in the garnets are relatively high and increase with the proportion of andradite. Sn in zinc–copper ore bodies mainly exists in the form of isomorphic substitution in garnet, which may be the main reason for the lack of tin ore bodies during the skarn stage. This paper compares the trace element contents in garnets from domestic skarn deposits. The results indicate that the Sn content and δEu in garnet can be used to evaluate the tin-forming potential of skarn deposits. Full article
Show Figures

Figure 1

25 pages, 30493 KB  
Article
Geochemical Characteristics of the Mineral Assemblages from the Niukutou Pb-Zn Skarn Deposit, East Kunlun Mountains, and Their Metallogenic Implications
by Xinyu Wang, Shulai Wang, Huiqiong Zhang, Yuwang Wang, Xinyou Zhu and Xing Yang
Minerals 2023, 13(1), 18; https://doi.org/10.3390/min13010018 - 23 Dec 2022
Cited by 5 | Viewed by 2345
Abstract
The Niukutou Pb-Zn deposit is typical of skarn deposits in the Qimantagh metallogenic belt (QMB) in the East Kunlun Mountains. In this study, based on detailed petrographical observations, electron microprobe analyses (EMPAs), and laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) analyses, we report the major [...] Read more.
The Niukutou Pb-Zn deposit is typical of skarn deposits in the Qimantagh metallogenic belt (QMB) in the East Kunlun Mountains. In this study, based on detailed petrographical observations, electron microprobe analyses (EMPAs), and laser-ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) analyses, we report the major and trace element compositions of the typical skarn mineral assemblages (garnet, pyroxene, ilvaite, epidote, and chlorite) in this deposit. Three hydrothermal mineralization stages with different mineral assemblages of the prograde metamorphic phase were determined, which were distributed from the inside to the outside of the ore-forming rock mass. Grt1+Px1 (Stage 1), Grt2+Px2 (Stage 2), and Px3 (Stage 3) were distinguished in the Niukutou deposit. Furthermore, the ilvaites in the retrograde metamorphic phase can be divided into three stages, namely Ilv1, Ilv2, and Ilv3. The ore-forming fluid in Stage 1 exhibited high ∑REE, U, and Nd concentrations and δEu, δCe, and LREE/HREE values, which were likely derived from a magmatic–hydrothermal source and formed at high temperatures, high fO2 values, and mildly acidic pH conditions, and probably experienced diffusive metasomatism in a closed system with low water/rock ratios. In Stages 2 and 3, the ore-forming exhibited lower ∑REE, U, and Nd concentrations and δEu, δCe, and LREE/HREE values, with high Mn content that had likely experienced infiltrative metasomatism in an open system with high water/rock ratios. From Ilv1 to Ilv3, the δEu and U contents decreased, whereas the Mn content increased, indicating that the oxygen fugacity of mineralization was in decline. The ore-forming fluid evolution of the Niukutou deposit can be characterized as follows: from Stage 1 to Stage 3, the hydrothermal fluid migrated from the deep plutons to the shallow skarn and marble; the environment altered from the high fO2 and temperature conditions to low fO2 and temperature values, and the pH and Mn contents increased. The fluids contained considerable metal ore-forming materials that were favorable for the enrichment and precipitation of the Fe content. In the retrograde metamorphic phase, with the decrease in oxygen fugacity (from Ilv1 to Ilv3), the temperature and oxygen fugacity of the theore-forming fluid environment decreased, ultimately becoming conducive to the dissolution and precipitation of Pb and Zn elements. Full article
(This article belongs to the Special Issue Genesis and Evolution of Pb-Zn-Ag Polymetallic Deposits)
Show Figures

