Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = juxtaglomerular cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1786 KB  
Review
A Possible Link between Cell Plasticity and Renin Expression in the Collecting Duct: A Narrative Review
by Nicole Schary, Bayram Edemir and Vladimir T. Todorov
Int. J. Mol. Sci. 2024, 25(17), 9549; https://doi.org/10.3390/ijms25179549 - 3 Sep 2024
Viewed by 2709
Abstract
The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin–angiotensin–aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are [...] Read more.
The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin–angiotensin–aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are the key target segments for RAAS. The collecting duct is important for urine production and also for salt, water, and acid–base homeostasis. The critical functional role of the collecting duct is mediated by the principal and the intercalated cells and is regulated by different hormones like aldosterone and vasopressin. The collecting duct is not only a target for hormones but also a place of hormone production. It is accepted that renin is produced in the collecting duct at a low level. Several studies have described that the cells in the collecting duct exhibit plasticity properties because the ratio of principal to intercalated cells can change under specific circumstances. This narrative review focuses on two aspects of the collecting duct that remain somehow aside from mainstream research, namely the cell plasticity and the renin expression. We discuss the link between these collecting duct features, which we see as a promising area for future research given recent findings. Full article
(This article belongs to the Special Issue Novel Biomarkers and Therapeutic Strategies in Nephropathy)
Show Figures

Figure 1

13 pages, 820 KB  
Review
Kidney Renin Release under Hypoxia and Its Potential Link with Nitric Oxide: A Narrative Review
by Weiwei Kong, Yixin Liao, Liang Zhao, Nathan Hall, Hua Zhou, Ruisheng Liu, Pontus B. Persson and Enyin Lai
Biomedicines 2023, 11(11), 2984; https://doi.org/10.3390/biomedicines11112984 - 6 Nov 2023
Cited by 3 | Viewed by 3532
Abstract
The renin–angiotensin system (RAS) and hypoxia have a complex interaction: RAS is activated under hypoxia and activated RAS aggravates hypoxia in reverse. Renin is an aspartyl protease that catalyzes the first step of RAS and tightly regulates RAS activation. Here, we outline kidney [...] Read more.
The renin–angiotensin system (RAS) and hypoxia have a complex interaction: RAS is activated under hypoxia and activated RAS aggravates hypoxia in reverse. Renin is an aspartyl protease that catalyzes the first step of RAS and tightly regulates RAS activation. Here, we outline kidney renin expression and release under hypoxia and discuss the putative mechanisms involved. It is important that renin generally increases in response to acute hypoxemic hypoxia and intermittent hypoxemic hypoxia, but not under chronic hypoxemic hypoxia. The increase in renin activity can also be observed in anemic hypoxia and carbon monoxide-induced histotoxic hypoxia. The increased renin is contributed to by juxtaglomerular cells and the recruitment of renin lineage cells. Potential mechanisms regulating hypoxic renin expression involve hypoxia-inducible factor signaling, natriuretic peptides, nitric oxide, and Notch signaling-induced renin transcription. Full article
(This article belongs to the Special Issue Role of NO in Disease: Good, Bad or Ugly)
Show Figures

Figure 1

11 pages, 1892 KB  
Article
Regulation of Renin Expression by Β1-Integrin in As4.1 Juxtaglomerular Line Cells
by Nobumichi Saito, Masao Toyoda, Masumi Kondo, Makiko Abe, Noriyuki Sanechika, Moritsugu Kimura, Kaichiro Sawada and Masafumi Fukagawa
Biomedicines 2023, 11(2), 501; https://doi.org/10.3390/biomedicines11020501 - 9 Feb 2023
Cited by 1 | Viewed by 2381
Abstract
(1) Background: Renal dysfunction and hypertension are mutually aggravating factors; however, the details of their interaction remain unclear. In a study using renal tissue from diabetic rats, we found that β1-integrin, a cell-substrate adhesion molecule, is specifically phosphorylated in juxtaglomerular cells that secrete [...] Read more.
(1) Background: Renal dysfunction and hypertension are mutually aggravating factors; however, the details of their interaction remain unclear. In a study using renal tissue from diabetic rats, we found that β1-integrin, a cell-substrate adhesion molecule, is specifically phosphorylated in juxtaglomerular cells that secrete renin, a blood pressure regulator. (2) Methods: A mouse juxtaglomerular cell line (As4.1 cells) was used for the following experiments: drug-induced promotion of β1-integrin phosphorylation/dephosphorylation; knockdown of β1-integrin and the cell adhesion molecule connexin-40 (a candidate for the main body of baroreceptor); and pressurization to atmospheric pressure + 100 mmHg. culture in hypotonic liquid medium. The expression of renin under these conditions was measured by qRT-PCR. (3) Results: Phosphorylation of β1-integrin suppressed the expression of renin, while dephosphorylation conversely promoted it. β1-integrin and connexin-40 knockdown both promoted the expression of renin. Pneumatic pressurization and hypotonic medium culture both decreased the expression of renin, which was restored by the knockdown of β1-integrin. (4) Conclusions: β1-integrin plays an inhibitory role in the regulation of the expression of renin, which may be controlled by phosphorylation and dephosphorylation. It is hypothesized that β1-integrin and other adhesion factors regulate the expression of renin by altering the sensitivity of baroreceptors on the plasma membrane. Full article
(This article belongs to the Special Issue Pathological Mechanisms of Diabetic Nephropathy)
Show Figures

