Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (862)

Search Parameters:
Keywords = ion measurement techniques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2558 KB  
Article
Degradation and Damage Effects in GaN HEMTs Induced by Low-Duty-Cycle High-Power Microwave Pulses
by Dong Xing, Hongxia Liu, Mengwei Su, Xingjun Liu and Chang Liu
Micromachines 2025, 16(10), 1137; https://doi.org/10.3390/mi16101137 - 1 Oct 2025
Abstract
This study investigates the effects and mechanisms of high-power microwave on GaN HEMTs. By injecting high-power microwave from the gate into the device and employing techniques such as DC characteristics, gate-lag effect analysis, low-frequency noise measurement, and focused ion beam (FIB) cross-sectional inspection, [...] Read more.
This study investigates the effects and mechanisms of high-power microwave on GaN HEMTs. By injecting high-power microwave from the gate into the device and employing techniques such as DC characteristics, gate-lag effect analysis, low-frequency noise measurement, and focused ion beam (FIB) cross-sectional inspection, a systematic investigation was conducted on GaN HEMT degradation and failure behaviors under conditions of a low duty cycle and narrow pulse width. Experimental results indicate that under relatively low-power HPM stress, GaN HEMT exhibits only a slight threshold voltage shift and a modest increase in transconductance, attributed to the passivation of donor-like defects near the gate. However, when the injected power exceeds 43 dBm, the electric field beneath the gate triggers avalanche breakdown, forming a leakage path and causing localized heat accumulation, which ultimately leads to permanent device failure. This study reveals the physical failure mechanisms of GaN HEMTs under low-duty-cycle HPM stress and provides important guidance for the reliability design and hardening protection of RF devices. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

15 pages, 7162 KB  
Article
Investigation of an Accelerated Deterioration Method for Subsea Tunnel RC Linings via Electromigration and Its Associated Test Parameters
by Jiguo Liu, Qinglong Cui, Shengbin Zhang, Xin Li, Longhai Wei, Huimin Gong, Yiguo Xue and Min Han
J. Mar. Sci. Eng. 2025, 13(9), 1799; https://doi.org/10.3390/jmse13091799 - 17 Sep 2025
Viewed by 176
Abstract
Appropriate accelerated deterioration methods are crucial for studying the deterioration behavior of reinforced concrete linings in subsea tunnels. To investigate the deterioration mechanisms of reinforced concrete (RC) structures in marine environments, this study employed the electromigration method to simulate accelerated chloride-induced corrosion of [...] Read more.
Appropriate accelerated deterioration methods are crucial for studying the deterioration behavior of reinforced concrete linings in subsea tunnels. To investigate the deterioration mechanisms of reinforced concrete (RC) structures in marine environments, this study employed the electromigration method to simulate accelerated chloride-induced corrosion of steel reinforcement. The results demonstrate that under a direct current (DC) electric field, chloride ions migrate directionally and accumulate on the side of the steel facing the chloride source, successfully inducing non-uniform corrosion features that closely resemble those in natural environments. The side facing chloride ingress exhibited severe corrosion and significant cross-sectional loss, while the shielded side remained largely intact. The experimental process clearly reveals that the applied electric field does not directly initiate corrosion of the steel reinforcement before chloride ions migrate to its surface. Furthermore, analysis of experimental parameters showed that symmetrical perforations on electrode plates are crucial for a uniform electric field, while perforation ratio and electrode–specimen distance have a minor influence. The average chloride penetration depths corresponding to electrode plate perforation areas of 5.5%, 15%, 25.5%, and 38.1% were measured as 1.63 cm, 1.67 cm, 1.57 cm, and 1.57 cm, respectively. This research confirms electromigration as an efficient and reliable technique for accelerated corrosion testing, providing a significant theoretical basis for assessing and predicting the long-term durability of marine engineering structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 8259 KB  
Article
NMR/MRI Techniques to Characterize Alginate-Based Gel Rafts for the Treatment of Gastroesophageal Reflux Disease
by Ewelina Baran, Piotr Kulinowski, Marek Król and Przemysław Dorożyński
Gels 2025, 11(9), 749; https://doi.org/10.3390/gels11090749 - 17 Sep 2025
Viewed by 315
Abstract
Gastroesophageal reflux disease (GERD) is associated with symptoms such as heartburn, resulting from gastric content reflux. Alginate-based raft-forming gel formulations represent a non-pharmacological strategy for GERD management by forming a floating gel barrier in the stomach. This study evaluated three commercial anti-reflux oral [...] Read more.
Gastroesophageal reflux disease (GERD) is associated with symptoms such as heartburn, resulting from gastric content reflux. Alginate-based raft-forming gel formulations represent a non-pharmacological strategy for GERD management by forming a floating gel barrier in the stomach. This study evaluated three commercial anti-reflux oral gel systems under simulated fed-state gastric conditions, using in vitro magnetic resonance relaxometry techniques. Magnetic resonance imaging (MRI) was performed in 0.01 M hydrochloric acid (HCl) to visualize gel raft formation, spatial structure, and spatial distribution of effective T2 relaxation time. Nuclear magnetic resonance (NMR) relaxometry in 0.01 M deuterium chloride (DCl) measured T1 and T2 relaxation times of the protons that were initially included in the preparation to assess its molecular mobility within the gel matrix. Two formulations formed floating, coherent gels, whereas the remaining one exhibited only polymer swelling without flotation. In one case, relaxometry data revealed a solid-like component that can be detected, indicating enhanced mechanical stability. The performance of each formulation was influenced by interactions among alginate, bicarbonates, and calcium ions, which determined gel consistency and flotation behavior. MRI and NMR relaxometry in vitro provide valuable non-invasive insights into the structural and functional behavior of alginate-based gel formulations. This approach supports the rational design of advanced gel-based therapies for GERD by linking molecular composition with in situ performance. Full article
(This article belongs to the Special Issue Polymeric Hydrogels for Biomedical Application (2nd Edition))
Show Figures