Figure 1

14 pages, 2948 KB  
Article
Elemental Gains and Losses during Hydrothermal Alteration in Awak Mas Gold Deposit, Sulawesi Island, Indonesia: Constraints from Balanced Mineral Reactions
by Ernowo Ernowo, Arifudin Idrus and Franz Michael Meyer
Minerals 2022, 12(12), 1630; https://doi.org/10.3390/min12121630 - 17 Dec 2022
Cited by 3 | Viewed by 2785
Abstract
Hydrothermal gold mineralization is commonly associated with metasomatic processes resulting from interaction of hostrock with infiltrating hot aqueous fluids. Understanding of the alteration mechanism requires quantification of element changes in altered rock, relative to the unaltered or least-altered rock, representing the protolith. Balanced [...] Read more.
Hydrothermal gold mineralization is commonly associated with metasomatic processes resulting from interaction of hostrock with infiltrating hot aqueous fluids. Understanding of the alteration mechanism requires quantification of element changes in altered rock, relative to the unaltered or least-altered rock, representing the protolith. Balanced mineral reactions are used to gain quantitative insight into the alteration process associated with gold mineralization at the Awak Mas deposit. Three representative samples were carefully selected from the least-altered pyllite and the two alteration zones bordering the mineralization. Mineral mode, textural features, and mineral compositions were studied by microscopy and electron microprobe analyzer (EMPA). Quantitative modal analysis was performed with a Quanta 650 F QEMSCAN® system. The hydrothermal alteration sequence around the mineralization starts with the proximal albite–ankerite–pyrite alteration zone via the distal albite–chlorite alteration zone to the least-altered phyllite wall-rock. Balanced mineral reaction calculations were performed to evaluate elemental gains and losses. Most noticeable is the addition of Si, Na and Ca to each alteration zone. This alteration is represented by the almost complete replacement of muscovite by albite. The addition of Fe and S was highest in the albite–ankerite–pyrite alteration zone. Alteration of the least altered phyllite to the albite–chlorite zone involved a mass increase of 14.5% and a neglectable volume increase of 0.6%. The mass and a volume increase from the least altered phyllite to the albite–ankerite–pyrite zone was 40.5% and 0.47%, respectively. The very low volume change during alteration is also corroborated by the textural preservation indicating isovolumetric metasomatic reactions. The replacement of muscovite by albite may have had an important effect on the change of the rock failure mode from ductile to brittle, with consequences for the focusing of fluid flow. Full article
(This article belongs to the Special Issue Economic Mineral Deposits: A Review)
Show Figures

Figure 1

18 pages, 3621 KB  
Article
The Problem of the Formation of Boehmite and Gibbsite in Bauxite-Bearing Lateritic Profiles
by Vladimir Mamedov, Natalia Boeva, Marina Makarova, Elena Shipilova and Philimon Melnikov
Minerals 2022, 12(3), 389; https://doi.org/10.3390/min12030389 - 21 Mar 2022
Cited by 12 | Viewed by 5218
Abstract
The study of a large amount of factual material about the formation conditions of gibbsite or boehmite and their mutual transformations in lateritic bauxites allowed us to solve the problem of boehmite formation and its spatial and genetic relationship to gibbsite. The boehmite [...] Read more.
The study of a large amount of factual material about the formation conditions of gibbsite or boehmite and their mutual transformations in lateritic bauxites allowed us to solve the problem of boehmite formation and its spatial and genetic relationship to gibbsite. The boehmite formation occurred only during the formation of sedimentary-lateritic bauxites from alluvial and lacustrine sediments that underwent bleaching and resilification at the stage of sediment flooding, as well as on bleached bedrock under sedimentary-lateritic bauxites. The most intense boehmite formation occurred at a depth of 20–30 m from the surface and was accompanied by an alumina input, which was realized here in the form of boehmite along with the gibbsite formation due to the hydrolytic decomposition of kaolinite and partially due to the input alumina. In the upper profiles, the recrystallization of bauxites occurs with the replacement of dissolving boehmite with gibbsite, with a decrease in the total Al2O3 content and an increase in the amount of crystallization water. In classic lateritic bauxites, the boehmite content is highly insignificant; that is, its formation in them practically does not occur or is very much inhibited. Full article
Show Figures

