Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,196)

Search Parameters:
Keywords = land development plan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 18237 KB  
Article
Monitoring of Farmland Abandonment Based on Google Earth Engine and Interpretable Machine Learning
by Yameng Jiang, Yefeng Jiang, Xi Guo, Zichun Guo, Yingcong Ye, Ji Huang and Jia Liu
Agriculture 2025, 15(19), 2090; https://doi.org/10.3390/agriculture15192090 - 8 Oct 2025
Abstract
In recent years, China’s hilly and mountainous areas have faced widespread farmland abandonment. However, research on farmland abandonment and its driving mechanisms in hilly and mountainous regions is limited. This study proposes a transferable methodological framework that integrates Landsat data, Google Earth Engine, [...] Read more.
In recent years, China’s hilly and mountainous areas have faced widespread farmland abandonment. However, research on farmland abandonment and its driving mechanisms in hilly and mountainous regions is limited. This study proposes a transferable methodological framework that integrates Landsat data, Google Earth Engine, a time sliding-window algorithm, and the interpretable XGBoost–Shapley Additive explanation (SHAP) model. The time sliding-window algorithm is used to robustly detect long-term land cover changes across the entire study period. The SHAP quantifies the contributions of key drivers to farmland abandonment, providing transparent insights into the driving mechanisms. Applying this framework, we systematically analyzed the spatiotemporal evolution patterns and driving factors of farmland abandonment in Ji’an City, a typical city located in the hilly and mountainous areas of southern China and ultimately developed a farmland abandonment probability distribution map. The findings demonstrate the following. (1) Methodological validation showed that the random forest classifier achieved a mean overall accuracy (OA) of 91.05% (Kappa = 0.88) and the abandonment maps achieved OA of 91.58% (Kappa = 0.83). (2) Spatiotemporal analysis revealed that farmland area increased by 13.26% over 1990–2023, evolving through three stages: fluctuation (1990–2005), growth (2006–2015), and stability (2016–2023). The abandonment rate showed a long-term decreasing trend, peaking in 1998, whereas the abandoned area reached its minimum in 2007. From a spatial perspective, abandonment was more pronounced in mountainous and hilly regions of the study areas. (3) The XGBoost–SHAP model (R2 > 0.85) identified key driving factors, including the potential crop yield, soil properties, mean annual precipitation, population density, and terrain features. By offering an interpretable and transferable monitoring framework, this study not only advances farmland abandonment research in complex terrains but also provides concrete policy implications. The results can guide targeted protection of high-risk abandonment zones, promote sustainable land-use planning, and support adaptive agricultural policies in hilly and mountainous regions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Graphical abstract

22 pages, 4763 KB  
Article
Deep Water Ports as a Trigger for Ongoing Land Use Conflicts? The Case of Jade Weser Port in Germany
by Roni Susman and Thomas Weith
Land 2025, 14(10), 2009; https://doi.org/10.3390/land14102009 - 7 Oct 2025
Abstract
Coastal areas are under intense pressure worldwide because diverse stakeholders rely on coastal resources, and the supply of land is highly limited. Coast-dependent economic activities like transportation and logistics infrastructure in the Jade Bay, Germany, have experienced extensive demand for land. The situation [...] Read more.
Coastal areas are under intense pressure worldwide because diverse stakeholders rely on coastal resources, and the supply of land is highly limited. Coast-dependent economic activities like transportation and logistics infrastructure in the Jade Bay, Germany, have experienced extensive demand for land. The situation is more interesting because national parks encircle the seaport. Understanding the complex seaside–landside dynamics following the development of Jade Weser Port is crucial for promoting sustainability, as massive development exceeds existing spatial capacity. However, a comprehensive framework to assess land use conflicts when dealing with infrastructure development in sensitive coastal areas is often missing. We analyze the origin of land use developments and the planning process at different administrative levels by retracing land use changes from 1970 to 2015 using a time series of satellite images, analyzing planning documents, and examining realized activities. We look for an embedding of transport infrastructure development and its feedback on land use. As a consequence of land use conflicts, these land system dynamics create winners and losers across multidisciplinary aspects. Our findings reflect interdisciplinary aspects which discuss both societal changes and the constellation of inadequate planning approaches to address the complexity of coastal land use. The degree to which these activities cause land use conflicts depends on institutional settings, especially the consistency of ICZM and infrastructure planning. Full article
Show Figures