Graphical abstract

23 pages, 2763 KB  
Article
The Effect of Caffeic Acid on Zn Corrosion in NaCl: Electrochemical Studies
by Aleksander Kucharek, Elżbieta Kuśmierek, Ewa Chrześcijańska, Waldemar Maniukiewicz, Jacek Rogowski, Aleksandra Bednarek and Andrzej Żarczyński
Molecules 2025, 30(17), 3648; https://doi.org/10.3390/molecules30173648 - 8 Sep 2025
Viewed by 701
Abstract
Caffeic acid (CA) can be applied as a green corrosion inhibitor for metals and alloys. The inhibition properties of caffeic acid for Zn in 0.1 M NaCl were investigated using electrochemical methods. The changes in Zn morphology were studied via scanning electron microscopy [...] Read more.
Caffeic acid (CA) can be applied as a green corrosion inhibitor for metals and alloys. The inhibition properties of caffeic acid for Zn in 0.1 M NaCl were investigated using electrochemical methods. The changes in Zn morphology were studied via scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) techniques. Potentiodynamic polarisation (PDP) and electrochemical impedance spectroscopy (EIS) measurements proved that caffeic acid applied in the form of coatings on Zn surface was more effective than the addition of CA to NaCl. Furthermore, CA coatings revealed better corrosion protection with increasing duration of immersion. The highest inhibition efficiency was achieved for CA coating obtained from ethanol solution of CA (10 mM), and its value was almost 95%. The positive impact of CA coatings on the corrosion of Zn surface was confirmed with SEM-EDS, XRD and TOF-SIMS measurements. They proved not only the presence of CA on the Zn surface but also noticeably a lower amount of Zn corrosion products. Full article
Show Figures

Figure 1

15 pages, 4033 KB  
Review
Illuminating High-Affinity ATP Binding to the Sodium-Potassium Pump Using Solid-State NMR Spectroscopy
by David A. Middleton
Molecules 2025, 30(17), 3609; https://doi.org/10.3390/molecules30173609 - 3 Sep 2025
Viewed by 1007
Abstract
Proteins that span cellular membranes represent around 30% of the proteome and over 50% of drug targets. A variety of synthetic and naturally-occurring small organic molecules interact with membrane proteins and up- and down-regulate protein function. The atomic details of these regulatory molecules [...] Read more.
Proteins that span cellular membranes represent around 30% of the proteome and over 50% of drug targets. A variety of synthetic and naturally-occurring small organic molecules interact with membrane proteins and up- and down-regulate protein function. The atomic details of these regulatory molecules offer important information about protein function and aid the discovery, refinement and optimization of new drugs. X-ray crystallography and cryo-electron microscopy (cryo-EM) are not always able to resolve the structures of small molecules in their physiological sites on membrane proteins, particularly if the molecules are unstable or are reactive enzyme substrates. Solid-state nuclear magnetic resonance (SSNMR) is a valuable technique for filling in missing details on the conformations, dynamics and binding environments of small molecules regulators of membrane proteins. SSNMR does not require diffracting crystals possessing long-range order and can be performed on proteins within their native membranes and with freeze-trapping to maintain sample stability. Here, work over the last two decades is described, in which SSNMR methods have been developed to report on interactions of the ATP substrate with the Na,K-ATPase (NKA), an ion-transporting enzyme that maintains cellular potential in all animals. It is shown how a combination of SSNMR measurements on membranous NKA preparations in the frozen and fluid states have provided unique information about the molecular conformation and local environment of ATP in the high-affinity nucleotide site. A combination of chemical shift analysis using density functional theory (DFT) calculations, dipolar coupling measurements using REDOR and measurements of the rates of proton spin diffusion is appraised collectively. The work described herein highlights the methods developed and challenges encountered, which have led to a detailed and unrivalled picture of ATP in its high-affinity binding site. Full article
Show Figures