Figure 1

26 pages, 24049 KB  
Article
Mineralogy, Geochemistry, and Age Constraints on the Axinite-Bearing Gukjeon Pb–Zn Skarn Deposit in the Miryang Area, South Korea
by Namhoon Kim, Sang-Mo Koh, Byoung-Woon You and Bum Han Lee
Minerals 2021, 11(6), 619; https://doi.org/10.3390/min11060619 - 9 Jun 2021
Cited by 1 | Viewed by 4262
Abstract
The axinite-bearing Gukjeon Pb–Zn deposit is hosted by the limestone, a member of the Jeonggaksan Formation, which, in turn, forms the part of the Jusasan subgroup of the Yucheon Group in the Gyeongsang Basin in the southeastern part of the Korean Peninsula. In [...] Read more.
The axinite-bearing Gukjeon Pb–Zn deposit is hosted by the limestone, a member of the Jeonggaksan Formation, which, in turn, forms the part of the Jusasan subgroup of the Yucheon Group in the Gyeongsang Basin in the southeastern part of the Korean Peninsula. In this study, we attempted to interpret the spatial and temporal relationships among geologic events, including the mineralization of this deposit. We constructed a new 3D orebody model and suggested a relationship between skarn alteration and related mineralization. Mineralization timing was constrained using SHRIMP zircon age dating results combined with boron geochemistry on coeval intrusive rocks. Skarn alterations are restrictively found in several horizons of the limestone formation. The major skarn minerals are garnet (grossular), pyroxene (hedenbergite), amphibole (actinolite and ferro-actinolite), axinite (tizenite and ferro-axinite), and epidote (clinozoisite and epidote). The three stages of pre-skarn, syn-skarn, and post-skarn alteration are recognized within the deposit. The syn-skarn alteration is characterized by prograde metasomatic pyroxene and garnet, and the retrograde metasomatic amphibole, axinite, and epidote. Major skarn sulfide minerals are sphalerite, chalcopyrite, galena, and pyrite, which were predominantly precipitated during the retrograde stage and formed amphibole and axinite skarns. The skarn orebodies seem to be disc- or flat-shaped with a convex form at the central part of the orebodies. The vertical ascending and horizontal infiltration of boron-rich hydrothermal fluid probably controlled the geometry of the orebodies. Considering the whole-rock major, trace, and boron geochemical and geochronological results, the timing of Pb–Zn mineralization can be tightly constrained between the emplacement of boron-poor intrusion (fine-grained granodiorite, 82.8 Ma) and boron-rich intrusion (porphyritic andesite in Beomdori andesitic rocks, 83.8 Ma) in a back-arc basin setting. The boron for mineralization was sourced from late Cretaceous (Campanian), subduction-related magmatic rocks along the margin of the Pacific plate. Full article
Show Figures

