Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (474)

Search Parameters:
Keywords = interfacial compound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2010 KB  
Review
Next-Generation Chemical Sensors: The Convergence of Nanomaterials, Advanced Characterization, and Real-World Applications
by Abniel Machín and Francisco Márquez
Chemosensors 2025, 13(9), 345; https://doi.org/10.3390/chemosensors13090345 (registering DOI) - 8 Sep 2025
Abstract
Chemical sensors have undergone transformative advances in recent years, driven by the convergence of nanomaterials, advanced fabrication strategies, and state-of-the-art characterization methods. This review emphasizes recent developments, with particular attention to progress achieved over the past decade, and highlights the role of the [...] Read more.
Chemical sensors have undergone transformative advances in recent years, driven by the convergence of nanomaterials, advanced fabrication strategies, and state-of-the-art characterization methods. This review emphasizes recent developments, with particular attention to progress achieved over the past decade, and highlights the role of the United States as a major driver of global innovation in the field. Nanomaterials such as graphene derivatives, MXenes, carbon nanotubes, metal–organic frameworks (MOFs), and hybrid composites have enabled unprecedented analytical performance. Representative studies report detection limits down to the parts-per-billion (ppb) and even parts-per-trillion (ppt) level, with linear ranges typically spanning 10–500 ppb for volatile organic compounds (VOCs) and 0.1–100 μM for biomolecules. Response and recovery times are often below 10–30 seconds, while reproducibility frequently exceeds 90% across multiple sensing cycles. Stability has been demonstrated in platforms capable of continuous operation for weeks to months without significant drift. In parallel, additive manufacturing, device miniaturization, and flexible electronics have facilitated the integration of sensors into wearable, stretchable, and implantable platforms, extending their applications in healthcare diagnostics, environmental monitoring, food safety, and industrial process control. Advanced characterization techniques, including in situ Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS, Atomic Force Microscopy (AFM) , and high-resolution electron microscopy, have elucidated interfacial charge-transfer mechanisms, guiding rational material design and improved selectivity. Despite these achievements, challenges remain in terms of scalability, reproducibility of nanomaterial synthesis, long-term stability, and regulatory validation. Data privacy and cybersecurity also emerge as critical issues for IoT-integrated sensing networks. Looking forward, promising future directions include the integration of artificial intelligence and machine learning for real-time data interpretation, the development of biodegradable and eco-friendly materials, and the convergence of multidisciplinary approaches to ensure robust, sustainable, and socially responsible sensing platforms. Overall, nanomaterial-enabled chemical sensors are poised to become indispensable tools for advancing public health, environmental sustainability, and industrial innovation, offering a pathway toward intelligent and adaptive sensing systems. Full article
Show Figures

Graphical abstract

17 pages, 3857 KB  
Article
Growth Behavior of Multi-Element Compound Layers During Reactive Diffusion Between Solid CoCrFeMnNi Alloy and Liquid Al
by Longtu Yang, Yufeng Yang, Zeqiang Yao, Shichao Liu and Yong Dong
Materials 2025, 18(17), 4158; https://doi.org/10.3390/ma18174158 - 4 Sep 2025
Viewed by 219
Abstract
In the present study, the diffusion couple of solid CoCrFeMnNi HEA and liquid pure Al was prepared. The microstructure evolution and relevant interdiffusion behavior of CoCrFeMnNi HEA/Al solid–liquid diffusion couple processed by different parameters were characterized and investigated. Results demonstrated that the interfacial [...] Read more.
In the present study, the diffusion couple of solid CoCrFeMnNi HEA and liquid pure Al was prepared. The microstructure evolution and relevant interdiffusion behavior of CoCrFeMnNi HEA/Al solid–liquid diffusion couple processed by different parameters were characterized and investigated. Results demonstrated that the interfacial compounds in the order of Al(Co, Cr, Fe, Mn, Ni), Al13(Co, Cr, Fe, Mn, Ni)4 and Al4(Co, Cr, Fe, Mn, Ni) were determined in the interdiffusion area along the direction from CoCrFeMnNi HEA to Al, and the precipitated Al4(Cr, Mn) and Al9(Co, Fe, Ni) phases were formed in the center of Al couple. In addition, the diffusion mechanism and activation energy of growth for each diffusion layer were revealed and determined. More importantly, the growth mechanism of each diffusion layer was also investigated and uncovered in detail. Meanwhile, the activation energy of each intermetallic layer was obtained by the Arrhenius equation and the linear regression method. It is anticipated that this present study would provide a fundamental understanding and theoretical basis for the high-entropy alloy CoCrFeMnNi HEA, potentially applied as the cast mold material for cast aluminum alloy. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Figure 1

