Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = jujube witches’ broom

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7158 KiB  
Article
A Sec-Dependent Effector from “Candidatus Phytoplasma ziziphi” Suppresses Plant Immunity and Contributes to Pathogenicity
by Cui-Ping Wan, Fu-Xin He, Wei Zhang, Qian Xu, Qi-Liang Zhu and Chuan-Sheng Song
Biology 2025, 14(5), 528; https://doi.org/10.3390/biology14050528 - 10 May 2025
Viewed by 256
Abstract
Jujube witches’ broom (JWB) disease, caused by Candidatus Phytoplasma ziziphi (Ca. P. ziziphi), severely threatens the production of Chinese jujube (Ziziphus jujuba Mill.). Emerging evidence highlights the critical role of phytoplasma-secreted effectors in pathogenesis, though few have been functionally characterized. [...] Read more.
Jujube witches’ broom (JWB) disease, caused by Candidatus Phytoplasma ziziphi (Ca. P. ziziphi), severely threatens the production of Chinese jujube (Ziziphus jujuba Mill.). Emerging evidence highlights the critical role of phytoplasma-secreted effectors in pathogenesis, though few have been functionally characterized. Here, we identified a Sec-dependent effector, JWB790, from Ca. P. ziziphi, which was shown to suppress plant immunity. Through transient expression assays in Nicotiana benthamiana, pathogen inoculation assays, the generation of transgenic Arabidopsis thaliana plants, and RNA-seq-based transcriptomic profiling, we systematically investigated the virulence function of JWB790. Our findings revealed that JWB790 is highly expressed in JWB-infected tissues. The transient expression of JWB790 in N. benthamiana suppressed BAX-induced cell death and H2O2 accumulation. Furthermore, the stable overexpression of JWB790 in A. thaliana compromised disease resistance, accompanied by reduced H2O2 accumulation and callose deposition triggered by flg22. Additionally, the RNA-seq analysis of JWB790 transgenic Arabidopsis plants indicated that the overexpression of JWB790 altered the expression of biotic stress-related genes. In summary, JWB790 is a virulence factor that suppresses plant immunity and promotes pathogen proliferation. These results advance our understanding of Ca. P. ziziphi pathogenesis. Full article
Show Figures

Figure 1

14 pages, 4707 KiB  
Article
Infection with Jujube Witches’ Broom Phytoplasma Alters the Expression Pattern of the Argonaute Gene Family in Ziziphus jujuba
by Jia Yao, Zesen Qiao, Ziming Jiang, Xueru Zhao, Ziyang You, Wenzhe Zhang, Jiancan Feng, Chenrui Gong and Jidong Li
Microorganisms 2025, 13(3), 658; https://doi.org/10.3390/microorganisms13030658 - 14 Mar 2025
Viewed by 617
Abstract
The cultivation of jujube (Ziziphus jujuba) in China is threatened by jujube witches’ broom (JWB) disease, a devastating infectious disease associated with JWB phytoplasma (‘Candidatus Phytoplasma ziziphi’). In many plants, proteins in the Argonaute (AGO) family, as main components of [...] Read more.
The cultivation of jujube (Ziziphus jujuba) in China is threatened by jujube witches’ broom (JWB) disease, a devastating infectious disease associated with JWB phytoplasma (‘Candidatus Phytoplasma ziziphi’). In many plants, proteins in the Argonaute (AGO) family, as main components of the RNA-induced silencing complex (RISC), play important roles in RNA silencing and pathogen resistance. The jujube telomere-to-telomere genome was searched by BLAST using Arabidopsis AGOs as probes. A total of nine jujube AGO gene members were identified, with each containing the conserved N-terminal, PZA, and PIWI domains. Phylogenetic analysis revealed that the nine jujube AGOs scattered into all three Arabidopsis AGO clades. Expression patterns of the ZjAGO genes were analyzed in response to phytoplasma in transcriptome data and by qRT–PCR. The jujube–phytoplasma interaction altered the expression of jujube AGO genes. ZjAGO1 and ZjAGO8 were up-regulated in the majority of the eight sampling periods subjected to qRT–PCR analysis. In the transcriptome data, ZjAGO1 and ZjAGO8 were also up-regulated during the key stages 37 and 39 weeks after grafting (WAG) with phytoplasma-infected material. These two jujube Argonaute genes may play important roles in response to JWB phytoplasma infection. Full article
Show Figures