Figure 1

25 pages, 9543 KB  
Article
Chemical Composition and Genesis Implication of Garnet from the Laoshankou Fe-Cu-Au Deposit, the Northern Margin of East Junggar, NW China
by Pei Liang, Yu Zhang and Yuling Xie
Minerals 2021, 11(3), 334; https://doi.org/10.3390/min11030334 - 23 Mar 2021
Cited by 8 | Viewed by 5235
Abstract
In order to reveal the formation mechanism of different garnets and its implications for the fluid evolution in the Laoshankou Fe-Cu-Au deposit in the northern margin of East Junggar (NW China), three types of garnet have been investigated in detail in this study. [...] Read more.
In order to reveal the formation mechanism of different garnets and its implications for the fluid evolution in the Laoshankou Fe-Cu-Au deposit in the northern margin of East Junggar (NW China), three types of garnet have been investigated in detail in this study. (1) Type 1 grossular, formed at Ca-silicate stage (stage I, the pre-mineralization stage), was replaced by Type 2 garnet and magnetite, and displays a compositional range of Grs44–53Adr44–53, which has relatively lower total REE (rare earth elements) contents (8.14–32.8 ppm) and markedly depleted LREE (light rare earth elements) with distinctive positive Eu anomaly (1.36–9.61). (2) Type 2 Al-rich andradite, formed at the early sub-stage of amphibole-epidote-magnetite stage (stage II, the main magnetite mineralization stage), can be divided into two sub-types, i.e., Type 2a and Type 2b. Type 2a garnets exhibit polysynthetic twinning and relatively narrow compositional variations of Adr63–66Grs31–34 with HREE-(heavy rare-earth elements) enrichment and positive Eu anomalies (3.22–3.69). Type 2b garnets own wide compositional variations of Adr55–77Grs21–43 with relatively higher REE contents (49.1–124 ppm), markedly depleted LREE and a distinctive positive Eu anomaly (2.11–4.61). (3) Type 3 andradite (Adr>91) associated with sulfide stage (stage III, the main copper-gold mineralization stage) is different from other types of garnets in Laoshankou, which are characterized by lowest total REE contents (1.66–91.1 ppm), flat HREE patterns, LREE-enrichment and the strongest positive Eu anomalies (3.31–45.48). Incorporation of REE into garnet is largely controlled by external factors, such as fluid chemistry, pH, ƒO2 and water-rock ratios as well as its crystal chemistry. Type 1 and 2 garnets mainly follow the creation of X2+ (e.g., Ca2+) site vacancy, e.g., [X2+]3VIII[]+1VIII[REE3+]+2VIII. The REE3+ substitution mechanism for Type 3 garnet is the Na+-REE3+ coupled substitutions, e.g., [X2+]2VIII[X+]+1VIII[REE3+]+1VIII, without the evaluation of the creation of site vacancy. The compositional variations from Type 1 to Type 3 garnet indicate significant differences of fluid compositions and physicochemical conditions, and can be used to trace the fluid–rock interaction and hydrothermal evolution of garnet. Type 1 grossular was formed by magmatic fluid under low water–rock ratios and ƒO2, and neutral pH environment by diffusion metasomatism in a nearly closed system with the preferential incorporation into the grossular of HREE. As the long fluid pore residence and continuing infiltration metasomatism under nearly closed-system conditions, fluids with high water/rock ratios were characterized by increased ƒO2, more active incorporation of Fe3+ and REE, and formed Type 2 Al-rich andradite. In contrast, Type 3 garnet formed by oxidizing magmatic fluid under a mildly acidic environment with highest ƒO2 and water–rock ratios, and was influenced by externally derived high salinity and Ca-rich fluids in an open system. Thus, the geochemical features of different types and generations of garnets in the Laoshankou deposit can provide important information of fluid evolution, revealing a transition from neutral magmatic fluid to oxidizing magmatic fluid with addition of external non-magmatic Ca-rich fluid from the Ca-silicate stage to the sulfide stage. The above proved the fluid evolution process further indicates that the Laoshankou deposit prefers to be an IOCG-like (iron oxide-copper-gold) deposit rather than a typical skarn deposit. Full article
Show Figures

Graphical abstract

20 pages, 15405 KB  
Article
Post-Magmatic Fluids Dominate the Mineralization of Dolomite Carbonatitic Dykes Next to the Giant Bayan Obo REE Deposit, Northern China
by Le Hu, Yike Li, Maoshan Chuan, Ruiping Li, Changhui Ke and Zhongjian Wu
Minerals 2020, 10(12), 1117; https://doi.org/10.3390/min10121117 - 12 Dec 2020
Cited by 4 | Viewed by 3879
Abstract
The Bayan Obo rare earth element (REE) deposit in Inner Mongolia, northern China, is the largest REE deposit in the world, whose mineralization process remains controversial. There are dozens of carbonatite dykes that are tightly related to the deposit. Here we report the [...] Read more.
The Bayan Obo rare earth element (REE) deposit in Inner Mongolia, northern China, is the largest REE deposit in the world, whose mineralization process remains controversial. There are dozens of carbonatite dykes that are tightly related to the deposit. Here we report the petrological and mineralogical characteristics of a typical dolomite carbonatite dyke near the deposit. The dolomite within the dyke experienced intense post-emplacement fluids metasomatism as evidenced by the widespread hydrothermal REE-bearing minerals occurring along the carbonate mineral grains. REE contents of bulk rocks and constituent dolomite minerals (>90 vol.%) are 1407–4184 ppm and 63–152 ppm, respectively, indicating that dolomite is not the dominant mineral controlling the REE budgets of the dyke. There are three types of apatite in the dyke: Type 1 apatite is the primary apatite and contains REE2O3 at 2.35–4.20 wt.% and SrO at 1.75–2.19 wt.%; Type 2 and Type 3 apatites are the products of replacement of primary apatite. The REE2O3 (6.10–8.21 wt.%) and SrO (2.83–3.63 wt.%) contents of Type 2 apatite are significantly elevated for overprinting of REE and Sr-rich fluids derived from the carbonatite. Conversely, Type 3 apatite has decreased REE2O3 (1.17–2.35 wt.%) and SrO (1.51–1.99 wt.%) contents, resulting from infiltration of fluids with low REE and Na concentrations. Our results on the dyke suggest that post-magmatic fluids expelled from the carbonatitic melts dominated the REE mineralization of the Bayan Obo deposit, and a significant fluid disturbance occurred but probably provided no extra REEs to the deposit. Full article
(This article belongs to the Special Issue Ore Mineralogy and Geochemistry of Rare Metal Deposits)
Show Figures