Figure 1

20 pages, 3252 KB  
Article
Multiscale Effects of Land Infrastructure Planning on Housing Prices in Bangkok, Thailand
by Shichao Lu, Zhihua Zhang, M. James C. Crabbe and Prin Suntichaikul
Land 2025, 14(10), 2004; https://doi.org/10.3390/land14102004 - 6 Oct 2025
Viewed by 21
Abstract
Bangkok is the largest city in Thailand and the second largest city in Southeast Asia. Due to the rapid urbanization and upgrading of economic structures, the real estate market in Bangkok is not only constrained by domestic factors but also fluctuates with international [...] Read more.
Bangkok is the largest city in Thailand and the second largest city in Southeast Asia. Due to the rapid urbanization and upgrading of economic structures, the real estate market in Bangkok is not only constrained by domestic factors but also fluctuates with international economic cycles. Bangkok’s long history, diverse culture, developed economy, and incomplete land infrastructure make the formation of housing prices particularly complex. In this study, we collected 13,175 residence transaction data from 2076 different neighborhoods in Bangkok and explored multiscale effects of various land infrastructure factors on housing prices in Bangkok at the neighborhood level. Our analysis not only supports land planning departments of Bangkok to make more reasonable facility planning but also provides new insights into driving mechanisms of housing prices in other cities of Thailand and ASEAN countries Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
21 pages, 4619 KB  
Article
Projections of Urban Land Under the Shared Socioeconomic Pathways—A Case Study of Yangtze River Delta Region
by Hailan Wu, Buda Su, Tong Jiang, Runhong Xu, Zhibo Dong and Jinlong Huang
Land 2025, 14(10), 1995; https://doi.org/10.3390/land14101995 - 4 Oct 2025
Viewed by 219
Abstract
Rapid socioeconomic development has continuously driven urban land expansion at the expense of other land types, leading to significant changes in land use and environment. However, existing studies still lack fine-resolution, long-term projections of urban land. Using seven periods of land use data [...] Read more.
Rapid socioeconomic development has continuously driven urban land expansion at the expense of other land types, leading to significant changes in land use and environment. However, existing studies still lack fine-resolution, long-term projections of urban land. Using seven periods of land use data from 1990 to 2020, this study projects urban land in the Yangtze River Delta (YRD) region under the framework of Shared Socioeconomic Pathways (SSPs). A multiple linear regression model and the land use change scenario simulation model (GeoSOS-FLUS) were employed to make projection at a high spatial resolution of 1 km. The findings are as follows: (1) From 1990 to 2020, the rate of urban land expansion in the study area showed a pattern of initial acceleration followed by deceleration, with the average annual expansion rate decreasing from 1.36 × 103 km2 to 0.24 × 103 km2. The center of gravity shifted toward the southeast. (2) Future urban land expansion is projected to increase by 14 × 103 km2 (SSP3) to 48 × 103 km2 (SSP5). The northern and central parts of the region will experience more significant growth, and the center of gravity is projected to shifting northwest. (3) Under SSP2 and SSP5, the urban land will increase continuously. The findings can offer a valuable insight for regional planning and sustainable development. Full article
Show Figures