Figure 1

14 pages, 7176 KB  
Article
Exogenous H2S Attenuates Hypertension by Regulating Renin Exocytosis under Hyperglycaemic and Hyperlipidaemic Conditions
by Ning Liu, Mingyu Li, Siyuan Liu, Jiaxin Kang, Lingxue Chen, Jiayi Huang, Yan Wang, He Chen and Weihua Zhang
Int. J. Mol. Sci. 2023, 24(2), 1690; https://doi.org/10.3390/ijms24021690 - 14 Jan 2023
Cited by 10 | Viewed by 2922 | Correction
Abstract
Obesity, along with type 2 diabetes mellitus (T2DM), is a major contributor to hypertension. The renin-angiotensin-aldosterone system is involved in the occurrence of diabetes and hypertension. However, the mechanism by which obesity is related to T2DM induced hypertension is unclear. In this study, [...] Read more.
Obesity, along with type 2 diabetes mellitus (T2DM), is a major contributor to hypertension. The renin-angiotensin-aldosterone system is involved in the occurrence of diabetes and hypertension. However, the mechanism by which obesity is related to T2DM induced hypertension is unclear. In this study, we observed that blood pressure and serum renin content were increased in patients with diabetes and hypertension. Hydrogen sulfide (H2S), as an endogenous bioactive molecule, has been shown to be a vasodilator. Db/db mice, characterized by obesity and T2DM, and juxtaglomerular (JG) cells, which line the afferent arterioles at the entrance of the glomeruli to produce renin, treated with glucose, palmitic acid (PA) and oleic acid (OA), were used as animal and cellular models. NaHS, the H2S donor, was administered to db/db mice through intraperitoneal injection. NaHS significantly alleviated blood pressure in db/db mice, decreased the renin content in the serum of db/db mice and reduced renin secretion from JG cells. NaHS modulated renin release via cAMP and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), including synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2), which mediate renin exocytosis. Furthermore, NaHS increased the levels of autophagy-related proteins and colocalization with EGFP-LC3 puncta with renin-containing granules and VAMP2 to consume excessive renin to maintain intracellular homeostasis. Therefore, exogenous H2S attenuates renin release and promotes renin-vesicular autophagy to relieve diabetes-induced hypertension. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