Graphical abstract

16 pages, 2129 KB  
Article
A Multimodal Convolutional Neural Network Framework for Intelligent Real-Time Monitoring of Etchant Levels in PCB Etching Processes
by Chuen-Sheng Cheng, Pei-Wen Chen, Hen-Yi Jen and Yu-Tang Wu
Mathematics 2025, 13(17), 2804; https://doi.org/10.3390/math13172804 - 1 Sep 2025
Viewed by 445
Abstract
In recent years, machine learning (ML) techniques have gained significant attention in time series classification tasks, particularly in industrial applications where early detection of abnormal conditions is crucial. This study proposes an intelligent monitoring framework based on a multimodal convolutional neural network (CNN) [...] Read more.
In recent years, machine learning (ML) techniques have gained significant attention in time series classification tasks, particularly in industrial applications where early detection of abnormal conditions is crucial. This study proposes an intelligent monitoring framework based on a multimodal convolutional neural network (CNN) to classify normal and abnormal copper ion (Cu2+) concentration states in the etching process in the printed circuit board (PCB) industry. Maintaining precise control Cu2+ concentration is critical in ensuring the quality and reliability of the etching processes. A sliding window approach is employed to segment the data into fixed-length intervals, enabling localized temporal feature extraction. The model fuses two input modalities—raw one-dimensional (1D) time series data and two-dimensional (2D) recurrence plots—allowing it to capture both temporal dynamics and spatial recurrence patterns. Comparative experiments with traditional machine learning classifiers and single-modality CNNs demonstrate that the proposed multimodal CNN significantly outperforms baseline models in terms of accuracy, precision, recall, F1-score, and G-measure. The results highlight the potential of multimodal deep learning in enhancing process monitoring and early fault detection in chemical-based manufacturing. This work contributes to the development of intelligent, adaptive quality control systems in the PCB industry. Full article
(This article belongs to the Special Issue Mathematics Methods of Robotics and Intelligent Systems)
Show Figures

Figure 1

15 pages, 4096 KB  
Article
Surface Roughness, Residual Stress, and Optical and Structural Properties of Evaporated VO2 Thin Films Prepared with Different Tungsten Doping Amounts
by Chuen-Lin Tien, Chun-Yu Chiang, Yi-Lin Wang, Ching-Chiun Wang and Shih-Chin Lin
Appl. Sci. 2025, 15(17), 9457; https://doi.org/10.3390/app15179457 - 28 Aug 2025
Viewed by 469
Abstract
This study investigates the effects of different tungsten (W) doping contents on the optical transmittance, surface roughness, residual stress, and microstructure of evaporated vanadium dioxide (VO2) thin films. W-doped VO2 thin films with varying tungsten concentrations were fabricated using electron [...] Read more.
This study investigates the effects of different tungsten (W) doping contents on the optical transmittance, surface roughness, residual stress, and microstructure of evaporated vanadium dioxide (VO2) thin films. W-doped VO2 thin films with varying tungsten concentrations were fabricated using electron beam evaporation combined with ion-assisted deposition techniques, and deposited on silicon wafers and glass substrates. The optical transmittances of undoped and W-doped VO2 thin films were measured by UV/VIS/NIR spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The root mean square surface roughness was measured using a Linnik microscopic interferometer. The residual stress in various W-doped VO2 films was evaluated using a modified Twyman–Green interferometer. The surface morphological and structural characterization of the W-doped VO2 thin films were performed by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Raman spectroscopy was used to analyze the structure and vibrational modes of different W-doped VO2 thin films. These results show that the addition of tungsten significantly alters the structural, optical, and mechanical properties of VO2 thin films. Full article
Show Figures

