Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = lactate biosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1231 KB  
Proceeding Paper
Emerging Trends in Paper-Based Electrochemical Biosensors for Healthcare Applications
by Aparoop Das, Partha Protim Borthakur, Dibyajyoti Das, Jon Jyoti Sahariah, Parimita Kalita and Kalyani Pathak
Eng. Proc. 2025, 106(1), 8; https://doi.org/10.3390/engproc2025106008 - 11 Sep 2025
Viewed by 641
Abstract
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary [...] Read more.
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary action, which make it an ideal candidate for low-cost, functional, and reliable diagnostic devices. The simplicity and cost-effectiveness of paper-based biosensors make them especially suitable for point-of-care (POC) applications, particularly in resource-limited settings where traditional diagnostic tools may be inaccessible. Their lightweight nature and ease of operation allow non-specialized users to perform diagnostic tests without the need for complex laboratory equipment, making them suitable for emergency, field, and remote applications. Technological advancements in paper-based biosensors have significantly enhanced their capabilities. Integration with microfluidic systems has improved fluid handling and reagent storage, resulting in enhanced sensor performance, including greater sensitivity and specificity for target biomarkers. The use of nanomaterials in electrode fabrication, such as reduced graphene oxide and gold nanoparticles, has further elevated their sensitivity, allowing for the precise detection of low-concentration biomarkers. Moreover, the development of multiplexed sensor arrays has enabled the simultaneous detection of multiple biomarkers from a single sample, facilitating comprehensive and rapid diagnostics in clinical settings. These biosensors have found applications in diagnosing a wide range of diseases, including infectious diseases, cancer, and metabolic disorders. They are also effective in genetic analysis and metabolic monitoring, such as tracking glucose, lactate, and uric acid levels, which are crucial for managing chronic conditions like diabetes and kidney diseases. In this review, the latest advancements in paper-based electrochemical biosensors are explored, with a focus on their applications, technological innovations, challenges, and future directions. Full article
Show Figures

Figure 1

11 pages, 1327 KB  
Article
All-in-One Sustainable Thread Biosensor for Chemiluminescence Smartphone Detection of Lactate in Sweat
by Emanuela Maiorano, Maria Maddalena Calabretta, Eugenio Lunedei and Elisa Michelini
Biosensors 2025, 15(8), 530; https://doi.org/10.3390/bios15080530 - 13 Aug 2025
Viewed by 684
Abstract
Thanks to their low-cost, portability, and sustainability, microfluidic thread-based analytical devices (μTADs) are emerging as an attractive analytical platform for wearable biosensing. While several μTADs, mainly based on colorimetric and electrochemical detection methods, have been developed, achieving the needed sensitivity and accuracy for [...] Read more.
Thanks to their low-cost, portability, and sustainability, microfluidic thread-based analytical devices (μTADs) are emerging as an attractive analytical platform for wearable biosensing. While several μTADs, mainly based on colorimetric and electrochemical detection methods, have been developed, achieving the needed sensitivity and accuracy for these biosensors continues to present a significant challenge. Prompted by this need we investigated for the first time the implementation of chemiluminescence (CL) as a detection technique for μTADs. Exploiting the lactate oxidase-catalyzed reaction coupled with the enhanced luminol/H2O2/horseradish peroxidase CL system, we developed a cotton-thread-based chemiluminescent device enabling the detection of lactate with a limit of detection of 0.25 mM in a 2 µL volume of artificial sweat at pH 6.5 within 3 min. The use of recycled grape skin as support made the device sustainable, while the smartphone detection allowed a simple and quantitative readout for the end-user. Using a smartphone as a detector, the analytical performance was evaluated in different conditions and in the presence of potential interferents, showing suitability for monitoring lactate levels in physiological conditions, such as for monitoring anaerobic thresholds in endurance training. Full article
Show Figures