24 pages, 2255 KB  
Review
Review of Knowledge of Uranium-Induced Kidney Toxicity for the Development of an Adverse Outcome Pathway to Renal Impairment
by Yann Guéguen and Marie Frerejacques
Int. J. Mol. Sci. 2022, 23(8), 4397; https://doi.org/10.3390/ijms23084397 - 15 Apr 2022
Cited by 34 | Viewed by 5736
Abstract
An adverse outcome pathway (AOP) is a conceptual construct of causally and sequentially linked events, which occur during exposure to stressors, with an adverse outcome relevant to risk assessment. The development of an AOP is a means of identifying knowledge gaps in order [...] Read more.
An adverse outcome pathway (AOP) is a conceptual construct of causally and sequentially linked events, which occur during exposure to stressors, with an adverse outcome relevant to risk assessment. The development of an AOP is a means of identifying knowledge gaps in order to prioritize research assessing the health risks associated with exposure to physical or chemical stressors. In this paper, a review of knowledge was proposed, examining experimental and epidemiological data, in order to identify relevant key events and potential key event relationships in an AOP for renal impairment, relevant to stressors such as uranium (U). Other stressors may promote similar pathways, and this review is a necessary step to compare and combine knowledge reported for nephrotoxicants. U metal ions are filtered through the glomerular membrane of the kidneys, then concentrate in the cortical and juxtaglomerular areas, and bind to the brush border membrane of the proximal convoluted tubules. U uptake by epithelial cells occurs through endocytosis and the sodium-dependent phosphate co-transporter (NaPi-IIa). The identified key events start with the inhibition of the mitochondria electron transfer chain and the collapse of mitochondrial membrane potential, due to cytochrome b5/cytochrome c disruption. In the nucleus, U directly interacts with negatively charged DNA phosphate, thereby inducing an adduct formation, and possibly DNA strand breaks or cross-links. U also compromises DNA repair by inhibiting zing finger proteins. Thereafter, U triggers the Nrf2, NF-κB, or endoplasmic reticulum stress pathways. The resulting cellular key events include oxidative stress, DNA strand breaks and chromosomal aberrations, apoptosis, and pro-inflammatory effects. Finally, the main adverse outcome is tubular damage of the S2 and S3 segments of the kidneys, leading to tubular cell death, and then kidney failure. The attribution of renal carcinogenesis due to U is controversial, and specific experimental or epidemiological studies must be conducted. A tentative construction of an AOP for uranium-induced kidney toxicity and failure was proposed. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Specific Target Organ Toxicity)
Show Figures

Figure 1

24 pages, 4525 KB  
Review
Arachidonic Acid as Mechanotransducer of Renin Cell Baroreceptor
by Undurti N. Das
Nutrients 2022, 14(4), 749; https://doi.org/10.3390/nu14040749 - 10 Feb 2022
Cited by 14 | Viewed by 6101
Abstract
For normal maintenance of blood pressure and blood volume a well-balanced renin-angiotensin-aldosterone system (RAS) is necessary. For this purpose, renin is secreted as the situation demands by the juxtaglomerular cells (also called as granular cells) that are in the walls of the afferent [...] Read more.
For normal maintenance of blood pressure and blood volume a well-balanced renin-angiotensin-aldosterone system (RAS) is necessary. For this purpose, renin is secreted as the situation demands by the juxtaglomerular cells (also called as granular cells) that are in the walls of the afferent arterioles. Juxtaglomerular cells can sense minute changes in the blood pressure and blood volume and accordingly synthesize, store, and secrete appropriate amounts of renin. Thus, when the blood pressure and blood volume are decreased JGA cells synthesize and secrete higher amounts of renin and when the blood pressure and blood volume is increased the synthesis and secretion of renin is decreased such that homeostasis is restored. To decipher this important function, JGA cells (renin cells) need to sense and transmit the extracellular physical forces to their chromatin to control renin gene expression for appropriate renin synthesis. The changes in perfusion pressure are sensed by Integrin β1 that is transmitted to the renin cell’s nucleus via lamin A/C that produces changes in the architecture of the chromatin. This results in an alteration (either increase or decrease) in renin gene expression. Cell membrane is situated in an unique location since all stimuli need to be transmitted to the cell nucleus and messages from the DNA to the cell external environment can be conveyed only through it. This implies that cell membrane structure and integrity is essential for all cellular functions. Cell membrane is composed to proteins and lipids. The lipid components of the cell membrane regulate its (cell membrane) fluidity and the way the messages are transmitted between the cell and its environment. Of all the lipids present in the membrane, arachidonic acid (AA) forms an important constituent. In response to pressure and other stimuli, cellular and nuclear shape changes occur that render nucleus to act as an elastic mechanotransducer that produces not only changes in cell shape but also in its dynamic behavior. Cell shape changes in response to external pressure(s) result(s) in the activation of cPLA2 (cytosolic phospholipase 2)-AA pathway that stretches to recruit myosin II which produces actin-myosin cytoskeleton contractility. Released AA can undergo peroxidation and peroxidized AA binds to DNA to regulate the expression of several genes. Alterations in the perfusion pressure in the afferent arterioles produces parallel changes in the renin cell membrane leading to changes in renin release. AA and its metabolic products regulate not only the release of renin but also changes in the vanilloid type 1 (TRPV1) expression in renal sensory nerves. Thus, AA and its metabolites function as intermediate/mediator molecules in transducing changes in perfusion and mechanical pressures that involves nuclear mechanotransduction mechanism. This mechanotransducer function of AA has relevance to the synthesis and release of insulin, neurotransmitters, and other soluble mediators release by specialized and non-specialized cells. Thus, AA plays a critical role in diseases such as diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, sepsis, lupus, rheumatoid arthritis, and cancer. Full article
(This article belongs to the Special Issue Nutritional Support for Chronic Disease)
Show Figures