Figure 1

18 pages, 7693 KB  
Article
Assessing Variations in River Networks Under Urbanization Across Metropolitan Plains Using a Multi-Metric Approach
by Zhixin Lin, Shuang Luo, Miao Lu, Shaoqing Dai and Youpeng Xu
Land 2025, 14(10), 1994; https://doi.org/10.3390/land14101994 - 4 Oct 2025
Viewed by 136
Abstract
Urbanization, characterized by rapid construction land expansion, has transformed natural landscapes and significantly altered river networks in emerging metropolitan areas. Understanding the historical and current conditions of river networks is crucial for policy-making in sustainable urban development planning. Based on the topographic maps [...] Read more.
Urbanization, characterized by rapid construction land expansion, has transformed natural landscapes and significantly altered river networks in emerging metropolitan areas. Understanding the historical and current conditions of river networks is crucial for policy-making in sustainable urban development planning. Based on the topographic maps and remote sensing images, this study employs a multi-metric framework to investigate river network variations in the Suzhou-Wuxi-Changzhou metropolitan area, a rapidly urbanized plain with high-density river networks in the Yangtze River Delta, China. The results indicate a significant decline in the quantity of rivers, with the average river density in built-up areas falling from 2.70 km·km−2 in the 1960s to 1.95 km·km−2 in the 2010s, along with notable variations in the river network’s structure, complexity and its storage and regulation capacity. Moreover, shifts in the structural characteristics of river networks reveal that urbanization has a weaker impact on main streams but plays a dominant role in altering tributaries. The analysis demonstrates the extensive burial and modification of rivers across the metropolitan plains. These findings underscore the essence of incorporating river network protection and restoration into sustainable urban planning, providing insights for water resource management and resilient city development in rapidly urbanizing regions. Full article
(This article belongs to the Section Urban Contexts and Urban-Rural Interactions)
21 pages, 15053 KB  
Article
Estimation and Prediction of Water Conservation Capacity Based on PLUS–InVEST Model: A Case Study of Baicheng City, China
by Rumeng Duan, Yanfeng Wu and Xiaoyu Li
Land 2025, 14(10), 1993; https://doi.org/10.3390/land14101993 - 4 Oct 2025
Viewed by 127
Abstract
As an important ecosystem service, water conservation is influenced by land use related to human activities. In this study, we first evaluated spatial and temporal changes in water conservation in Baicheng City, western Jilin Province, from 2000 to 2020. Then, we identified three [...] Read more.
As an important ecosystem service, water conservation is influenced by land use related to human activities. In this study, we first evaluated spatial and temporal changes in water conservation in Baicheng City, western Jilin Province, from 2000 to 2020. Then, we identified three different scenarios: the natural development scenario (NDS), cropland protection scenario (CPS), and ecological protection scenario (EPS). We coupled the Patch-generating Land Use Simulation (PLUS) and Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models to predict the distribution of land use types and water conservation in Baicheng City under these scenarios for 2030. The results showed the following: (1) The average water conservation in Baicheng City from 2000 to 2020 was 7.08 mm. (2) Areas with higher water conservation were distributed in the northwest and northeast, while lower water conservation areas were distributed in the central and southwest of Baicheng City. (3) The simulation results of the future pattern of land use show an increasing water conservation trend in all three scenarios. Compared with the other two scenarios, the ecological protection scenario is the most suitable option for the current development planning of Baicheng City. Under the ecological protection scenario (EPS), ecological land is strictly protected, the area of agricultural land increases to some extent, and the overall structure of changes in land use becomes more rational. This study provides a reference for land resource allocation and ecosystem conservation. Full article
53 pages, 7641 KB  
Article
The Italian Actuarial Climate Index: A National Implementation Within the Emerging European Framework
by Barbara Rogo, José Garrido and Stefano Demartis
Risks 2025, 13(10), 192; https://doi.org/10.3390/risks13100192 - 3 Oct 2025
Viewed by 115
Abstract
This paper presents the development of a high-resolution composite index to monitor and quantify climate-related risks across Italy. The country’s complex climatic variability, extensive coastline, and low insurance penetration highlight the urgent need for robust, locally calibrated tools to bridge the climate protection [...] Read more.
This paper presents the development of a high-resolution composite index to monitor and quantify climate-related risks across Italy. The country’s complex climatic variability, extensive coastline, and low insurance penetration highlight the urgent need for robust, locally calibrated tools to bridge the climate protection gap. Building on the methodological framework of existing actuarial climate indices, previously adapted for France and the Iberian Peninsula, the index integrates six standardised indicators capturing warm and cool temperature extremes, heavy precipitation intensity, dry spell duration, high wind frequency, and sea level change. It leverages hourly ERA5-Land reanalysis data and monthly sea level observations from tide gauges. Results show a clear upward trend in climate anomalies, with regional and seasonal differentiation. Among all components, sea level is most strongly correlated with the composite index, underscoring Italy’s vulnerability to marine-related risks. Comparative analysis with European indices confirms both the robustness and specificity of the Italian exposure profile, reinforcing the need for tailored risk metrics. The index can support innovative risk transfer mechanisms, including climate-related insurance, regulatory stress testing, and resilience planning. Combining scientific rigour with operational relevance, it offers a consistent, transparent, and policy-relevant tool for managing climate risk in Italy and contributing to harmonised European frameworks. Full article
(This article belongs to the Special Issue Climate Change and Financial Risks)
30 pages, 13414 KB  
Article
An Integrated Framework for Assessing Dynamics of Ecological Spatial Network Resilience Under Climate Change Scenarios: A Case Study of the Yunnan Central Urban Agglomeration
by Bingui Qin, Junsan Zhao, Guoping Chen, Rongyao Wang and Yilin Lin
Land 2025, 14(10), 1988; https://doi.org/10.3390/land14101988 - 2 Oct 2025
Viewed by 301
Abstract
Rapid climate change has exacerbated global ecosystem degradation, leading to habitat fragmentation and landscape connectivity loss. Constructing ecological networks (EN) with resilient conduction functions and conservation priorities is crucial for maintaining regional ecological security and promoting sustainable development. However, the spatiotemporal modeling and [...] Read more.
Rapid climate change has exacerbated global ecosystem degradation, leading to habitat fragmentation and landscape connectivity loss. Constructing ecological networks (EN) with resilient conduction functions and conservation priorities is crucial for maintaining regional ecological security and promoting sustainable development. However, the spatiotemporal modeling and dynamic resilience assessment of EN under the combined impacts of future climate and land use/land cover (LULC) changes remain underexplored. This study focuses on the Central Yunnan Urban Agglomeration (CYUA), China, and integrates landscape ecology with complex network theory to develop a dynamic resilience assessment framework that incorporates multi-scenario LULC projections, multi-temporal EN construction, and node-link disturbance simulations. Under the Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP-RCP) scenarios, we quantified spatiotemporal variations in EN resilience and identified resilience-based conservation priority areas. The results show that: (1) Future EN patterns exhibit a westward clustering trend, with expanding habitat areas and enhanced connectivity. (2) From 2000 to 2040, EN resilience remains generally stable, but diverges significantly across scenarios—showing steady increases under SSP1-2.6 and SSP5-8.5, while slightly declining under SSP2-4.5. (3) Approximately 20% of nodes and 40% of links are identified as critical components for maintaining structural-functional resilience, and are projected to form conservation priority patterns characterized by larger habitat areas and more compact connectivity under future scenarios. The multi-scenario analysis provides differentiated strategies for EN planning and ecological conservation. This framework offers adaptive and resilient solutions for regional ecosystem management under climate change. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