27 pages, 655 KB  
Review
Designing Emulsion Gels for 3D Food Printing: Structure, Stability, and Functional Applications
by Bruna Silva de Farias, Lisiane Baldez da Cunha, Anelise Christ Ribeiro, Débora Pez Jaeschke, Janaína Oliveira Gonçalves, Sibele Santos Fernandes, Tito Roberto Sant’Anna Cadaval and Luiz Antonio de Almeida Pinto
Surfaces 2025, 8(3), 64; https://doi.org/10.3390/surfaces8030064 - 1 Sep 2025
Viewed by 422
Abstract
The integration of emulsion gels in 3D food printing has emerged as a promising strategy to enhance both the structural fidelity and functional performance of printed foods. Emulsion gels, composed of proteins, polysaccharides, lipids, and their complexes, can provide tunable rheological and mechanical [...] Read more.
The integration of emulsion gels in 3D food printing has emerged as a promising strategy to enhance both the structural fidelity and functional performance of printed foods. Emulsion gels, composed of proteins, polysaccharides, lipids, and their complexes, can provide tunable rheological and mechanical properties suitable for extrusion and shape retention. This review explores the formulation strategies, including phase behavior (O/W, W/O, and double emulsions); stabilization methods; and post-printing treatments, such as enzymatic, ionic, and thermal crosslinking. Advanced techniques, including ultrasound and high-pressure homogenization, are highlighted for improving gel network formation and retention of active compounds. Functional applications are addressed, with a focus on meat analogs, bioactive delivery systems, and personalized nutrition. Furthermore, the role of the oil content, interfacial engineering, and protein–polysaccharide interactions in improving print precision and post-processing performance is emphasized. Despite notable advances, challenges remain in scalability, regulatory compliance, and optimization of print parameters. The integration of artificial intelligence can also provide promising advances for smart design, predictive modeling, and automation of the 3D food printing workflow. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

16 pages, 6961 KB  
Article
Effects of Traveling Magnetic Field on Interfacial Microstructure and Mechanical Properties of Al/Mg Bimetals Prepared by Compound Casting
by Qiantong Zeng, Guangyu Li, Jiaze Hu, Wenming Jiang, Xiuru Fan, Yuejia Wang, Xiaoqiong Wang and Xing Kang
Materials 2025, 18(17), 4077; https://doi.org/10.3390/ma18174077 - 31 Aug 2025
Viewed by 305
Abstract
In this work, the Al/Mg bimetals were prepared by traveling magnetic field (TMF)-assisted compound casting, and the effects of current intensity on the interfacial microstructure and mechanical properties of the Al/Mg bimetals were investigated. The results revealed that the Al/Mg bimetallic interface without [...] Read more.
In this work, the Al/Mg bimetals were prepared by traveling magnetic field (TMF)-assisted compound casting, and the effects of current intensity on the interfacial microstructure and mechanical properties of the Al/Mg bimetals were investigated. The results revealed that the Al/Mg bimetallic interface without the TMF consisted of an Al-Mg intermetallic compounds (IMCs) area (Al3Mg2 + Al12Mg17 + Mg2Si particles) and Al-Mg eutectic area (Al12Mg17 + δ-Mg). There was no change in the interfacial phase compositions with the TMF, but the interface thickness initially decreased and then increased with the increase in the TMF current, and the distribution of Mg2Si became more uniform, dendrites become smaller, and dendritic arms fragment. The shear strength improves from 17 MPa without the TMF to 27 MPa with the TMFed-60 A, which was increased by 58.8%. This enhancement occurs because cracks are deflected by uniformly distributed Mg2Si particles and do not coalesce into main cracks, ultimately fracturing in the eutectic region, which increases the length of the crack propagation path and thereby improves the shear strength of the Al/Mg bimetals. Full article
Show Figures