Figure 1

15 pages, 3820 KB  
Article
Gold Nanoparticle-Enhanced Molecularly Imprinted Polymer Electrode for Non-Enzymatic Lactate Sensing
by Christopher Animashaun, Abdellatif Ait Lahcen and Gymama Slaughter
Biosensors 2025, 15(6), 384; https://doi.org/10.3390/bios15060384 - 13 Jun 2025
Cited by 1 | Viewed by 1314
Abstract
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited [...] Read more.
We are reporting the development of a high-performance, non-enzymatic electrochemical biosensor for selective lactate detection, integrating laser-induced graphene (LIG), gold nanoparticles (AuNPs), and a molecularly imprinted polymer (MIP) synthesized from poly(3,4-ethylenedioxythiophene) (PEDOT). The LIG electrode offers a highly porous, conductive scaffold, while electrodeposited AuNPs enhance catalytic activity and signal amplification. The PEDOT-based MIP layer, electropolymerized via cyclic voltammetry, imparts molecular specificity by creating lactate-specific binding sites. Cyclic voltammetry confirmed successful molecular imprinting and enhanced interfacial electron transfer. The resulting LIG/AuNPs/MIP biosensor demonstrated a wide linear detection range from 0.1 µM to 2500 µM, with a sensitivity of 22.42 µA/log(µM) and a low limit of detection (0.035 µM). The sensor showed excellent selectivity against common electroactive interferents such as glucose and uric acid, long-term stability, and accurate recovery in artificial saliva (>95.7%), indicating strong potential for practical application. This enzyme-free platform offers a robust and scalable strategy for continuous lactate monitoring, particularly suited for wearable devices in sports performance monitoring and critical care diagnostics. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Electrochemical Biosensing Application)
Show Figures

Figure 1

21 pages, 9758 KB  
Article
Bionanocomposite Four-Channel Biosensor for Rapid and Convenient Monitoring of Glucose, Lactate, Ethanol and Starch
by Anna Kharkova, Lyubov Kuznetsova, Roman Perchikov, Maria Gertsen, Pavel Melnikov, Nikolay Zaitsev, Jun Zhang and Vyacheslav Arlyapov
Gels 2025, 11(5), 355; https://doi.org/10.3390/gels11050355 - 12 May 2025
Viewed by 941
Abstract
A biosensor for the determination of glucose, lactate, ethanol and starch in beverages has been developed using enzymes immobilized by a redox-active gel on a screen-printed electrode. A significant improvement proposed for multichannel biosensors, overcoming stability and sensitivity issues by covalently binding phenazine [...] Read more.
A biosensor for the determination of glucose, lactate, ethanol and starch in beverages has been developed using enzymes immobilized by a redox-active gel on a screen-printed electrode. A significant improvement proposed for multichannel biosensors, overcoming stability and sensitivity issues by covalently binding phenazine mediators to a biocompatible protein hydrogel, enhancing the packaging of the enzyme. Glucose oxidase (GOx), alcohol oxidase (AOx) and lactate oxidase (LOx) were used as biological materials, as well as a mixture of GOx with γ-amylase (Am). Redox gels were synthesized from bovine serum albumin (BSA) and phenazine derivatives. It was shown that a neutral red-based redox gel combined with single-walled carbon nanotubes is more promising than other substrates for enzyme immobilization. The lower limit of quantification for glucose, ethanol, lactate and starch using these systems is 0.035 mM, 2.3 mM, 15 mM and 2 mg/L, respectively. Biosensors were used to analyze the content of these substances in alcoholic, kvass and fermentation mass. Statistical analysis of the results showed that the values of glucose, ethanol, lactic acid and starch determined using biosensors and obtained by reference methods differ insignificantly. A set of biosensors developed on the basis of specifically selected enzymes is effective for controlling biotechnological processes and can be used as an alternative to classical analytical methods. Full article
(This article belongs to the Special Issue Recent Progress of Hydrogel Sensors and Biosensors)
Show Figures