Figure 1

56 pages, 37635 KB  
Review
Faraday Cups: Principles, Designs, and Applications Across Scientific Disciplines—A Review
by Bharat Singh Rawat, Narender Kumar, Debdeep Ghosal, Daliya Aflyatunova, Benjamin Rienäcker and Carsten. P. Welsch
Instruments 2025, 9(3), 20; https://doi.org/10.3390/instruments9030020 - 28 Aug 2025
Viewed by 1739
Abstract
Beam diagnostics are essential tools for monitoring the performance of charged particle beams and the safe operation of particle accelerators. The performance of an accelerator is determined by evaluating the properties of beam particles, such as energy, charge, spatial, and temporal density distributions, [...] Read more.
Beam diagnostics are essential tools for monitoring the performance of charged particle beams and the safe operation of particle accelerators. The performance of an accelerator is determined by evaluating the properties of beam particles, such as energy, charge, spatial, and temporal density distributions, which require very specific instruments. Faraday Cups (FCs) have emerged as important beam diagnostic devices because of their ability to accurately measure the beam charge and, in some cases, the charge distribution, which can be subsequently used to reconstruct transverse beam profiles. This paper aims to provide a detailed review of FCs, their principles, and their design challenges. FCs have applications in various scientific disciplines that include the measurement of beam current/intensity in particle accelerators, in addition to those for mass spectrometry, beam profiles/total beam currents for broad ion beams, thermonuclear fusion, and antimatter experiments. This review also covers and discusses the versatility of FCs in various scientific disciplines, along with showcasing the technological advancements that include improved collector materials, novel designs, enhanced measurement techniques, and developments in electronics and data acquisition (D.A.Q). A summary of the challenges faced while working with the FCs, such as sensitivity, calibration, and potential errors, is included in this review. Full article
Show Figures

Figure 1

19 pages, 4531 KB  
Article
Surface Engineering of EB-PBF Ti6Al4V via Anodization: Multifunctional Improvements Through TiO2 Nanotube Arrays
by Alireza Moradi, Sanae Tajalli, Amir Behjat, Abdollah Saboori and Luca Iuliano
Coatings 2025, 15(9), 993; https://doi.org/10.3390/coatings15090993 - 27 Aug 2025
Viewed by 595
Abstract
This study investigates the anodization behavior and surface modification of Ti6Al4V (Ti64) alloy components fabricated via electron beam powder bed fusion (EB-PBF), aiming to enhance their performance in biomedical applications. Ti64 samples were manufactured using optimized EB-PBF parameters to produce a uniform microstructure [...] Read more.
This study investigates the anodization behavior and surface modification of Ti6Al4V (Ti64) alloy components fabricated via electron beam powder bed fusion (EB-PBF), aiming to enhance their performance in biomedical applications. Ti64 samples were manufactured using optimized EB-PBF parameters to produce a uniform microstructure and surface quality. Electrochemical anodization at 40 V and 60 V for 2 h generated self-organized TiO2 nanotube layers, followed by a heat treatment at 550 °C to improve crystallinity while preserving the nanotube morphology. Characterization using scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that a lower voltage produced uniform, compact nanotubes with moderate roughness and higher hardness, whereas a higher voltage generated thicker, less ordered nanotubes with larger diameters, increased roughness, and slightly reduced mechanical performance. X-ray diffraction (XRD) confirmed the presence of anatase TiO2 phases, and energy-dispersive spectroscopy (EDS) analysis revealed a homogeneous distribution of Ti and O. Mechanical testing via nanoindentation and nanoscratch techniques demonstrated superior hardness and adhesion in nanotubes formed at lower voltage due to their compact structure. Electrochemical measurements indicated significantly enhanced corrosion resistance in anodized samples, attributed to the dense and chemically stable TiO2 layer that acts as a barrier to aggressive ions and reduces active corrosion sites. In vitro bioactivity analysis further confirmed improved apatite formation on anodized surfaces. These results demonstrate the synergistic potential of EB-PBF and controlled anodization for modifying the surface properties of Ti64 implants, leading to improved mechanical behavior, corrosion resistance, and biological performance suitable for biomedical applications. Full article
Show Figures

