Phloem Localized Insect Transmitted Bacteria Associated with Plant Diseases

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Plant Microbe Interactions".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 7423

Special Issue Editor


E-Mail Website
Guest Editor
Department of Agricultural and Food Sciences, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
Interests: bacteria; phytoplasmas; plant diseases; detection; epidemiology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Insect-vectored bacterial diseases of plants are emerging threats to crops and forestry worldwide. Psyllid-vectored liberibacters and insect-vectored phytoplasmas are associated with epidemic diseases that can have a devastating impact on the economy.

A detailed description of these bacteria and of their epidemiology and geographic distribution can help us to improve our knowledge and awareness of these diseases, which can be beneficial for various groups, including academics and agricultural extension service officers.

In this Special Issue, we will focus on the management of these diseases, grouped according to the main associated bacterium, aimed at reducing losses. A preliminary, tentative list of these diseases includes aster yellows and other yellows, fruit tree and palm decline and yellowing, “stolbur”, “bois noir”,“huanglongbing”, potato purple top, and zebra chips. Papers should report on the detection and identification of the insect-transmitted bacteria associated with these diseases, as well as their insect vectors, plant hosts, epidemiology, and management where available.

Dr. Assunta Bertaccini
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytopathogenic bacteria
  • Candidatus Phytoplasma’ species
  • Candidatus Liberibacter’ species and subspecies
  • plant disease
  • prevention
  • management
  • detection
  • identification
  • insect vectors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

2 pages, 177 KiB  
Editorial
Phloem-Localized Insect-Transmitted Bacteria Associated with Plant Diseases
by Assunta Bertaccini
Microorganisms 2023, 11(10), 2494; https://doi.org/10.3390/microorganisms11102494 - 5 Oct 2023
Viewed by 1212
Abstract
In the last three decades, an increasing number of plant diseases associated with the presence of phloem-localized insect-transmitted bacteria have been observed around the world, causing serious economic losses [...] Full article

Research

Jump to: Editorial, Review

19 pages, 8889 KiB  
Article
Divergence within the Taxon ‘Candidatus Phytoplasma asteris’ Confirmed by Comparative Genome Analysis of Carrot Strains
by Rafael Toth, Anna-Marie Ilic, Bruno Huettel, Bojan Duduk and Michael Kube
Microorganisms 2024, 12(5), 1016; https://doi.org/10.3390/microorganisms12051016 - 17 May 2024
Viewed by 1396
Abstract
Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), [...] Read more.
Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), two strains of the provisional taxon ‘Candidatus Phytoplasma asteris’ were identified within a carrot plot. For further analysis, strains M8 and M33 underwent shotgun sequencing, utilising single-molecule-real-time (SMRT) long-read sequencing and sequencing-by-synthesis (SBS) paired-end short-read sequencing techniques. Hybrid assemblies resulted in complete de novo assemblies of two genomes harboring circular chromosomes and two plasmids. Analyses, including average nucleotide identity and sequence comparisons of established marker genes, confirmed the phylogenetic divergence of ‘Ca. P. asteris’ and a different assignment of strains to the 16S rRNA subgroup I-A for M33 and I-B for M8. These groups exhibited unique features, encompassing virulence factors and genes, associated with the mobilome. In contrast, pan-genome analysis revealed a highly conserved gene set related to metabolism across these strains. This analysis of the Aster Yellows (AY) group reaffirms the perception of phytoplasmas as bacteria that have undergone extensive genome reduction during their co-evolution with the host and an increase of genome size by mobilome. Full article
Show Figures