Figure 1

15 pages, 2947 KB  
Article
Biofuel Cells Based on Oxidoreductases and Electroactive Nanomaterials: Development and Characterization
by Olha Demkiv, Nataliya Stasyuk, Galina Gayda, Oksana Zakalska, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(4), 249; https://doi.org/10.3390/bios15040249 - 14 Apr 2025
Viewed by 899
Abstract
Amperometric biosensors (ABSs) and enzymatic biofuel cells (BFCs) share several fundamental principles in their functionality, despite serving different primary purposes. Both devices rely on biorecognition, redox reactions, electron transfer (ET), and advanced electrode materials, including innovative nanomaterials (NMs). ABSs and BFCs, utilizing microbial [...] Read more.
Amperometric biosensors (ABSs) and enzymatic biofuel cells (BFCs) share several fundamental principles in their functionality, despite serving different primary purposes. Both devices rely on biorecognition, redox reactions, electron transfer (ET), and advanced electrode materials, including innovative nanomaterials (NMs). ABSs and BFCs, utilizing microbial oxidoreductases in combination with electroactive NMs, are both efficient and cost-effective. In the current study, several laboratory prototypes of BFCs have been developed with bioanodes based on yeast flavocytochrome b2 (Fcb2) and alcohol oxidase (AO), and a cathode based on fungal laccase. For the first time, BFCs have been developed featuring anodes based on Fcb2 co-immobilized with redox NMs on a glassy carbon electrode (GCE), and cathode-utilizing laccase combined with gold–cerium–platinum nanoparticles (nAuCePt). The most effective lactate BFC, which contains gold–hexacyanoferrate (AuHCF), exhibited a specific power density of 1.8 µW/cm2. A series of BFCs were developed with an AO-containing anode and a laccase/nAuCePt/GCE cathode. The optimal configuration featured a bioanode architecture of AO/nCoPtCu/GCE, achieving a specific power density of 3.2 µW/cm2. The constructed BFCs were tested using lactate-containing food product samples as fuels. Full article
(This article belongs to the Special Issue Advances in Biosensing and Bioanalysis Based on Nanozymes)
Show Figures

Figure 1

46 pages, 10314 KB  
Review
Recent Advances in Enzymatic Biofuel Cells to Power Up Wearable and Implantable Biosensors
by Zina Fredj, Guoguang Rong and Mohamad Sawan
Biosensors 2025, 15(4), 218; https://doi.org/10.3390/bios15040218 - 28 Mar 2025
Cited by 5 | Viewed by 3604
Abstract
Enzymatic biofuel cells (EBFCs) have emerged as a transformative solution in the quest for sustainable energy, offering a biocatalyst-driven alternative for powering wearable and implantable self-powered biosensors. These systems harness renewable enzyme activity under mild conditions, positioning them as ideal candidates for next-generation [...] Read more.
Enzymatic biofuel cells (EBFCs) have emerged as a transformative solution in the quest for sustainable energy, offering a biocatalyst-driven alternative for powering wearable and implantable self-powered biosensors. These systems harness renewable enzyme activity under mild conditions, positioning them as ideal candidates for next-generation biosensing applications. Despite their promise, their practical deployment is limited by challenges such as low power density, restricted operational lifespan, and miniaturization complexities. This review provides an in-depth exploration of the evolving landscape of EBFC technology, beginning with fundamental principles and the latest developments in electron transfer mechanisms. A critical assessment of enzyme immobilization techniques, including physical adsorption, covalent binding, entrapment, and cross-linking, underscores the importance of optimizing enzyme stability and catalytic activity for enhanced bioelectrode performance. Additionally, we examine advanced bioelectrode materials, focusing on the role of nanostructures such as carbon-based nanomaterials, noble metals, conducting polymers, and metal–organic frameworks in improving electron transfer and boosting biosensor efficiency. Also, this review includes case studies of EBFCs in wearable self-powered biosensors, with particular attention to the real-time monitoring of neurotransmitters, glucose, lactate, and ethanol through sweat analysis, as well as their integration into implantable devices for continuous healthcare monitoring. Moreover, a dedicated discussion on challenges and trends highlights key limitations, including durability, power management, and scalability, while presenting innovative approaches to address these barriers. By addressing both technical and biological constraints, EBFCs hold the potential to revolutionize biomedical diagnostics and environmental monitoring, paving the way for highly efficient, autonomous biosensing platforms. Full article
Show Figures