Figure 1

21 pages, 2683 KB  
Article
Referential Integrity Framework for Lithium Battery Characterization and State of Charge Estimation
by Amel Benmouna, Mohamed Becherif, Mohamed Ahmed Ebrahim, Mohamed Toufik Benchouia, Tahir Cetin Akinci, Miroslav Penchev, Alfredo Martinez-Morales and Arun S. K. Raju
Batteries 2025, 11(8), 309; https://doi.org/10.3390/batteries11080309 - 14 Aug 2025
Cited by 1 | Viewed by 574
Abstract
The global rise of electric vehicles (EVs) is reshaping the automotive industry, driven by a 25% increase in EV sales in 2024 and mounting regulatory pressure from European countries aiming to phase out thermal and hybrid vehicle production. In this context, the development [...] Read more.
The global rise of electric vehicles (EVs) is reshaping the automotive industry, driven by a 25% increase in EV sales in 2024 and mounting regulatory pressure from European countries aiming to phase out thermal and hybrid vehicle production. In this context, the development of advanced battery technologies has become a critical priority. However, progress in electrochemical storage systems remains limited due to persistent technological barriers such as gaps in data, inadequate modeling tools, and difficulties in system integration, such as thermal management and interface instability. Safety concerns like thermal runaway and the lack of long-term performance data also hinder large-scale adoption. This study presents an in-depth analysis of lithium–ion (Li–ion) batteries, with a particular focus on evaluating their charging and discharging behaviors. To facilitate this, a series of automated experiments was conducted using a custom-built test bench equipped with MATLAB (2024b) programming and dSPACE data acquisition cards, enabling precise current and voltage measurements. The acquired data were analyzed to derive mathematical models that capture the operational characteristics of Li–ion batteries. Furthermore, various state-of-charge (SoC) estimation techniques were investigated to enhance battery efficiency and improve range management in EVs. This paper contributes to the advancement of energy storage technologies and supports global ecological goals by proposing safer and more efficient solutions for the electric mobility sector. Full article
(This article belongs to the Special Issue Advances in Battery Electric Vehicles—2nd Edition)
Show Figures

Figure 1

15 pages, 2345 KB  
Article
Design and Verification of Beam Diagnostics System for Pepper-Pot Method
by Xianfang Bao, Peng Lu, Renli Zhu, Yuzhong Qian, Lizhen Liang and Lan Tian
Appl. Sci. 2025, 15(16), 8952; https://doi.org/10.3390/app15168952 - 14 Aug 2025
Viewed by 410
Abstract
The pepper-pot method is a beam diagnostics technique used to measure the transverse beam profile, divergence angle, and envelope in particle accelerators. However, its practical application faces challenges, such as insufficient point recognition accuracy and signal quality degradation in complex environments. Based on [...] Read more.
The pepper-pot method is a beam diagnostics technique used to measure the transverse beam profile, divergence angle, and envelope in particle accelerators. However, its practical application faces challenges, such as insufficient point recognition accuracy and signal quality degradation in complex environments. Based on the Boron Neutron Capture Therapy (BNCT) facility at the Hefei Comprehensive National Science Center—Energy Research Institute (Anhui Energy Laboratory), this study developed an improved pepper-pot beam diagnostics system to optimize the beam quality of the accelerator ion source. The key innovation is adaptive threshold segmentation for spot segmentation, and the experimental results indicate that the enhanced image segmentation method outperforms traditional methods in terms of segmentation accuracy and robustness. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

15 pages, 499 KB  
Article
Secondary Metabolite Profiling of Satureja aintabensis P.H. Davis and Satureja spicigera (K. Koch) Boiss. by LC-HRMS and Evaluation of Antioxidant and Anticholinergic Activities
by Ayşe Nur Yıldız, Sema Çarıkçı, Tuncay Dirmenci, Murat Kartal, İlhami Gülcin and Ahmet C. Gören
Life 2025, 15(8), 1272; https://doi.org/10.3390/life15081272 - 11 Aug 2025
Viewed by 530
Abstract
In this study, phenolic compounds of methanol extracts obtained from the leaves and branches of Satureja aintabensis P.H. Davis and Satureja spicigera (K. Koch) Boiss. species were determined as mg/kg extract using the liquid chromatography high resolution mass spectrometry technique. The in vitro [...] Read more.
In this study, phenolic compounds of methanol extracts obtained from the leaves and branches of Satureja aintabensis P.H. Davis and Satureja spicigera (K. Koch) Boiss. species were determined as mg/kg extract using the liquid chromatography high resolution mass spectrometry technique. The in vitro inhibitory effects of these extracts against enzymes associated with neurodegenerative Alzheimer’s disease (AD) were also evaluated. The relationship between secondary metabolite structures and biological activities was discussed. The major components of S. aintabensis were determined as hesperidin (6.465% of the extract; 64.65 g/kg), syringic acid (5.964% of the extract; 59.64 g/kg), rosmarinic acid (5.248% of the extract; 52.48 g/kg) and naringenin (0.395% of the extract; 3946.84 mg/kg), while syringic acid (3.081% of the extract; 30.81 g/kg), rosmarinic acid (2.757% of the extract; 27.57 g/kg), hesperidin (1.723% of the extract; 17.23 g/kg), and luteolin-7-O-rutinoside (1.682% of the extract; 16.82 g/kg) were determined in S. spicigera. AChE and BChE enzyme inhibition of the extracts were analyzed. The species showed moderate inhibition against AChE enzyme and low inhibition against BChE enzyme. The antioxidant properties of both plant extracts were evaluated by measuring three radical scavenging capacities and the ability to reduce Fe3+, and Cu2+ ions. S. aintabensis showed better antioxidant capacity in all methods except DPPH scavaging assay. These data clearly show that both species, especially S. aintabensis, have emerged as a new and important natural source of hesperidin, syringic acid and rosmarinic acid and an antioxidant agent for pharmaceutical and nutraceutical applications. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Graphical abstract