21 pages, 2229 KB  
Article
Carbon Storage and Land Use Dynamics in Ghanaian University Campuses: A Scenario-Based Assessment Using the InVEST Model
by Daniel Mawuko Ocloo and Takeshi Mizunoya
Land 2025, 14(10), 1987; https://doi.org/10.3390/land14101987 - 2 Oct 2025
Viewed by 280
Abstract
University campuses in rapidly urbanizing regions face increasing pressure to balance infrastructure development with environmental sustainability, yet their carbon storage potential remains largely unexplored in sub-Saharan Africa. This study assessed land use changes, carbon storage dynamics, and economic valuation across three Ghanaian universities, [...] Read more.
University campuses in rapidly urbanizing regions face increasing pressure to balance infrastructure development with environmental sustainability, yet their carbon storage potential remains largely unexplored in sub-Saharan Africa. This study assessed land use changes, carbon storage dynamics, and economic valuation across three Ghanaian universities, University of Ghana (UG), Kwame Nkrumah University of Science and Technology (KNUST), and University of Cape Coast (UCC), from 2017 to 2023, and evaluated five future scenarios using the InVEST carbon model. Land use analysis employed ESRI 10 m annual land cover data, while carbon storage was estimated using regionally appropriate carbon pool values, and economic valuation applied Ghana’s social cost of carbon ($0.970/tCO2). Historical analysis revealed substantial carbon losses: UG declined by 17.1% (19,695 Mg C), KNUST by 29.5% (20,063 Mg C), and UCC by 7.9% (3292 Mg C), due to tree cover conversion to built areas. Scenario modeling demonstrated that infrastructure-focused development would cause additional losses of 4211–6891 Mg C, while extensive tree expansion could increase storage by 1686–5227 Mg C. Economic analysis showed tree expansion generating positive net present values ($1612–$5070), while infrastructure development imposed costs (−$4028 to −$6684). These findings provide quantitative evidence for sustainable campus planning prioritizing carbon conservation in tropical institutional landscapes. Full article
Show Figures