Figure 1

13 pages, 6011 KiB  
Article
Molecular Variation and Phylogeny of Thymidylate Kinase Genes of Candidatus Phytoplasma ziziphi from Different Resistant and Susceptible Jujube Cultivars in China
by Chuan-Sheng Song, Qi-Cong Xu, Cui-Ping Wan, De-Zhi Kong, Cai-Li Lin and Shao-Shuai Yu
Biology 2024, 13(11), 886; https://doi.org/10.3390/biology13110886 - 30 Oct 2024
Cited by 1 | Viewed by 983
Abstract
The thymidylate kinase (tmk) gene is indispensable for the proliferation and survival of phytoplasma. To reveal the molecular variation and phylogeny of the tmk genes of Candidatus phytoplasma ziziphi, in this study, the tmk genes of 50 phytoplasma strains infecting different [...] Read more.
The thymidylate kinase (tmk) gene is indispensable for the proliferation and survival of phytoplasma. To reveal the molecular variation and phylogeny of the tmk genes of Candidatus phytoplasma ziziphi, in this study, the tmk genes of 50 phytoplasma strains infecting different resistant and susceptible jujube cultivars from different regions in China were amplified and analyzed. Two sequence types, tmk-x and tmk-y, were identified using clone-based sequencing. The JWB phytoplasma strains were classified into three types, type-X, type-Y, and type-XY, based on the sequencing chromatograms of the tmk genes. The type-X and type-Y strains contained only tmk-x and tmk-y genes, respectively. The type-XY strain contained both tmk-x and tmk-y genes. The type-X, type-Y, and type-XY strains comprised 42%, 12%, and 46% of all the strains, respectively. The type-X and type-XY strains were identified in both susceptible and resistant jujube cultivars, while type-Y strain was only identified in susceptible cultivars. Phylogenetic analysis indicated that the tmk genes of the phytoplasmas were divided into two categories: phylo-S and phylo-M. The phylo-S tmk gene was single-copied in the genome, with an evolutionary pattern similar to the 16S rRNA gene; the phylo-M tmk gene was multi-copied, related to PMU-mediated within-genome transposition and between-genome transfer. Furthermore, the phylogenetic tree suggested that the tmk genes shuttled between the genomes of the Paulownia witches’ broom phytoplasma and JWB phytoplasma. These findings provide insights into the evolutionary and adaptive mechanisms of phytoplasmas. Full article
Show Figures

Figure 1

16 pages, 1610 KiB  
Article
Candidatus Phytoplasma ziziphi’ Changes the Metabolite Composition of Jujube Tree Leaves and Affects the Feeding Behavior of Its Insect Vector Hishimonus hamatus Kuoh
by Rui-Chang Liu, Bo-Liao Li, Xiu-Lin Chen, Jing-Jing Liu, Kun Luo and Guang-Wei Li
Insects 2023, 14(9), 750; https://doi.org/10.3390/insects14090750 - 6 Sep 2023
Viewed by 1754
Abstract
Hishimonus hamatus Kuoh is a leafhopper species native to China that feeds on Chinese jujube leaves. This leafhopper species has been verified to transmit jujube witches’ broom (JWB) disease, caused by phytoplasma, a fatal plant pathogen, which belongs to the phytoplasma subgroup 16SrV-B. [...] Read more.
Hishimonus hamatus Kuoh is a leafhopper species native to China that feeds on Chinese jujube leaves. This leafhopper species has been verified to transmit jujube witches’ broom (JWB) disease, caused by phytoplasma, a fatal plant pathogen, which belongs to the phytoplasma subgroup 16SrV-B. The transmission of JWB phytoplasma largely relies on the feeding behavior of piercing–sucking leafhoppers. However, the specific mechanisms behind how and why the infection of JWB influences the feeding behavior of these leafhoppers are not fully understood. To address this, a study was conducted to compare the feeding patterns of H. hamatus when feeding JWB-infested jujube leaves to healthy leaves using the electrical penetration graph (EPG) technique. Then, a widely targeted metabolome analysis was performed to identify differences in the metabolite composition of JWB-infected jujube leaves and that of healthy jujube leaves. The results of EPG analyses revealed that when feeding on JWB-infected jujube leaves, H. hamatus exhibited an increased frequency of phloem ingestion and spent longer in the phloem feeding phase compared to when feeding on healthy leaves. In addition, the results of metabolomic analyses showed that JWB-infected leaves accumulated higher levels of small-molecular carbohydrates, free amino acids, and free fatty acids, as well as lower levels of lignans, coumarins and triterpenoids compared to healthy leaves. The above results indicated that the H. hamatus preferentially fed on the phloem of infected leaves, which seems to be linked to the transmission of the JWB phytoplasma. The results of metabolomic analyses partially imply that the chemical compounds might play a role in making the infected leaves more attractive to H. hamatus for feeding. Full article
Show Figures