Graphical abstract

13 pages, 954 KB  
Article
Interfacial Adhesion of Mouthrinses to Orthodontic Metal Wires: Surface Film Viscoelasticity Effect
by Stanisław Pogorzelski, Krzysztof Dorywalski, Katarzyna Boniewicz-Szmyt and Paweł Rochowski
Materials 2025, 18(17), 4065; https://doi.org/10.3390/ma18174065 - 29 Aug 2025
Viewed by 434
Abstract
This study concerns the evaluation of adhesive and wettability energetic signatures of a model orthodontic wire exposed to commercial mouthrinses. The surface wetting properties were evaluated from the contact angle hysteresis (CAH) approach applied to dynamic contact angle data derived from [...] Read more.
This study concerns the evaluation of adhesive and wettability energetic signatures of a model orthodontic wire exposed to commercial mouthrinses. The surface wetting properties were evaluated from the contact angle hysteresis (CAH) approach applied to dynamic contact angle data derived from the original drop on a vertical filament method. Young, advancing, receding CA apart from adhesive film pressure, surface energy, work of adhesion, etc. were chosen as interfacial interaction indicators, allowing for the optimal concentration and placement of the key component(s) accumulation to be predicted for effective antibacterial activity to eliminate plaque formation on the prosthetic materials. Surfactant compounds when adsorb at interfaces confer rheological properties to the surfaces, leading to surface relaxation, which depends on the timescale of the deformation. The surface dilatational complex modulus E, with compression elasticity Ed and viscosity Ei parts, determined in the stress–relaxation Langmuir trough measurements, exhibited the viscoelastic surface film behavior with the relaxation times (0.41–3.13 s), pointing to the vertically segregated film structure as distinct, stratified layers with the most insoluble compound on the system top (as indicated with the 2D polymer film scaling theory exponent y = 12.9–15.5). Kinetic rheology parameters could affect the wettability, adhesion, and spreading characteristics of mouthrinse liquids. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

16 pages, 2307 KB  
Article
Effect of Carboxyl Content on Mechanical Properties of Lignin/Carboxylated Nitrile Rubber Compounds
by Hongbing Zheng and Dongmei Yue
Polymers 2025, 17(17), 2332; https://doi.org/10.3390/polym17172332 - 28 Aug 2025
Viewed by 520
Abstract
Nitrile rubber (NBR) exhibits excellent oil resistance, wear resistance, gas barrier properties, and mechanical properties. On the other hand, lignin, a by-product of the pulp and paper industry, can serve as an ideal substitute for carbon black as a reinforcing agent for rubber. [...] Read more.
Nitrile rubber (NBR) exhibits excellent oil resistance, wear resistance, gas barrier properties, and mechanical properties. On the other hand, lignin, a by-product of the pulp and paper industry, can serve as an ideal substitute for carbon black as a reinforcing agent for rubber. However, when NBR is directly compounded with lignin, direct compounding fails to achieve the desired reinforcing effect due to poor dispersion of lignin in the NBR matrix and poor compatibility with the NBR phase. In this paper, carboxyl groups were introduced via cyano group hydrolysis. By controlling the hydrolysis time, we successfully prepared two types of carboxylated NBR with different carboxyl contents. Subsequently, the carboxylated NBR was processed into lignin/NBR composites via dry blending. The results indicated that the introduction of carboxyl groups endowed NBR with higher polarity and reactivity, significantly enhancing the interfacial compatibility between lignin and the rubber matrix. The mechanical properties of the composite were greatly improved, with the mechanical strength increasing from 4.5 MPa without carboxyl groups to 13.8 MPa with high carboxyl content. The good dispersion of lignin also significantly improved the thermal stability of the composite. The carboxylation modification strategy of NBR provides a new approach for preparing high-performance NBR/biomass composites. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