Figure 1

16 pages, 1288 KB  
Article
Urban Geometry and Social Topology: A Computational Simulation of Urban Network Formation
by Daniel Lenz Costa Lima, Daniel Ribeiro Cardoso and Andrés M. Passaro
Buildings 2025, 15(19), 3555; https://doi.org/10.3390/buildings15193555 - 2 Oct 2025
Viewed by 195
Abstract
When a city decides to undertake a certain urban project, is it modifying just the physical environment or the social fabric that dwells within? This work investigates the relationship between the geometric configuration of urban space (geometry–city) and the topology of the networks [...] Read more.
When a city decides to undertake a certain urban project, is it modifying just the physical environment or the social fabric that dwells within? This work investigates the relationship between the geometric configuration of urban space (geometry–city) and the topology of the networks of encounters of its inhabitants (network–city) that form through daily interactions. The research departs from the hypothesis that changes in geometry–city would not significantly alter the topology of the network–city, testing this proposition conceptually through abstract computational simulations developed specifically for this study. In this simulator, abstract maps with buildings distributed over different primary geometries are generated and have activities (use: home or work) and a population assigned. Encounters of the “inhabitants” are registered while daily commute routines, enough to achieve differentiation and stability, are run. The initial results revealed that the geometry description was not enough, and definitions regarding activity attribution were also necessary. Thus, we could not confirm nor reject the original hypothesis exactly, but it had to be complemented, including the idea of an activity–city dimension. We found that despite the geometry–city per se not determining the structure of the network–city, the spatial (geometric) distribution of activities directly impacts the resulting topology. Urban geometry influences networks–city only insofar as it conforms to activity–city, defining areas for activities or restricting routing between them. But it is the geometry of localization of the activities that has a direct impact on the topology of the network–city. This conceptual discovery can have significant implications for urban planning if corroborated in real-world situations. It could suggest that land use policies may be more effective for intervening in network-based characteristics, like social cohesion and resilience, than purely morphological interventions. Full article
(This article belongs to the Special Issue Emerging Trends in Architecture, Urbanization, and Design)
Show Figures

Figure 1

19 pages, 2848 KB  
Article
Monitoring of Cropland Abandonment Integrating Machine Learning and Google Earth Engine—Taking Hengyang City as an Example
by Yefeng Jiang and Zichun Guo
Land 2025, 14(10), 1984; https://doi.org/10.3390/land14101984 - 2 Oct 2025
Viewed by 219
Abstract
Cropland abandonment, a global challenge, necessitates comprehensive monitoring to achieve the zero hunger goal. Prior monitoring approaches to cropland abandonment often face constraints in resolution, time series, drivers, prediction, or a combination of these. Here, we proposed an artificial intelligence framework to comprehensively [...] Read more.
Cropland abandonment, a global challenge, necessitates comprehensive monitoring to achieve the zero hunger goal. Prior monitoring approaches to cropland abandonment often face constraints in resolution, time series, drivers, prediction, or a combination of these. Here, we proposed an artificial intelligence framework to comprehensively monitor cropland abandonment and tested the framework in Hengyang City, China. Specifically, we first mapped land cover at 30 m resolution from 1985 to 2023 using Landsat, stable sample points, and a machine learning model. Subsequently, we constructed the extent, time, and frequency of cropland abandonment from 1986 to 2022 by analyzing pixel-level land-use trajectories. Finally, we quantified the drivers of cropland abandonment using machine learning models and predicted the spatial distribution of cropland abandonment risk from 2032 to 2062. Our results indicated that the abandonment maps achieved overall accuracies of 0.88 and 0.78 for identifying abandonment locations and timing, respectively. From 1986 to 2022, the proportion of cropland abandonment ranged between 0.15% and 4.06%, with an annual average abandonment rate of 1.32%. Additionally, the duration of abandonment varied from 2 to 38 years, averaging approximately 14 years, indicating widespread cropland abandonment in the study area. Furthermore, 62.99% of the abandoned cropland experienced abandonment once, 27.17% experienced it twice, and only 0.23% experienced it five times or more. Over 50% of cropland abandonment remained unreclaimed or reused. During the study period, tree cover, soil pH, soil total phosphorus, potential crop yield, and the multiresolution index of valley bottom flatness emerged as the five most important environmental covariates, with relative importances of 0.087, 0.074, 0.068, 0.050, and 0.043, respectively. Temporally, cropland abandonment in 1992 was influenced by transportation inaccessibility and low agricultural productivity, soil quality degradation became an additional factor by 2010, and synergistic effects of all three drivers were observed from 2012 to 2022. Notably, most cropland had a low abandonment risk (mean: 0.36), with only 0.37% exceeding 0.7, primarily distributed in transitional zones between cropland and non-cropland. Future risk predictions suggested a gradual decline in both risk values and the spatial extent of cropland abandonment from 2032 to 2062. In summary, we developed a comprehensive framework for monitoring cropland abandonment using artificial intelligence technology, which can be used in national or regional land-use policies, warning systems, and food security planning. Full article
Show Figures