Graphical abstract

16 pages, 9618 KB  
Article
Copper Hexacyanoferrates Obtained via Flavocytochrome b2 Assistance: Characterization and Application
by Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Halyna Klepach, Roman Serkiz, Faina Nakonechny, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(3), 157; https://doi.org/10.3390/bios15030157 - 2 Mar 2025
Cited by 1 | Viewed by 1048
Abstract
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in [...] Read more.
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in NZs is likely to continue as their potential applications expand. In our previous studies, we reported the “green” synthesis of copper hexacyanoferrate (gCuHCF) using the oxidoreductase flavocytochrome b2 (Fcb2). Organic–inorganic micro-nanoparticles were characterized in detail, including their structure, composition, catalytic activity, and electron-mediator properties. An SEM analysis revealed that gCuHCF possesses a flower-like structure well-suited for concentrating and stabilizing Fcb2. As an effective peroxidase (PO) mimic, gCuHCF has been successfully employed for H2O2 detection in amperometric sensors and in several oxidase-based biosensors. In the current study, we demonstrated the uniqueness of gCuHCF that lies in its multifunctionality, serving as a PO mimic, a chemosensor for ammonium ions, a biosensor for L-lactate, and exhibiting perovskite-like properties. This exceptional ability of gCuHCF to enhance fluorescence under blue light irradiation is being reported for the first time. Using gCuHCF as a PO-like NZ, novel oxidase-based sensors were developed, including an optical biosensor for L-arginine analysis and electrochemical biosensors for methanol and glycerol determination. Thus, gCuHCF, synthesized via Fcb2, presents a promising platform for the development of amperometric and optical biosensors, bioreactors, biofuel cells, solar cells, and other advanced devices. The innovative approach of utilizing biocatalysts for nanoparticle synthesis highlights a groundbreaking direction in materials science and biotechnology. Full article
Show Figures

Figure 1

25 pages, 4301 KB  
Review
A Comprehensive Review of Advanced Lactate Biosensor Materials, Methods, and Applications in Modern Healthcare
by Yifeng Ding, Liuhong Yang, Jing Wen, Yuhang Ma, Ge Dai, Fengfeng Mo and Jiafeng Wang
Sensors 2025, 25(4), 1045; https://doi.org/10.3390/s25041045 - 10 Feb 2025
Cited by 13 | Viewed by 6221
Abstract
Lactate is a key metabolite in cellular respiration, and elevated levels usually indicate tissue hypoxia or metabolic dysregulation. The real-time detection of lactate levels is particularly important in situations such as exercise, shock, severe trauma, and tissue injury. Conventional lactate assays are insufficient [...] Read more.
Lactate is a key metabolite in cellular respiration, and elevated levels usually indicate tissue hypoxia or metabolic dysregulation. The real-time detection of lactate levels is particularly important in situations such as exercise, shock, severe trauma, and tissue injury. Conventional lactate assays are insufficient to address today’s complex and variable testing environments, and thus, there is an urgent need for highly sensitive biosensors. This review article provides an overview of the concept and composition of electrochemical lactate biosensors, as well as their recent advances. Comparisons of popular studies on enzymatic and non-enzymatic lactate sensors, the surface-related materials used for modifications to electrochemical lactate biosensors, and the detection methods commonly used for sensors are discussed separately. In addition, advances in implantable and non-implantable miniaturized lactate sensors are discussed, emphasizing their application for continuous real-time monitoring. Despite their potential, challenges such as non-specific binding, biomaterial interference, and biorecognition element stability issues remain during practical applications. Future research should aim to improve sensor design, biocompatibility, and integration with advanced signal processing techniques. With continued innovation, lactate sensors are expected to revolutionize personalized medicine, helping clinicians to increase treatment efficiency and improve the experience of their use. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 3310 KB  
Article
Fully Inkjet-Printed Flexible Graphene–Prussian Blue Platform for Electrochemical Biosensing
by Željka Boček, Marko Zubak and Petar Kassal
Biosensors 2025, 15(1), 28; https://doi.org/10.3390/bios15010028 - 8 Jan 2025
Cited by 4 | Viewed by 2075
Abstract
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work [...] Read more.
Prussian Blue (PB) is commonly incorporated into screen-printed enzymatic devices since it enables the determination of the enzymatically produced hydrogen peroxide at low potentials. Inkjet printing is gaining popularity in the development of electrochemical sensors as a substitute for screen printing. This work presents a fully inkjet-printed graphene–Prussian Blue platform, which can be paired with oxidase enzymes to prepare a biosensor of choice. The graphene electrode was inkjet-printed on a flexible polyimide substrate and then thermally and photonically treated with intense pulsed light, followed by inkjet printing of a PB nanoparticle suspension. The optimization of post-printing treatment and electrode deposition conditions was performed to yield a platform with minimal sheet resistance and peak potential differences. A thorough study of PB deposition was conducted: the fully inkjet-printed system was compared against sensors with PB deposited chemically or by drop casting the PB suspension on different kinds of carbon electrodes (glassy carbon, commercial screen-printed, and in-house inkjet-printed electrodes). For hydrogen peroxide detection, the fully inkjet-printed platform exhibits excellent sensitivity, a wider linear range, better linearity, and greater stability towards higher concentrations of peroxide than the other tested electrodes. Finally, lactate oxidase was immobilized in a chitosan matrix, and the prepared biosensor exhibited analytical performance comparable to other lactate sensors found in the literature in a wide, physiologically relevant linear range for measuring lactate concentration in sweat. The development of mediator-modified electrodes with a single fabrication technology, as demonstrated here, paves the way for the scalable production of low-cost, wearable, and flexible biosensors. Full article
(This article belongs to the Special Issue Flexible Electronics for Biosensing)
Show Figures