Figure 1

16 pages, 2687 KB  
Article
Intermittent Hypoxia Upregulates the Renin and Cd38 mRNAs in Renin-Producing Cells via the Downregulation of miR-203
by Yoshinori Takeda, Asako Itaya-Hironaka, Akiyo Yamauchi, Mai Makino, Sumiyo Sakuramoto-Tsuchida, Hiroyo Ota, Ryuji Kawaguchi and Shin Takasawa
Int. J. Mol. Sci. 2021, 22(18), 10127; https://doi.org/10.3390/ijms221810127 - 19 Sep 2021
Cited by 18 | Viewed by 3533
Abstract
Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]), and it is a known risk factor for hypertension. The upregulation of the renin-angiotensin system has been reported in IH, and the correlation between renin and CD38 [...] Read more.
Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]), and it is a known risk factor for hypertension. The upregulation of the renin-angiotensin system has been reported in IH, and the correlation between renin and CD38 has been noted. We exposed human HEK293 and mouse As4.1 renal cells to experimental IH or normoxia for 24 h and then measured the mRNA levels using a real-time reverse transcription polymerase chain reaction. The mRNA levels of Renin (Ren) and Cd38 were significantly increased by IH, indicating that they could be involved in the CD38-cyclic ADP-ribose signaling pathway. We next investigated the promotor activities of both genes, which were not increased by IH. Yet, a target mRNA search of the microRNA (miRNA) revealed both mRNAs to have a potential target sequence for miR-203. The miR-203 level of the IH-treated cells was significantly decreased when compared with the normoxia-treated cells. The IH-induced upregulation of the genes was abolished by the introduction of the miR-203 mimic, but not the miR-203 mimic NC negative control. These results indicate that IH stress downregulates the miR-203 in renin-producing cells, thereby resulting in increased mRNA levels of Ren and Cd38, which leads to hypertension. Full article
(This article belongs to the Special Issue Sleep Apnea and Intermittent Hypoxia 2.0)
Show Figures