Figure 1

17 pages, 1161 KiB  
Article
Risk Assessment for the Spread of Flavescence Dorée-Related Phytoplasmas from Alder to Grapevine by Alternative Insect Vectors in Germany
by Barbara Jarausch, Anna Markheiser, Wolfgang Jarausch, Sandra Biancu, Sanela Kugler, Miriam Runne and Michael Maixner
Microorganisms 2023, 11(11), 2766; https://doi.org/10.3390/microorganisms11112766 - 14 Nov 2023
Cited by 4 | Viewed by 1284
Abstract
“Flavescence dorée” (FD)-related phytoplasmas are widespread in alder in Germany and their transmission to grapevine represents a high risk for FD outbreaks when the primary vector, Scaphoideus titanus, becomes present in the future. Therefore, the potential role of the Deltocephalinae leafhopper species [...] Read more.
“Flavescence dorée” (FD)-related phytoplasmas are widespread in alder in Germany and their transmission to grapevine represents a high risk for FD outbreaks when the primary vector, Scaphoideus titanus, becomes present in the future. Therefore, the potential role of the Deltocephalinae leafhopper species in transmitting FD-related phytoplasmas from alder to grapevine was studied in extensive transmission trials conducted between 2017 and 2020. The transmission capacity of autochthonous Allygus spp. and the invasive Orientus ishidae captured on infected alder trees was tested under controlled conditions using various test designs, including grouped insects and single-insect studies. The latter experiments were analyzed in terms of survival probability, transmission success and phytoplasma load in the insects, measured by quantitative PCR. A minimum inoculation titer (MIT) required for successful transmission to alder was defined for both Allygus spp. and O. ishidae. While Allygus spp. exhibited slightly better survival on Vitis vinifera compared to O. ishidae, the latter displayed higher phytoplasma loads and greater transmission success. Although all species were capable of infecting alder seedlings, O. ishidae was able to transmit 16SrV-phytoplasmas directly to single grapevines. Infective adults of O. ishidae were captured from the beginning of July until the end of August, while Allygus spp. were only considered infective towards the end of the season. Thus, O. ishidae likely poses a higher risk for FD transmission from alder to grapevine, albeit at a very low level, as only five out of 90 transmission trials to V. vinifera were successful. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

27 pages, 5346 KiB  
Review
Phytoplasma-Associated Diseases in South America: Thirty Years of Research
by Helena Guglielmi Montano, Assunta Bertaccini and Nicola Fiore
Microorganisms 2024, 12(7), 1311; https://doi.org/10.3390/microorganisms12071311 - 27 Jun 2024
Cited by 2 | Viewed by 1208
Abstract
Phytoplasma-associated diseases are mainly insect-transmitted and are present worldwide. Considering that disease detection is a relevant environmental factor that may elucidate the presence of these diseases, a review reporting the geographic distribution of phytoplasma taxa in geographically consistent areas helps manage diseases appropriately [...] Read more.
Phytoplasma-associated diseases are mainly insect-transmitted and are present worldwide. Considering that disease detection is a relevant environmental factor that may elucidate the presence of these diseases, a review reporting the geographic distribution of phytoplasma taxa in geographically consistent areas helps manage diseases appropriately and reduce their spreading. This work summarizes the data available about the identification of the phytoplasma associated with several diverse diseases in South America in the last decades. The insect vectors and putative vectors together with the plant host range of these phytoplasmas are also summarized. Overall, 16 ‘Candidatus Phytoplasma’ species were detected, and those most frequently detected in agricultural-relevant crops such as corn, alfalfa, grapevine, and other horticultural species are ‘Ca. P. pruni’, ‘Ca. P. asteris’, and ‘Ca. P. fraxini’. Full article
Show Figures

Figure 1

18 pages, 2444 KiB  
Review
Paulownia Witches’ Broom Disease: A Comprehensive Review
by Yajie Zhang, Zesen Qiao, Jidong Li and Assunta Bertaccini
Microorganisms 2024, 12(5), 885; https://doi.org/10.3390/microorganisms12050885 - 28 Apr 2024
Viewed by 1547
Abstract
Phytoplasmas are insect-transmitted bacterial pathogens associated with diseases in a wide range of host plants, resulting in significant economic and ecological losses. Perennial deciduous trees in the genus Paulownia are widely planted for wood harvesting and ornamental purposes. Paulownia witches’ broom (PaWB) disease, [...] Read more.
Phytoplasmas are insect-transmitted bacterial pathogens associated with diseases in a wide range of host plants, resulting in significant economic and ecological losses. Perennial deciduous trees in the genus Paulownia are widely planted for wood harvesting and ornamental purposes. Paulownia witches’ broom (PaWB) disease, associated with a 16SrI-D subgroup phytoplasma, is a destructive disease of paulownia in East Asia. The PaWB phytoplasmas are mainly transmitted by insect vectors in the Pentatomidae (stink bugs), Miridae (mirid bugs) and Cicadellidae (leafhoppers) families. Diseased trees show typical symptoms, such as branch and shoot proliferation, which together are referred to as witches’ broom. The phytoplasma presence affects the physiological and anatomical structures of paulownia. Gene expression in paulownia responding to phytoplasma presence have been studied at the transcriptional, post-transcriptional, translational and post-translational levels by high throughput sequencing techniques. A PaWB pathogenic mechanism frame diagram on molecular level is summarized. Studies on the interactions among the phytoplasma, the insect vectors and the plant host, including the mechanisms underlying how paulownia effectors modify processes of gene expression, will lead to a deeper understanding of the pathogenic mechanisms and to the development of efficient control measures. Full article
Show Figures

Figure 1

Back to TopTop