Figure 1

20 pages, 16459 KiB  
Article
Influences of Jujube Witches’ Broom (JWB) Phytoplasma Infection and Oxytetracycline Hydrochloride Treatment on the Gene Expression Profiling in Jujube
by Junqiang Yang, Zhongmei Shen, Pengyan Qu, Rui Yang, Anping Shao, Hao Li, Ailing Zhao and Chunzhen Cheng
Int. J. Mol. Sci. 2023, 24(12), 10313; https://doi.org/10.3390/ijms241210313 - 18 Jun 2023
Cited by 3 | Viewed by 2638
Abstract
Jujube witches’ broom disease (JWB), caused by Candidatus Phytoplasma ziziphi, is the most destructive phytoplasma disease threatening the jujube industry. Tetracycline derivatives treatments have been validated to be capable of recovering jujube trees from phytoplasma infection. In this study, we reported that [...] Read more.
Jujube witches’ broom disease (JWB), caused by Candidatus Phytoplasma ziziphi, is the most destructive phytoplasma disease threatening the jujube industry. Tetracycline derivatives treatments have been validated to be capable of recovering jujube trees from phytoplasma infection. In this study, we reported that oxytetracycline hydrochloride (OTC-HCl) trunk injection treatment could recover more than 86% of mild JWB-diseased trees. In order to explore the underlying molecular mechanism, comparative transcriptomic analysis of healthy control (C group), JWB-diseased (D group) and OTC-HCl treated JWB-diseased (T group) jujube leaves was performed. In total, 755 differentially expressed genes (DEGs), including 488 in ‘C vs. D’, 345 in ‘D vs. T’ and 94 in ‘C vs. T’, were identified. Gene enrichment analysis revealed that these DEGs were mainly involved in DNA and RNA metabolisms, signaling, photosynthesis, plant hormone metabolism and transduction, primary and secondary metabolisms, their transportations, etc. Notably, most of the DEGs identified in ‘C vs. D’ displayed adverse change patterns in ‘D vs. T’, suggesting that the expression of these genes was restored after OTC-HCl treatment. Our study revealed the influences of JWB phytoplasma infection and OTC-HCl treatment on gene expression profiling in jujube and would be helpful for understanding the chemotherapy effects of OTC-HCl on JWB-diseased jujube. Full article
(This article belongs to the Special Issue Advances in Research for Fruit Crop Breeding and Genetics 2023)
Show Figures

Figure 1

14 pages, 3141 KiB  
Article
Identification of High Tolerance to Jujube Witches’ Broom in Indian Jujube (Ziziphus mauritiana Lam.) and Mining Differentially Expressed Genes Related to the Tolerance through Transcriptome Analysis
by Yaru Xu, Chao Wang, Decang Kong, Ming Cao, Qiong Zhang, Muhammad Tahir, Ying Yang, Shuang Yang, Wenhao Bo and Xiaoming Pang
Plants 2023, 12(11), 2082; https://doi.org/10.3390/plants12112082 - 24 May 2023
Cited by 2 | Viewed by 2214
Abstract
The jujube witches’ broom (JWB) disease is a severe threat to jujube trees, with only a few cultivars being genuinely tolerant or resistant to phytoplasma. The defense mechanism of jujube trees against phytoplasma is still unclear. In this study, we aimed to investigate [...] Read more.
The jujube witches’ broom (JWB) disease is a severe threat to jujube trees, with only a few cultivars being genuinely tolerant or resistant to phytoplasma. The defense mechanism of jujube trees against phytoplasma is still unclear. In this study, we aimed to investigate the tolerance mechanism of Indian jujube ‘Cuimi’ to JWB and identify the key genes that contribute to JWB high tolerance. Based on the symptoms and phytoplasma concentrations after infection, we confirmed the high tolerance of ‘Cuimi’ to JWB. Comparative transcriptome analysis was subsequently performed between ‘Cuimi’ and ‘Huping’, a susceptible cultivar of Chinese jujube. Unique gene ontology (GO) terms were identified in ‘Cuimi’, such as protein ubiquitination, cell wall biogenesis, cell surface receptor signaling pathway, oxylipin biosynthetic process, and transcription factor activity. These terms may relate to the normal development and growth of ‘Cuimi’ under phytoplasma infection. We identified 194 differential expressed genes related to JWB high tolerance, involved in various processes, such as reactive oxygen species (ROS), Ca2+ sensors, protein kinases, transcription factors (TFs), lignin, and hormones. Calmodulin-like (CML) genes were significantly down-regulated in infected ‘Cuimi’. We speculated that the CML gene may act as a negative regulatory factor related to JWB high tolerance. Additionally, the cinnamoyl-CoA reductase-like SNL6 gene was significantly up-regulated in infected ‘Cuimi’, which may cause lignin deposition, limit the growth of phytoplasma, and mediate immune response of ‘Cuimi’ to phytoplasma. Overall, this study provides insights into the contribution of key genes to the high tolerance of JWB in Indian jujube ‘Cuimi’. Full article
(This article belongs to the Special Issue Advances in Jujube Research)
Show Figures