19 pages, 5786 KB  
Article
Improving the Interfacial Microstructure and Properties of Al/Mg Bimetal by a Novel Mo Coating Combined with Ultrasonic Field
by Jiaze Hu, Xiuru Fan, Haoheng Du, Guangyu Li, Xiaoqiong Wang, Xing Kang and Qiantong Zeng
Materials 2025, 18(17), 4005; https://doi.org/10.3390/ma18174005 - 27 Aug 2025
Viewed by 403
Abstract
To enhance the interfacial performance of Al/Mg bimetal, this study introduced a novel Mo coating and employed an ultrasonic field (UF) to regulate the interfacial microstructure. In the absence of both a Mo coating and ultrasonic treatment (referred to as the untreated specimen), [...] Read more.
To enhance the interfacial performance of Al/Mg bimetal, this study introduced a novel Mo coating and employed an ultrasonic field (UF) to regulate the interfacial microstructure. In the absence of both a Mo coating and ultrasonic treatment (referred to as the untreated specimen), the interfacial region was primarily composed of Al-Mg intermetallic compounds (Al-Mg IMCs), Al-Mg eutectic structures (ES), and Mg2Si phases, with an average interfacial layer thickness of approximately 1623 μm. Upon application of the Mo coating, the formation of both Al-Mg phases and Mg2Si phases was completely inhibited. The interfacial zone was predominantly characterized by the Mo solid solution (Mo SS) and oxide, with the average thickness significantly reduced to about 28 μm. Upon applying the UF to the Mo-coated specimen, the interfacial composition remained similar to that of the untreated specimen, except for Mo SS, with the interfacial thickness increasing to 561 μm. Shear strength tests indicated that the application of the Mo coating alone resulted in a decrease in bonding strength compared to the untreated specimen. However, subsequent ultrasonic treatment significantly improved the interfacial shear strength to 54.7 MPa, representing a 60.9% increase relative to the untreated specimen. This improvement is primarily attributed to the Mo coating and UF synergistically suppressing the formation of brittle Al-Mg IMCs and reducing oxide inclusions at the interface. Thus, the simultaneous application of Mo coatings and ultrasonic fields is required to enhance the properties of Al/Mg bimetals. Full article
Show Figures

Graphical abstract

17 pages, 8493 KB  
Article
Effect of Surface-Modified Mica in Hybrid Filler Systems on the Curing and Mechanical Behavior of Ethylene–Propylene–Diene Monomer (EPDM)/Butadiene Rubber (BR) Blend
by Won-Young Jung, Seong-Woo Cho and Keon-Soo Jang
Polymers 2025, 17(16), 2250; https://doi.org/10.3390/polym17162250 - 20 Aug 2025
Viewed by 475
Abstract
This study investigates the influence of hybrid filler systems comprising carbon black (CB), mica, and surface-modified mica (SM) on the properties of ethylene–propylene–diene monomer (EPDM)/butadiene rubber (PB) composites. To reduce the environmental issues associated with CB, mica was incorporated as a partial substitute, [...] Read more.
This study investigates the influence of hybrid filler systems comprising carbon black (CB), mica, and surface-modified mica (SM) on the properties of ethylene–propylene–diene monomer (EPDM)/butadiene rubber (PB) composites. To reduce the environmental issues associated with CB, mica was incorporated as a partial substitute, and its compatibility with the rubber matrix was enhanced through surface modification using ureidopropyltrimethoxysilane (URE). The composites with hybrid filler systems and surface modification were evaluated in terms of curing behavior, crosslink density, mechanical and elastic properties, and dynamic viscoelasticity. Rheological analysis revealed that high mica loadings delayed vulcanization due to reduced thermal conductivity and accelerator adsorption, whereas SM composites maintained comparable curing performance. Swelling tests showed a reduction in crosslink density with increased unmodified mica content, while SM-filled samples improved the network density, confirming enhanced interfacial interaction. Mechanical testing demonstrated that the rubber compounds containing SM exhibited average improvements of 17% in tensile strength and 20% in toughness. In particular, the CB20/SM10 formulation achieved a well-balanced enhancement in tensile strength, elongation at break, and toughness, surpassing the performance of the CB-only system. Furthermore, rebound resilience and Tan δ analyses showed that low SM content reduced energy dissipation and improved elasticity, whereas excessive filler loadings led to increased hysteresis. The compression set results supported the thermal stability and recovery capacity of the SM-containing systems. Overall, the results demonstrated that the hybrid filler system incorporating URE-modified mica significantly enhanced filler dispersion and rubber–filler interaction, offering a sustainable and high-performance solution for elastomer composite applications. Full article
Show Figures