Graphical abstract

8 pages, 19211 KB  
Case Report
Spindle Cell Hemangioma and Atypically Localized Juxtaglomerular Cell Tumor in a Patient with Hereditary BRIP1 Mutation: A Case Report
by Jan Papez, Jiri Starha, Pavel Zerhau, Denisa Pavlovska, Marta Jezova, Tomas Jurencak, Katerina Slaba, Martin Sterba, Arpad Kerekes, Tomas Merta, Terezia Haluskova, Hana Palova, Ondrej Slaby, Jaroslav Sterba and Petr Jabandziev
Genes 2021, 12(2), 220; https://doi.org/10.3390/genes12020220 - 3 Feb 2021
Cited by 3 | Viewed by 3636
Abstract
Spindle cell hemangioma is a benign vascular tumor typically occurring in the dermis or subcutis of distal extremities as red–brown lesions that can grow in both size and number over time. They can be very painful and potentially disabling. A family history of [...] Read more.
Spindle cell hemangioma is a benign vascular tumor typically occurring in the dermis or subcutis of distal extremities as red–brown lesions that can grow in both size and number over time. They can be very painful and potentially disabling. A family history of cancer or previous history may be relevant and must be taken into consideration. Juxtaglomerular cell tumor (reninoma) is an extremely rare cause of secondary hypertension diagnosed mostly among adolescents and young adults. Excessive renin secretion results in secondary hyperaldosteronism. Subsequent hypokalemia and metabolic alkalosis, together with high blood pressure, are clues for clinical diagnosis. Histological examination of the excised tumor leads to a definitive diagnosis. Reninoma is found in subcapsular localization, in most cases as a solitary mass, in imaging studies of kidneys. Exceptionally, it can be located in another part of a kidney. Both spindle cell hemangioma and reninoma are extremely rare tumors in children and adolescents. Herein, the authors present a case report of a patient with hereditary BRCA1 interacting protein C-terminal helicase 1 (BRIP1) mutation, spindle cell hemangioma, and secondary hypertension caused by atypically localized reninoma. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 5075 KB  
Article
Connexin Signaling in the Juxtaglomerular Apparatus (JGA) of Developing, Postnatal Healthy and Nephrotic Human Kidneys
by Ivona Kosovic, Natalija Filipovic, Benjamin Benzon, Ivana Bocina, Merica Glavina Durdov, Katarina Vukojevic, Marijan Saraga and Mirna Saraga-Babic
Int. J. Mol. Sci. 2020, 21(21), 8349; https://doi.org/10.3390/ijms21218349 - 6 Nov 2020
Cited by 11 | Viewed by 4280
Abstract
Our study analyzed the expression pattern of different connexins (Cxs) and renin positive cells in the juxtaglomerular apparatus (JGA) of developing, postnatal healthy human kidneys and in nephrotic syndrome of the Finnish type (CNF), by using double immunofluorescence, electron microscopy and statistical measuring. [...] Read more.
Our study analyzed the expression pattern of different connexins (Cxs) and renin positive cells in the juxtaglomerular apparatus (JGA) of developing, postnatal healthy human kidneys and in nephrotic syndrome of the Finnish type (CNF), by using double immunofluorescence, electron microscopy and statistical measuring. The JGA contained several cell types connected by Cxs, and consisting of macula densa, extraglomerular mesangium (EM) and juxtaglomerular cells (JC), which release renin involved in renin-angiotensin- aldosteron system (RAS) of arterial blood pressure control. During JGA development, strong Cx40 expression gradually decreased, while expression of Cx37, Cx43 and Cx45 increased, postnatally showing more equalized expression patterning. In parallel, initially dispersed renin cells localized to JGA, and greatly increased expression in postnatal kidneys. In CNF kidneys, increased levels of Cx43, Cx37 and Cx45 co-localized with accumulations of renin cells in JGA. Additionally, they reappeared in extraglomerular mesangial cells, indicating association between return to embryonic Cxs patterning and pathologically changed kidney tissue. Based on the described Cxs and renin expression patterning, we suggest involvement of Cx40 primarily in the formation of JGA in developing kidneys, while Cx37, Cx43 and Cx45 might participate in JGA signal transfer important for postnatal maintenance of kidney function and blood pressure control. Full article
(This article belongs to the Special Issue Connexin and Pannexin Signaling in Health and Disease)
Show Figures

Figure 1

14 pages, 1945 KB  
Article
Connexin Hemichannels Contribute to the Activation of cAMP Signaling Pathway and Renin Production
by Jingru Hong and Jian Yao
Int. J. Mol. Sci. 2020, 21(12), 4462; https://doi.org/10.3390/ijms21124462 - 23 Jun 2020
Cited by 3 | Viewed by 2957
Abstract
Connexin hemichannels play an important role in the control of cellular signaling and behaviors. Given that lowering extracellular Ca2+, a condition that activates hemichannels, is a well-characterized stimulator of renin in juxtaglomerular cells, we, therefore, tested a potential implication of hemichannels [...] Read more.
Connexin hemichannels play an important role in the control of cellular signaling and behaviors. Given that lowering extracellular Ca2+, a condition that activates hemichannels, is a well-characterized stimulator of renin in juxtaglomerular cells, we, therefore, tested a potential implication of hemichannels in the regulation of renin in As4.1 renin-secreting cells. Lowering extracellular Ca2+ induced hemichannel opening, which was associated with cAMP signaling pathway activation and increased renin production. Blockade of hemichannels with inhibitors or downregulation of Cxs with siRNAs abrogated the activation of cAMP pathway and the elevation of renin. Further analysis revealed that cAMP pathway activation was blocked by adenylyl cyclase inhibitor SQ 22536, suggesting an implication of adenyl cyclase. Furthermore, the participation of hemichannels in the activation of the cAMP signaling pathway was also observed in a renal tubular epithelial cell line NRK. Collectively, our results characterized the hemichannel opening as a presently unrecognized molecular event involved in low Ca2+-elicited activation of cAMP pathway and renin production. Our findings thus provide novel mechanistic insights into the low Ca2+-initiated cell responses. Given the importance of cAMP signaling pathway in the control of multiple cellular functions, our findings also highlight the importance of Cx-forming channels in various pathophysiological situations. Full article
Show Figures

Figure 1

Back to TopTop