Figure 1

25 pages, 3762 KB  
Article
Cultural Ecosystem Services in Rural Areas: Assessing Demand and Supply for Ecologically Functional Areas (EFA)
by Malwina Michalik-Śnieżek, Halina Lipińska, Ilona Woźniak-Kostecka, Agnieszka Komor, Agnieszka Kępkowicz, Kamila Adamczyk-Mucha, Ewelina Krukow and Agnieszka Duniewicz
Sustainability 2025, 17(19), 8822; https://doi.org/10.3390/su17198822 - 1 Oct 2025
Viewed by 328
Abstract
Cultural ecosystem services (CES) play a key role in the sustainable development of rural areas—yet they remain poorly quantified in planning practice. This study examines the relationship between the supply and demand of CES provided by various types of Ecological Focus Areas (EFAs) [...] Read more.
Cultural ecosystem services (CES) play a key role in the sustainable development of rural areas—yet they remain poorly quantified in planning practice. This study examines the relationship between the supply and demand of CES provided by various types of Ecological Focus Areas (EFAs) in a rural landscape, using the municipality of Sosnowica (eastern Poland) as a case study. Landscapes such as forests, agricultural land, wetlands, and inland waters were evaluated using a set of biophysical and socio-economic indicators that reflect both their potential (supply) and actual use (demand) in terms of services such as recreation, landscape aesthetics, and cultural heritage. The findings reveal significant spatial disparities between CES supply and demand: forests and inland waters exhibit the highest supply potential, while agricultural land shows untapped opportunities in tourism and recreation. Wetlands, in particular, face notable service deficits—highlighting the need for targeted infrastructure and management interventions. Statistical analyses (Pearson correlation, Kruskal–Wallis test, Tukey HSD test) confirmed that the key factors shaping CES are accessibility and environmental attractiveness. The results indicate that CES mapping is a valuable tool for supporting sustainable rural planning, reinforcing local identity, counteracting depopulation, and stimulating socio-economic development. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

25 pages, 957 KB  
Article
The Role of Traditional Fire Management Practices in Mitigating Wildfire Risk: A Case Study of Greece
by Dimitrios Kalfas, Stavros Kalogiannidis, Konstantinos Spinthiropoulos, Fotios Chatzitheodoridis and Maria Georgitsi
Fire 2025, 8(10), 389; https://doi.org/10.3390/fire8100389 - 1 Oct 2025
Viewed by 399
Abstract
The purpose of this study was to examine the role of traditional fire management practices in the general mitigation of wildfire risk in Greece. Major emphasis was placed on assessing people’s opinions about the perceived effectiveness of traditional fire management strategies that were [...] Read more.
The purpose of this study was to examine the role of traditional fire management practices in the general mitigation of wildfire risk in Greece. Major emphasis was placed on assessing people’s opinions about the perceived effectiveness of traditional fire management strategies that were historically and culturally employed by local communities—such as weather condition monitoring, prescribed burning, proper land use planning, and mosaic burning—in the general mitigation of wildfire risks. An online questionnaire was used to collect data from 397 environmental experts in Greece. The study shows that traditional fire control methods reduce wildfire risk. First, weather monitoring was found to be crucial to wildfire forecasting and prevention. The results showed that early warning, successful firefighting, and fire prevention depend on meteorological data. Additionally, prescribed burning was revealed to have reduced wildfire risk. Respondents accepted that they could reduce unprescribed fires, protect natural ecosystems, remove wildfire-prone areas, and regulate flame intensity. This suggests that scheduled burning in Greece may reduce wildfire damage. The study underlines the importance of including conventional fire management in the wildfire mitigation strategy of Greece. The aforementioned activities may help the environment and civilization progress by safeguarding ecosystems and reducing wildfire damage. These techniques, combined with community engagement and improved early warning systems, may help manage climate change-induced wildfires. Overall, the study contributes to wildfire management in Greece and other Mediterranean countries. The study emphasizes the need to incorporate traditional fire practices into Greece’s wildfire risk reduction strategies. Taking into account the success rates of these practices in other areas, as well as Greece’s old tradition of conducting fire, this paper stresses that further studies and policy developments be made in order to reinstate these practices in today’s wildfire management. Full article
(This article belongs to the Section Fire Social Science)
Show Figures