Graphical abstract

12 pages, 7114 KiB  
Article
The Jujube TCP Transcription Factor ZjTCP16 Regulates Plant Growth and Cell Size by Affecting the Expression of Genes Involved in Plant Morphogenesis
by Qiqi Yang, Qicheng Li, Liyuan Gu, Peng Chen, Yu Zhang, Yonghua Li, Yun Chen, Xia Ye, Bin Tan, Xianbo Zheng, Jidong Li and Jiancan Feng
Forests 2022, 13(5), 723; https://doi.org/10.3390/f13050723 - 5 May 2022
Cited by 4 | Viewed by 2366
Abstract
Jujube production is threatened by jujube witches’ broom (JWB) disease, which is caused by JWB phytoplasma. The jujube TCP transcription factor (TF) ZjTCP16 may be involved in the interaction of jujube plants with JWB phytoplasma. In this study, qRT-PCR proved that the expression [...] Read more.
Jujube production is threatened by jujube witches’ broom (JWB) disease, which is caused by JWB phytoplasma. The jujube TCP transcription factor (TF) ZjTCP16 may be involved in the interaction of jujube plants with JWB phytoplasma. In this study, qRT-PCR proved that the expression pattern of ZjTCP16 was altered by JWB phytoplasma. The gene functions of ZjTCP16 were analyzed by its overexpression in Arabidopsis and jujube, as well as knock-down in. The overexpression of ZjTCP16 in Arabidopsis and jujube resulted in dwarfism and small leaves, while the zjtcp16 CRISPR mutants were higher than the WT. Microscopic observation of paraffin sections of jujube stems showed that ZjTCP16 affected the size of cells. The interactions of ZjTCP16 with ZjAS2 and ZjLOB in both the cytoplasm and nucleus were demonstrated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Yeast one-hybrid (Y1H) assays and qRT-PCR further confirmed that ZjTCP16 affected the expression of genes involved in leaf morphogenesis and cell proliferation (ZjAS1, ZjKNAT1, ZjKNAT2 and ZjKNAT6) at the mRNA level through the ZjAS2 and ZjLOB pathways. In conclusion, ZjTCP16 regulates plant growth and cell size by altering the expression pattern of morphogenesis-related genes in jujube. Full article
(This article belongs to the Special Issue Importance of Genetic Diversity for Forest and Landscape Restoration)
Show Figures

Figure 1

15 pages, 12805 KiB  
Article
Three Main Genes in the MAPK Cascade Involved in the Chinese Jujube-Phytoplasma Interaction
by Zhiguo Liu, Zhihui Zhao, Chaoling Xue, Lixin Wang, Lili Wang, Chunfang Feng, Liman Zhang, Zhe Yu, Jin Zhao and Mengjun Liu
Forests 2019, 10(5), 392; https://doi.org/10.3390/f10050392 - 2 May 2019
Cited by 12 | Viewed by 3097
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is an important economic forest species and multipurpose fruit tree in the family of Rhamnaceae. Phytoplasmas are significant prokaryotic pathogens, associated with more than 1000 plant diseases. Jujube witches’ broom disease (JWB) is a typical phytoplasma disease, [...] Read more.
Chinese jujube (Ziziphus jujuba Mill.) is an important economic forest species and multipurpose fruit tree in the family of Rhamnaceae. Phytoplasmas are significant prokaryotic pathogens, associated with more than 1000 plant diseases. Jujube witches’ broom disease (JWB) is a typical phytoplasma disease, caused by ‘Candidatus Phytoplasma ziziphi’. Mitogen-activated protein kinase (MAPK) cascades are highly universal signal transduction modules and play crucial roles in regulating innate immune responses in plants. Thus, in the current study, systematical expression profiles of 10 ZjMPK and 4 ZjMPKK genes were conducted in plantlets with JWB disease, plantlets recovered from JWB disease, the tissues showing different disease symptoms, and resistant/susceptible cultivars infected by JWB phytoplasma. We found that most ZjMPK and ZjMKK genes exhibited significant up- or down-regulation expression under phytoplasma infection, but the top three differentially expressed genes (DEGs) were ZjMPK2, ZjMKK2 and ZjMKK4, which showed the biggest times of gene’s significant difference expression in all materials. Based on STRING database analysis, ZjMKK2 and ZjMPK2 were involved in the same plant-pathogen interaction pathway, and Yeast two-hybrid screening showed that ZjMKK2 could interact with ZjMPK2. Finally, we deduced a pathway of jujube MAPK cascades which response to ‘Candidatus Phytoplasma ziziphi’ infection. Our study presents the first gene-family-wide investigation on the systematical expression analysis of MAPK and MAPKK genes in Chinese jujube under phytoplasma infection. These results provide valuable information for the further research on the signaling pathway of phytoplasma infection in Chinese jujube. Full article
(This article belongs to the Special Issue Roles and Interactions of Insects and Microbes in Forest Systems)
Show Figures

Figure 1

Back to TopTop