Figure 1

14 pages, 4065 KB  
Review
Recent Status on Lactate Monitoring in Sweat Using Biosensors: Can This Approach Be an Alternative to Blood Detection?
by Leonardo Messina and Maria Teresa Giardi
Biosensors 2025, 15(1), 3; https://doi.org/10.3390/bios15010003 - 24 Dec 2024
Cited by 5 | Viewed by 3272
Abstract
Recent studies have shown that lactate is a molecule that plays an indispensable role in various physiological cellular processes, such as energy metabolism and signal transductions related to immune and inflammatory processes. For these reasons, interest in its detection using biosensors for non-invasive [...] Read more.
Recent studies have shown that lactate is a molecule that plays an indispensable role in various physiological cellular processes, such as energy metabolism and signal transductions related to immune and inflammatory processes. For these reasons, interest in its detection using biosensors for non-invasive analyses of sweat during sports activity and in clinical reasons assessments has increased. In this minireview, an in-depth study was carried out on biosensors that exploited using electrochemical methods and innovative nanomaterials for lactate detection in sweat. This detection of lactate by biosensors in the sweat method seems to be feasible and highly desirable. From this commentary analysis, we can conclude that the correlation between lactate concentrations in sweat and blood is not yet clear, and studies are needed to clarify some key issues essential for the future application of this technology. Full article
(This article belongs to the Special Issue Biosensors for Monitoring and Diagnostics)
Show Figures