Figure 1

18 pages, 32375 KB  
Article
Garnet Geochemistry of Reduced Skarn System: Implications for Fluid Evolution and Skarn Formation of the Zhuxiling W (Mo) Deposit, China
by Xiao-Xia Duan, Ying-Fu Ju, Bin Chen and Zhi-Qiang Wang
Minerals 2020, 10(11), 1024; https://doi.org/10.3390/min10111024 - 17 Nov 2020
Cited by 13 | Viewed by 4871
Abstract
A newly discovered tungsten ore district containing more than 300,000 tons of WO3 in southern Anhui Province has attracted great attention. The Zhuxiling W (Mo) deposit in the district is dominated by skarn tungsten mineralization. This paper conducted in suit EPMA and [...] Read more.
A newly discovered tungsten ore district containing more than 300,000 tons of WO3 in southern Anhui Province has attracted great attention. The Zhuxiling W (Mo) deposit in the district is dominated by skarn tungsten mineralization. This paper conducted in suit EPMA and LA-ICPMS spot and mapping analysis of the skarn mineral garnet to reveal the evolution of fluids, metasomatic dynamics, and formation conditions of skarn. Two generations of garnet have been identified for Zhuxiling W (Mo) skarn: 1) Gt-I generation garnet is isotropic, Al-rich grossular without zoning. As a further subdivision, Gt-IB garnet (Adr19-46Grs49-77 (Sps+Pyr+Alm)4-5) contains significantly high content of Ti and Mn compared with Gt-IA garnet (Adr3-42Grs53-96 (Sps+Pyr+Alm)1-5). 2) Gt-II generation garnet is anisotropic, Fe-rich andradite with oscillatory zoning. Gt-II garnet displays compositional changes with a decrease of Fe and an increase of Mn from proximal skarn (Gt-IIA) to distal skarn (Gt-IIB) with the presence of subcalcic garnet for Gt-IIB type (Sps+Pyr+Alm = 56–68). The presence of pyrrhotite associated with subcalcic garnet indicates a relatively reduced skarn system. Gt-I grossular is overall enriched in Cr, Zr, Y, Nb, and Ta compared with the Gt-II andradite, and both W and Sn strongly favor Fe-rich garnet compared with Al-rich garnet. Gt-IA grossular garnet presents a REE trend with an upward-facing parabola peaking at Pr and Nd in contrast to low and flat HREE, and Gt-IB grossular garnet has a distinct REE pattern with enriched HREE. Gt-IIA andradite garnet displays a right-dipping REE pattern (enriched LREE and depleted HREE) with a prominent positive Eu anomaly (Eu/Eu* = 3.6–15.3). In contrast, Gt-IIB andradite garnet shows depleted LREE and enriched HREE with a weak positive Eu anomaly (Eu/Eu* = 0–6.0). The incorporation and fractionation of REE in garnet are collectively controlled by crystal chemistry and extrinsic factors, such as P–T–X conditions of fluids, fluid/rock ratios, and mineral growth kinetics. Major and trace elements of two generations of garnet combined with optical and textural characteristics suggest that Gt-I Al-rich grossular garnets grow slowly through diffusive metasomatism under a closed system, whereas Gt-II Fe-rich andradite represent rapid growth garnet formed by the infiltration metasomatism of magmatic fluids in an open system. The Mn-rich garnet implies active fluid–rock interaction with Mn-rich dolomitic limestone of the Lantian Group in the district. Full article
Show Figures