Figure 1

12 pages, 1561 KB  
Article
Effect of Performance and Fouling Mechanisms of Thermo-Responsive Membranes on Treating Secondary Effluent Containing Added Sulfamethoxazole
by Lian Yang, Haoran Qiu, Yingjie Yang, Lijun Zhao, Ping Xiao, Guoliang Liu, Jiang Chang, Shaoxia Yang and Feng Xiao
Separations 2025, 12(8), 218; https://doi.org/10.3390/separations12080218 - 16 Aug 2025
Viewed by 249
Abstract
Wastewater treatment plants generally lack a specialized design for the efficient removal of sulfamethoxazole (SMX), a toxic and bio-resistant compound. In this study, secondary effluent from a Beijing wastewater reclamation treatment plant was spiked with SMX and used to investigate the filtration performance [...] Read more.
Wastewater treatment plants generally lack a specialized design for the efficient removal of sulfamethoxazole (SMX), a toxic and bio-resistant compound. In this study, secondary effluent from a Beijing wastewater reclamation treatment plant was spiked with SMX and used to investigate the filtration performance and fouling mechanisms of thermo-responsive membranes. Thermo-responsive materials were prepared using polyvinylidene fluoride, N-isopropylacrylamide (NIPAM), and graphene oxide through Ce (IV)-induced redox radical polymerization. The results showed that the removal of SMX and COD reached 42% and 92%, respectively, with a NIPAM dosage of 1 g, and the removal of UV254 reached its highest value at 57.9%. Additionally, the filtration flux was higher at a temperature of 35 °C with a NIPAM dosage of 1 g. The fluorescence intensity of the organic matter from the secondary effluent spiked with SMX and decreased after the thermo-responsive membranes were implemented, and filtration with the membrane containing 1 g of NIPAM achieved a lower intensity at a value of 3074.6, according to the analysis of three-dimensional fluorescence excitation–emission spectroscopy. According to the extended Derjaguin–Laudau–Verwey–Overbeek theory analysis, the interfacial free energies of the thermo-responsive membrane with a 1 g dose of NIPAM were higher than the others during filtration. Full article
Show Figures

Figure 1

16 pages, 931 KB  
Article
Production and Characterization of a Novel Glycolipid Biosurfactant from Bradyrhizobium sp.
by Marcos André Moura Dias, Eduardo Luiz Rossini, Douglas de Britto and Marcia Nitschke
Fermentation 2025, 11(8), 471; https://doi.org/10.3390/fermentation11080471 - 15 Aug 2025
Viewed by 585
Abstract
Biosurfactants (BS) are surface-active compounds synthesized by microorganisms with broad industrial applications. Although BS-producing strains are widely reported, little is known about their production by diazotrophic bacteria. This study investigated, for the first time, the BS produced by Bradyrhizobium sp. ESA 81, a [...] Read more.
Biosurfactants (BS) are surface-active compounds synthesized by microorganisms with broad industrial applications. Although BS-producing strains are widely reported, little is known about their production by diazotrophic bacteria. This study investigated, for the first time, the BS produced by Bradyrhizobium sp. ESA 81, a diazotrophic bacterium isolated from the Brazilian semiarid region. The strain was cultivated in the mineral medium using sunflower oil and ammonium nitrate as carbon and nitrogen sources. The compound was chemically characterized using TLC, FAME, FTIR, and mass spectrometry (MALDI-TOF). The results revealed a mixture of glycolipids composed of trehalose linked to fatty acid chains ranging from C9 to C18. The BS exhibited a surface tension of 31.8 mN/m, a critical micelle concentration of 61.2 mg/L, and an interfacial tension of 22.1 mN/m. The BS also showed an emulsification index (EI24) of 55.0%. High stability was observed under extreme conditions of temperature (−20 to 121 °C), pH (2–12), NaCl (5–20%), and sucrose (1–5%). These findings indicate that the trehalolipid BS produced by Bradyrhizobium sp. ESA 81 is a stable and efficient surface-active agent, with promising potential for use in biotechnological and industrial processes. Full article
(This article belongs to the Special Issue The Industrial Feasibility of Biosurfactants)
Show Figures