Figure 1

16 pages, 3822 KB  
Article
Detecting Hypoxia Through the Non-Invasive and Simultaneous Monitoring of Sweat Lactate and Tissue Oxygenation
by Cindy Cheng, Sayan Ganguly, Pei Li and Xiaowu Tang
Biosensors 2024, 14(12), 584; https://doi.org/10.3390/bios14120584 - 30 Nov 2024
Cited by 5 | Viewed by 2177
Abstract
Hypoxia, characterized by inadequate tissue oxygenation, may result in tissue damage and organ failure if not addressed. Current detection approaches frequently prove insufficient, depending on symptoms and rudimentary metrics such as tissue oxygenation, which fail to comprehensively identify the onset of hypoxia. The [...] Read more.
Hypoxia, characterized by inadequate tissue oxygenation, may result in tissue damage and organ failure if not addressed. Current detection approaches frequently prove insufficient, depending on symptoms and rudimentary metrics such as tissue oxygenation, which fail to comprehensively identify the onset of hypoxia. The European Pressure Ulcer Advisory Panel (EPUAP) has recognized sweat lactate as a possible marker for the early identification of decubitus ulcers, nevertheless, neither sweat lactate nor oxygenation independently provides an appropriate diagnosis of hypoxia. We have fabricated a wearable device that non-invasively and concurrently monitors sweat lactate and tissue oxygenation to fill this gap. The apparatus comprises three essential components: (i) a hydrogel-based colorimetric lactate biosensor, (ii) a near-infrared (NIR) sensor for assessing tissue oxygenation, and (iii) an integrated form factor for enhanced wearability. The lactate sensor alters its hue upon interaction with lactate in sweat, whereas the NIR sensor monitors tissue oxygenation levels in real-time. The device underwent testing on phantom exhibiting tissue-mimicking characteristics and on human sweat post aerobic and anaerobic activities. Moreover, the device was demonstrated to be capable of real-time “on-body” simultaneous monitoring of sweat lactate spikes and tissue oxygenation (StO2) drops, which showed strong correlation during a hypoxia protocol. This innovative technology has a wide range of potential applications, such as post-operative care, sepsis detection, and athletic performance monitoring, and may provide economical healthcare solutions in resource-limited regions. Full article
(This article belongs to the Special Issue Biosensors for Monitoring and Diagnostics)
Show Figures

Figure 1

28 pages, 2967 KB  
Review
Advanced Wearable Devices for Monitoring Sweat Biochemical Markers in Athletic Performance: A Comprehensive Review
by Graziana Assalve, Paola Lunetti, Alessandra Di Cagno, Ernesto William De Luca, Stefano Aldegheri, Vincenzo Zara and Alessandra Ferramosca
Biosensors 2024, 14(12), 574; https://doi.org/10.3390/bios14120574 - 26 Nov 2024
Cited by 23 | Viewed by 9206
Abstract
Wearable technology has advanced significantly, offering real-time monitoring of athletes’ physiological parameters and optimizing training and recovery strategies. Recent developments focus on biosensor devices capable of monitoring biochemical parameters in addition to physiological ones. These devices employ noninvasive methods such as sweat analysis, [...] Read more.
Wearable technology has advanced significantly, offering real-time monitoring of athletes’ physiological parameters and optimizing training and recovery strategies. Recent developments focus on biosensor devices capable of monitoring biochemical parameters in addition to physiological ones. These devices employ noninvasive methods such as sweat analysis, which reveals critical biomarkers like glucose, lactate, electrolytes, pH, and cortisol. These biomarkers provide valuable insights into an athlete’s energy use, hydration status, muscle function, and stress levels. Current technologies utilize both electrochemical and colorimetric methods for sweat analysis, with electrochemical methods providing higher precision despite potential signal interference. Wearable devices such as epidermal patches, temporary tattoos, and fabric-based sensors are preferred for their flexibility and unobtrusive nature compared to more rigid conventional wearables. Such devices leverage advanced materials and transmit real-time data to computers, tablets, or smartphones. These data would aid coaches and sports medical personnel in monitoring athletes’ health, optimizing diets, and developing training plans to enhance performance and reduce injuries. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