Figure 1

21 pages, 3768 KB  
Article
Gated Urbanism in the Middle East: Expert Insights from Jordanian Case Studies
by Ahmed Hammad, Mengbi Li and Zora Vrcelj
Urban Sci. 2025, 9(10), 399; https://doi.org/10.3390/urbansci9100399 - 1 Oct 2025
Viewed by 209
Abstract
Across the Middle East, gated communities have become a defining feature of contemporary urban development, raising urgent questions about spatial inequality, public access, and social cohesion. This study examines the socio-spatial impacts of these developments by combining qualitative perceptions from regional expert interviews [...] Read more.
Across the Middle East, gated communities have become a defining feature of contemporary urban development, raising urgent questions about spatial inequality, public access, and social cohesion. This study examines the socio-spatial impacts of these developments by combining qualitative perceptions from regional expert interviews with in-depth analysis of two case studies in Jordan: Al Andalucía and Green Land. Drawing on semi-structured interviews with urban planners, architects, and policy experts from Egypt, Jordan, Saudi Arabia, and the United Arab Emirates, the study employs thematic analysis to investigate expert perspectives on gated communities as a regional planning phenomenon. Findings reveal four dominant themes: (1) gated communities intensify spatial fragmentation and disconnection from surrounding urban fabric; (2) private sector dominance leads to unregulated, market-driven development that weakens strategic urban planning; (3) the erosion of inclusive public space and social cohesion is widely perceived as a social cost; and (4) gated living is framed as an aspirational lifestyle associated with security, prestige, and socio-economic distinction. The article concludes by calling for more inclusive urban policies that balance private development with inclusive planning strategies to mitigate the long-term impacts of fragmentation and exclusivity in Middle Eastern cities. Full article
Show Figures

Figure 1

18 pages, 5175 KB  
Article
Integrating Habitat Prediction and Risk Assessment to Prioritize Conservation Areas for the Long-Tailed Goral (Naemorhedus caudatus)
by Soyeon Park, Minkyung Kim and Sangdon Lee
Animals 2025, 15(19), 2848; https://doi.org/10.3390/ani15192848 - 29 Sep 2025
Viewed by 232
Abstract
Human activities have accelerated the extinction of species, driving biodiversity loss and ecosystem degradation. Establishing protected areas (PAs) that encompass habitats of endangered species is essential for achieving biodiversity conservation and ecosystem protection goals. This study aimed to identify and prioritize critical conservation [...] Read more.
Human activities have accelerated the extinction of species, driving biodiversity loss and ecosystem degradation. Establishing protected areas (PAs) that encompass habitats of endangered species is essential for achieving biodiversity conservation and ecosystem protection goals. This study aimed to identify and prioritize critical conservation areas for the endangered long-tailed goral (Naemorhedus caudatus) in five regions of Gangwon and Gyeongbuk Provinces, South Korea. The MaxEnt model was applied to predict the potential habitat of the species, considering key environmental factors such as topographic, distance-related, vegetation, and land cover variables. The InVEST Habitat Risk Assessment (HRA) model was used to quantitatively assess cumulative risks within the habitat from the impacts of forest development and anthropogenic pressures. Subsequently, the Zonation software was employed for spatial prioritization by integrating the outputs of the models, and core conservation areas (CCAs) with high ecological value were identified through overlap analysis with 1st-grade areas from the Ecological and Nature Map (ENM). Results indicated that suitable habitats for the long-tailed goral were mainly located in forested regions, and areas subjected to multiple stressors faced elevated habitat risk. High-priority areas (HPAs) were primarily forested zones with high habitat suitability. The overlap analysis emphasized the need to implement conservation measures targeting CCAs while also managing additional HPAs outside CCAs, which are not designated as ENM. This study provides a methodological framework and baseline data to support systematic conservation planning for the long-tailed goral, offering practical guidance for future research and policy development. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

Back to TopTop