30 pages, 2537 KB  
Review
The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
by Kang Tang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao and Chunsheng Wang
World Electr. Veh. J. 2025, 16(8), 429; https://doi.org/10.3390/wevj16080429 - 1 Aug 2025
Viewed by 2015
Abstract
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus [...] Read more.
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus on HIs related to capacity degradation and internal resistance increase. However, due to the complexity of lithium-ion battery degradation mechanisms, the relationships between these mechanisms and health indicators remain insufficiently explored. This paper provides a comprehensive review of core methodologies for SOH estimation, with a particular emphasis on the classification and extraction of health indicators, direct measurement techniques, model-based and data-driven SOH estimation approaches, and emerging trends in battery management system applications. The findings indicate that capacity, internal resistance, and temperature-related indicators significantly impact SOH estimation accuracy, while machine learning models demonstrate advantages in multi-source data fusion. Future research should further explore composite health indicators and aging mechanisms of novel battery materials, and improve the interpretability of predictive models. This study offers theoretical support for the intelligent management and lifespan optimization of lithium-ion batteries. Full article
Show Figures

Figure 1

27 pages, 5832 KB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 1277
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

19 pages, 7130 KB  
Article
Modification Effects and Mechanism of Cement Paste Wrapping on Sulfate-Containing Recycled Aggregate
by Xiancui Yan, Wen Chen, Zimo He, Hui Liu, Shengbang Xu, Shulin Lu, Minqi Hua and Xinjie Wang
Materials 2025, 18(15), 3617; https://doi.org/10.3390/ma18153617 - 31 Jul 2025
Viewed by 359
Abstract
The utilization of recycled concrete aggregate presents an effective solution for construction waste mitigation. However, concrete service in sulfate environments leads to sulfate ion retention in recycled aggregates, substantially impairing their quality and requiring modification approaches. A critical question remains whether traditional recycled [...] Read more.
The utilization of recycled concrete aggregate presents an effective solution for construction waste mitigation. However, concrete service in sulfate environments leads to sulfate ion retention in recycled aggregates, substantially impairing their quality and requiring modification approaches. A critical question remains whether traditional recycled aggregate modification techniques can effectively enhance the performance of these sulfate-containing recycled aggregates (SRA). Cement paste wrapping in various proportions was used in this investigation to enhance SRA. The performance of both SRA and modified aggregates was systematically assessed through measurements of apparent density, water absorption, crushing value, and microhardness. Microstructural analysis of the cement wrapping modification mechanism was conducted by scanning electron microscopy coupled with mercury intrusion porosimetry. Results revealed that internal sulfate addition decreased the crushing value and increased the water absorption of recycled aggregates, primarily due to micro-cracks formed by expansion. Additionally, the pores were occupied by erosion products, leading to a slight increase in the apparent density of aggregates. The performance of SRA was effectively enhanced by cement paste wrapping at a 0.6 water–binder ratio, whereas it was negatively impacted by a ratio of 1.0. The modifying effect became even more effective when 15% fly ash was added to the wrapping paste. Scanning electron microscopy observations revealed that the interface of SRA was predominantly composed of gypsum crystals. Cement paste wrapping greatly enhanced the original interface structure, despite a new dense interface formed in the modified aggregates. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials (Second Edition))
Show Figures

Figure 1

Back to TopTop