Graphical abstract

18 pages, 3067 KB  
Article
Beer Bagasse as Filler for Starch-Based Biocomposite Films for Food Packaging Applications
by Paula Gómez-Contreras, Maite Cháfer, Amparo Chiralt and Chelo González-Martínez
Biomass 2025, 5(3), 46; https://doi.org/10.3390/biomass5030046 - 12 Aug 2025
Viewed by 508
Abstract
Development of biodegradable packaging materials and valorization of agri-food waste are necessary to produce more sustainable materials while reducing the environmental impact. Starch-based biocomposite films reinforced with beer bagasse fractions with different purification degrees were developed and characterized in structural, mechanical, thermal and [...] Read more.
Development of biodegradable packaging materials and valorization of agri-food waste are necessary to produce more sustainable materials while reducing the environmental impact. Starch-based biocomposite films reinforced with beer bagasse fractions with different purification degrees were developed and characterized in structural, mechanical, thermal and optical properties. To this aim, 5% and 10% (w/w) of either beer bagasse (BB) or its lignocellulosic-rich fibers (LF), obtained by subcritical water extraction at temperatures between 110 and 170 °C, were incorporated into starch matrices. Elastic modulus and tensile strength values increased by up to eight-fold and 2.5-fold, respectively, compared to the control film. The incorporation of BB or LF significantly enhanced the mechanical resistance of the films. In general, the increment in the filler:polymer ratio significantly increased the EM values (p < 0.05), while decreasing the stretchability of the films around 80–85%, regardless of the type of filler. This effect suggests a good interfacial adhesion between the fillers and the polymeric matrix, as observed by FESEM. The biocomposite films exhibited a dark reddish appearance, reduced transparency, light blocking barrier capacity and remarkable antioxidant activity due to the presence of phenolic compounds in the fibers. The water vapor and oxygen barrier properties were better preserved when using the more purified LF obtained at 170 °C. Overall, starch films reinforced with beer bagasse fractions showed strong potential for the development of biodegradable food packaging materials. Full article
Show Figures

Figure 1

13 pages, 4450 KB  
Article
Laser-Based Selective Removal of EMI Shielding Layers in System-in-Package (SiP) Modules
by Xuan-Bach Le, Won Yong Choi, Keejun Han and Sung-Hoon Choa
Micromachines 2025, 16(8), 925; https://doi.org/10.3390/mi16080925 - 11 Aug 2025
Viewed by 544
Abstract
With the increasing complexity and integration density of System-in-Package (SiP) technologies, the demand for selective electromagnetic interference (EMI) shielding is growing. Conventional sputtering processes, while effective for conformal EMI shielding, lack selectivity and often require additional masking or post-processing steps. In this study, [...] Read more.
With the increasing complexity and integration density of System-in-Package (SiP) technologies, the demand for selective electromagnetic interference (EMI) shielding is growing. Conventional sputtering processes, while effective for conformal EMI shielding, lack selectivity and often require additional masking or post-processing steps. In this study, we propose a novel, laser-based approach for the selective removal of EMI shielding layers without physical masking. Numerical simulations were conducted to investigate the thermal and mechanical behavior of multilayer EMI shielding structures under two irradiation modes: full-area and laser scanning. The results showed that the laser scanning method induced higher interfacial shear stress, reaching up to 38.6 MPa, compared to full-area irradiation (12.5 MPa), effectively promoting delamination while maintaining the integrity of the underlying epoxy mold compound (EMC). Experimental validation using a nanosecond pulsed fiber laser confirmed that complete removal of the EMI shielding layer could be achieved at optimized laser powers (~6 W) without damaging the EMC, whereas excessive power (8 W) caused material degradation. The laser scanning speed was 50 mm/s, and the total laser irradiation time of the package was 0.14 s, which was very fast. This study demonstrates the feasibility of a non-contact, damage-free, and selective EMI shielding removal technique, offering a promising solution for next-generation semiconductor packaging. Full article
(This article belongs to the Special Issue Emerging Packaging and Interconnection Technology, Second Edition)
Show Figures