Figure 1

34 pages, 8928 KB  
Article
Geological, Geochemical, and Mineralogical Constraints on the Genesis of the Polymetallic Pb-Zn-Rich Nuocang Skarn Deposit, Western Gangdese, Tibet
by Junsheng Jiang, Shunbao Gao, Youye Zheng, David R. Lentz, Jian Huang, Jun Liu, Kan Tian and Xiaojia Jiang
Minerals 2020, 10(10), 839; https://doi.org/10.3390/min10100839 - 23 Sep 2020
Cited by 4 | Viewed by 4678
Abstract
The Nuocang Pb-Zn deposit is a newly discovered polymetallic skarn deposit in the southern Lhasa subterrane, western Gangdese, Tibet. The skarn occurs at the contact between the limestone of Angjie Formation and the Linzizong volcanic rocks of Dianzhong Formation (LDF), and the subvolcanic [...] Read more.
The Nuocang Pb-Zn deposit is a newly discovered polymetallic skarn deposit in the southern Lhasa subterrane, western Gangdese, Tibet. The skarn occurs at the contact between the limestone of Angjie Formation and the Linzizong volcanic rocks of Dianzhong Formation (LDF), and the subvolcanic granite porphyry intruding those formations; the contact metasomatic skarn is well zoned mineralogically and texturally, as well as geochemically. The skarn minerals predominantly consist of an anhydrous to hydrous calc-silicate sequence pyroxene–garnet–epidote. The endoskarn mainly consists of an assemblage of pyroxene, garnet, ilvaite, epidote, and quartz, whereas the exoskarn is characterized proximal to distally, by decreasing garnet, and increasing pyroxene, ilvaite, epidote, chlorite, muscovite, quartz, calcite, galena, and sphalerite. Geochemical analyses suggest that the limestone provided the Ca for all the skarn minerals and the magmatic volatiles were the main source for Si (except the skarnified hornfels/sandstone, and muscovite-epidote-garnet-pyroxene skarn possibly from the host sandstones), with Fe and Mn and other mineralizing components. During the hydrothermal alteration, the garnet-pyroxene skarn and pyroxene-rich skarn gained Si, Fe, Mn, Pb, Zn, and Sn, but lost Ca, Mg, K, P, Rb, Sr, and Ba. However, the skarnified hornfels/sandstone, and muscovite-epidote-garnet-pyroxene skarn gained Fe, Ca, Mn, Sr, Zr, Hf, Th, and Cu, but lost Si, Mg, K, Na, P, Rb, Ba, and Li. The REEs in the skarn were sourced from magmatic fluids during the prograde stage. Skarn mineral assemblages and geochemistry indicate the skarn in the Nuocang deposit were formed in a disequilibrated geochemical system by infiltrative metasomatism of magmatic fluids. During the prograde stage, garnet I (And97.6Gro1.6) firstly formed, and then a part of them incrementally turned into garnet II (And64.4Gro33.8) and III (And70.22Gro29.1). The subsequent substitution of Fe for Al in the garnet II and III indicates the oxygen fugacity of the fluid became more reduced, then resulted in formation of significant pyroxene. However, the anisotropic garnet IV (And38.5Gro59.8) usually replaced the pyroxene. In the retrograde stage, the temperature decreased and oxygen fugacity increased, but hydrolysis increased with epidote, ilvaite, chlorite I, and muscovite forming with magnetite. The continuing decreasing temperature and mixing with meteoric water lead to Cu, Pb, and Zn saturation as sulfides. After the sulfides deposition, the continued mixing with large amounts of cold meteoric water would decrease its temperature, and increase its pH value (neutralizing), promoting the deposition of significant amounts of calcite and chlorite II. The geological, mineralogical, and geochemical characteristics of Nuocang skarn, suggest that the Nuocang deposit is of a Pb-Zn polymetallic type. Compared to the other typical skarn-epithermal deposits in the Linzizong volcanic area, it indicates that the Nuocang deposit may have the exploration potential for both skarn and epithermal styles of mineralization. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Figure 1