19 pages, 3996 KB  
Article
Peroxidase-like Nanoparticles of Noble Metals Stimulate Increasing Sensitivity of Flavocytochrome b2-Based L-Lactate Biosensors
by Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Yuriy Boretsky, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2024, 14(11), 562; https://doi.org/10.3390/bios14110562 - 20 Nov 2024
Cited by 2 | Viewed by 1269
Abstract
We report the development of amperometric biosensors (ABSs) employing flavocytochrome b2 (Fcb2) coupled with nanoparticles (NPs) of noble metals on graphite electrode (GE) surfaces. Each NPs/GE configuration was evaluated for its ability to decompose hydrogen peroxide (H2O [...] Read more.
We report the development of amperometric biosensors (ABSs) employing flavocytochrome b2 (Fcb2) coupled with nanoparticles (NPs) of noble metals on graphite electrode (GE) surfaces. Each NPs/GE configuration was evaluated for its ability to decompose hydrogen peroxide (H2O2), mimicking peroxidase (PO) activity. The most effective nanoPO (nPO) was selected for developing ABSs targeting L-lactate. Consequently, several Fcb2/nPO-based ABSs with enhanced sensitivity to L-lactate were developed, demonstrating mediated ET between Fcb2 and the GE surface. The positive effect of noble metal NPs on Fcb2-based sensor sensitivity may be explained by the synergy between their dual roles as both PO mimetics and electron transfer mediators. Furthermore, our findings provide preliminary data that may prompt a re-evaluation of the mechanism of L-lactate oxidation in Fcb2-mediated catalysis. Previously, it was believed that L-lactate oxidation via Fcb2 catalysis did not produce H2O2, unlike catalysis via L-lactate oxidase. Our initial research revealed that the inclusion of nPO in Fcb2-based ABSs significantly increased their sensitivity. Employing other PO mimetics in ABSs for L-lactate yielded similar results, reinforcing our hypothesis that trace amounts of H2O2 may be generated as a transient intermediate in this reaction. The presence of nPO enhances the L-lactate oxidation rate through H2O2 utilization, leading to signal amplification and heightened bioelectrode sensitivity. The proposed ABSs have been successfully tested on blood serum and fermented food samples, showing their promise for L-lactate monitoring in medicine and the food industry. Full article
(This article belongs to the Special Issue Microelectrode Array for Biomedical Applications)
Show Figures

Figure 1

15 pages, 2501 KB  
Article
LIG-Based High-Sensitivity Multiplexed Sensing System for Simultaneous Monitoring of Metabolites and Electrolytes
by Sang Hyun Park and James Jungho Pak
Sensors 2024, 24(21), 6945; https://doi.org/10.3390/s24216945 - 29 Oct 2024
Cited by 4 | Viewed by 1834
Abstract
With improvements in medical environments and the widespread use of smartphones, interest in wearable biosensors for continuous body monitoring is growing. We developed a wearable multiplexed bio-sensing system that non-invasively monitors body fluids and integrates with a smartphone application. The system includes sensors, [...] Read more.
With improvements in medical environments and the widespread use of smartphones, interest in wearable biosensors for continuous body monitoring is growing. We developed a wearable multiplexed bio-sensing system that non-invasively monitors body fluids and integrates with a smartphone application. The system includes sensors, readout circuits, and a microcontroller unit (MCU) for signal processing and wireless communication. Potentiometric and amperometric measurement methods were used, with calibration capabilities added to ensure accurate readings of analyte concentrations and temperature. Laser-induced graphene (LIG)-based sensors for glucose, lactate, Na+, K+, and temperature were developed for fast, cost-effective production. The LIG electrode’s 3D porous structure provided an active surface area 16 times larger than its apparent area, resulting in enhanced sensor performance. The glucose and lactate sensors exhibited high sensitivity (168.15 and 872.08 μAmM−1cm−2, respectively) and low detection limits (0.191 and 0.167 μM, respectively). The Na+ and K+ sensors demonstrated sensitivities of 65.26 and 62.19 mVdec−1, respectively, in a concentration range of 0.01–100 mM. Temperature sensors showed an average rate of resistance change per °C of 0.25%/°C, within a temperature range of 20–40 °C, providing accurate body temperature monitoring. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

25 pages, 14822 KB  
Review
Tear-Based Ocular Wearable Biosensors for Human Health Monitoring
by Arunima Rajan, Jithin Vishnu and Balakrishnan Shankar
Biosensors 2024, 14(10), 483; https://doi.org/10.3390/bios14100483 - 8 Oct 2024
Cited by 13 | Viewed by 9475
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive [...] Read more.
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices. Full article
(This article belongs to the Special Issue Recent Advances in Wearable Biosensors for Human Health Monitoring)
Show Figures

Figure 1

Back to TopTop