Figure 1

14 pages, 3150 KB  
Article
Research on the Influence Mechanism of Thermal Load on the Au-Sn Sealing Weld State on Three-Dimensional DPC Substrates
by Heran Zhao, Lihua Cao, ShiZhao Wang, He Zhang and Mingxiang Chen
Materials 2025, 18(15), 3678; https://doi.org/10.3390/ma18153678 - 5 Aug 2025
Viewed by 372
Abstract
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum [...] Read more.
Direct copper-plated ceramic (DPC) substrates have emerged as a favored solution for power device packaging due to their unique technical advantages. AuSn, characterized by its high hermeticity and environmental adaptability, represents the optimal sealing technology for DPC substrates. Through the application of vacuum sintering techniques and adjustment of peak temperatures (325 °C, 340 °C, and 355 °C), the morphology and composition of interfacial compounds were systematically investigated, along with an analysis of their formation mechanisms. A gradient aging experiment was designed (125 °C/150 °C/175 °C × oxygen/argon dual atmosphere × 600 h) to elucidate the synergistic effects of environmental temperature and atmosphere on the growth of intermetallic compounds (IMCs). The results indicate that the primary reaction in the sealing weld seam involves Ni interacting with Au-Sn to form (Ni, Au)3Sn2 and Au5Sn. However, upon completion of the sealing process, this reaction remains incomplete, leading to a coexistence state of (Ni, Au)3Sn2, Au5Sn, and AuSn. Additionally, Ni diffuses into the weld seam center via dendritic fracture and locally forms secondary phases such as δ(Ni) and ζ’(Ni). These findings suggest that the weld seam interface exhibits a complex, irregular, and asymmetric microstructure comprising multiple coexisting compounds. It was determined that Tpeak = 325 °C to 340 °C represents the ideal welding temperature range, where the weld seam morphology, width, and Ni diffusion degree achieve optimal states, ensuring excellent device hermeticity. Aging studies further demonstrate that IMC growth remains within controllable limits. These findings address critical gaps in the understanding of the microstructural evolution and interface characteristics of asymmetric welded joints formed by multi-material systems. Full article
Show Figures

Graphical abstract

18 pages, 3972 KB  
Article
The Influence of Halloysite Clay on the Properties of the Polybutylene Succinate (PBS)/Sawdust, PBS/Sugarcane Bagasse, and PBS/Sawdust/Sugarcane Bagasse Hybrid Composites
by Tlholohelo Sylvia Sikhosana, Ntsoaki Joyce Malebo, Mpho Phillip Motloung, Tladi Gideon Mofokeng and Mokgaotsa Jonas Mochane
Polymers 2025, 17(15), 2120; https://doi.org/10.3390/polym17152120 - 31 Jul 2025
Viewed by 483
Abstract
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) [...] Read more.
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) on the properties of PBS/SD and PBS/SB binary and PBS/SB/SD hybrid composites. The morphological analysis indicated poor interfacial adhesion between PBS and the fibres. The obtained findings indicated enhancements in the complex viscosity of PBS in the presence of natural fibres, and further improvements in the presence of HS and EG. The stiffness of PBS hybrid composites also increased upon the addition of HS and EG. Moreover, the crystallization temperatures of PBS increased in the presence of fillers, with EG showing better nucleation efficiency. However, the mechanical properties (toughness and impact resilience) decreased due to the increased stiffness of the composites and the poor interfacial adhesion between the matrix and the fillers, indicating the need to pre-treat the fibres to enhance compatibility. Overall, the material properties of PBS/SD/SB hybrid composites were enhanced by incorporating HS and EG at low concentrations. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

29 pages, 7510 KB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 592
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

Back to TopTop