18 pages, 6126 KB  
Article
Fluid Infiltration and Mass Transfer along a Lamprophyre Dyke–Marble Contact: An Example from the South-Western Korean Peninsula
by Jungrae Noh, Changyeob Kim, Vinod O. Samuel, Yirang Jang, Seung-Ik Park and Sanghoon Kwon
Minerals 2020, 10(9), 828; https://doi.org/10.3390/min10090828 - 20 Sep 2020
Cited by 6 | Viewed by 4728
Abstract
In this contribution, we report the metasomatic characteristics of a lamprophyre dyke–marble contact zone from the Hongseong–Imjingang belt along the western Gyeonggi Massif, South Korea. The lamprophyre dyke intruded into the dolomitic marble, forming a serpentinized contact zone. The zone consists of olivine, [...] Read more.
In this contribution, we report the metasomatic characteristics of a lamprophyre dyke–marble contact zone from the Hongseong–Imjingang belt along the western Gyeonggi Massif, South Korea. The lamprophyre dyke intruded into the dolomitic marble, forming a serpentinized contact zone. The zone consists of olivine, serpentine, calcite, dolomite, biotite, spinel, and hematite. Minor F and Cl contents in the serpentine and biotite indicate the composition of the infiltrating H2O-CO2 fluid. SiO2 (12.42 wt %), FeO (1.83 wt %), K2O (0.03 wt %), Sr (89 ppm), U (0.7 ppm), Th (1.44 ppm), and rare earth elements (REEs) are highly mobile, while Zr, Cr, and Ba are moderately mobile in the fluid. Phase equilibria modelling suggests that the olivine, spinel, biotite, and calcite assemblage might be formed by the dissolution of dolomite at ~700 °C, 130 MPa. Such modelling requires stable diopside in the observed conditions in the presence of silica-saturated fluid. The lack of diopside in the metasomatized region is due to the high K activity of the fluid. Our log activity K2O (aK2O)–temperature pseudosection shows that at aK2O~−40, the olivine, spinel, biotite, and calcite assemblage is stable without diopside. Subsequently, at ~450 °C, 130 MPa, serpentine is formed due to the infiltration of H2O during the cooling of the lamprophyre dyke. This suggests that hot H2O-CO2 fluids with dissolved major and trace elements infiltrated through fractures, grain boundaries, and micron-scale porosity, which dissolved dolomite in the marble and precipitated the observed olivine-bearing peak metasomatic assemblage. During cooling, exsolved CO2 could increase the water activity to stabilize the serpentine. Our example implies that dissolution-reprecipitation is an important process, locally and regionally, that could impart important textural and geochemical variations in metasomatized rocks. Full article
(This article belongs to the Special Issue Microtexture Characterization of Rocks and Minerals)
Show Figures

Figure 1

33 pages, 8967 KB  
Article
A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite
by Dmitriy I. Rezvukhin, Taisia A. Alifirova, Alexander V. Golovin and Andrey V. Korsakov
Minerals 2020, 10(3), 264; https://doi.org/10.3390/min10030264 - 14 Mar 2020
Cited by 15 | Viewed by 4304
Abstract
More than forty mineral species of epigenetic origin have been identified in an orthopyroxenite from the Udachnaya-East kimberlite pipe, Daldyn kimberlite field, Siberian platform. Epigenetic phases occur as: (1) Mineral inclusions in the rock-forming enstatite, (2) daughter minerals within large (up to 2 [...] Read more.
More than forty mineral species of epigenetic origin have been identified in an orthopyroxenite from the Udachnaya-East kimberlite pipe, Daldyn kimberlite field, Siberian platform. Epigenetic phases occur as: (1) Mineral inclusions in the rock-forming enstatite, (2) daughter minerals within large (up to 2 mm) crystallized melt inclusions (CMI) in the rock-forming enstatite, and (3) individual grains and intergrowths in the intergranular space of the xenolith. The studied minerals include silicates (olivine, clinopyroxene, phlogopite, tetraferriphlogopite, amphibole-supergroup minerals, serpentine-group minerals, talc), oxides (several generations of ilmenite and spinel, rutile, perovskite, rare titanates of the crichtonite, magnetoplumbite and hollandite groups), carbonates (calcite, dolomite), sulfides (pentlandite, djerfisherite, pyrrhotite), sulfate (barite), phosphates (apatite and phosphate with a suggested crystal-chemical formula Na2BaMg[PO4]2), oxyhydroxide (goethite), and hydroxyhalides (kuliginite, iowaite). The examined epigenetic minerals are interpreted to have crystallized at different time spans after the formation of the host rock. The genesis of minerals is ascribed to a series of processes metasomatically superimposed onto the orthopyroxenite, i.e., deep-seated mantle metasomatism, infiltration of a kimberlite-related melt and late post-emplacement hydrothermal alterations. The reaction of orthopyroxene with the kimberlite-related melt has led to orthopyroxene dissolution and formation of the CMI, the latter being surrounded by complex reaction zones and containing zoned olivine grains with extremely high-Mg# (up to 99) cores. This report highlights the utility of minerals present in minor volume proportions in deciphering the evolution and modification of mantle fragments sampled by kimberlitic and other deep-sourced magmas. The obtained results further imply that the whole-rock geochemical analyses of mantle-derived samples should be treated with care due to possible drastic contaminations from “hiding” minor phases of epigenetic origin. Full article
Show Figures

Figure 1

34 pages, 22416 KB  
Article
Zircon at the Nanoscale Records Metasomatic Processes Leading to Large Magmatic–Hydrothermal Ore Systems
by Liam Courtney-Davies, Cristiana L. Ciobanu, Max R. Verdugo-Ihl, Ashley Slattery, Nigel J. Cook, Marija Dmitrijeva, William Keyser, Benjamin P. Wade, Urs I. Domnick, Kathy Ehrig, Jing Xu and Alkiviadis Kontonikas-Charos
Minerals 2019, 9(6), 364; https://doi.org/10.3390/min9060364 - 16 Jun 2019
Cited by 21 | Viewed by 7783
Abstract
The petrography and geochemistry of zircon offers an exciting opportunity to better understand the genesis of, as well as identify pathfinders for, large magmatic–hydrothermal ore systems. Electron probe microanalysis, laser ablation inductively coupled plasma mass spectrometry, high-angle annular dark-field scanning transmission electron microscopy [...] Read more.
The petrography and geochemistry of zircon offers an exciting opportunity to better understand the genesis of, as well as identify pathfinders for, large magmatic–hydrothermal ore systems. Electron probe microanalysis, laser ablation inductively coupled plasma mass spectrometry, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging, and energy-dispersive X-ray spectrometry STEM mapping/spot analysis were combined to characterize Proterozoic granitic zircon in the eastern Gawler Craton, South Australia. Granites from the ~1.85 Ga Donington Suite and ~1.6 Ga Hiltaba Suite were selected from locations that are either mineralized or not, with the same style of iron-oxide copper gold (IOCG) mineralization. Although Donington Suite granites are host to mineralization in several prospects, only Hiltaba Suite granites are considered “fertile” in that their emplacement at ~1.6 Ga is associated with generation of one of the best metal-endowed IOCG provinces on Earth. Crystal oscillatory zoning with respect to non-formula elements, notably Fe and Cl, are textural and chemical features preserved in zircon, with no evidence for U or Pb accumulation relating to amorphization effects. Bands with Fe and Ca show mottling with respect to chloro–hydroxy–zircon nanoprecipitates. Lattice defects occur along fractures crosscutting such nanoprecipitates indicating fluid infiltration post-mottling. Lattice stretching and screw dislocations leading to expansion of the zircon structure are the only nanoscale structures attributable to self-induced irradiation damage. These features increase in abundance in zircons from granites hosting IOCG mineralization, including from the world-class Olympic Dam Cu–U–Au–Ag deposit. The nano- to micron-scale features documented reflect interaction between magmatic zircon and corrosive Fe–Cl-bearing fluids in an initial metasomatic event that follows magmatic crystallization and immediately precedes deposition of IOCG mineralization. Quantification of α-decay damage that could relate zircon alteration to the first percolation point in zircon gives ~100 Ma, a time interval that cannot be reconciled with the 2–4 Ma period between magmatic crystallization and onset of hydrothermal fluid flow. Crystal oscillatory zoning and nanoprecipitate mottling in zircon intensify with proximity to mineralization and represent a potential pathfinder to locate fertile granites associated with Cu–Au mineralization. Full article
(This article belongs to the Special Issue Minerals Down to the Nanoscale: A Glimpse at Ore-Forming Processes)
Show Figures

Figure 1

Back to TopTop