Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = laser doppler vibrometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3412 KB  
Article
FEM-Based Modeling of Guided Acoustic Waves on Free and Fluid-Loaded Plates
by Johannes Landskron, Alexander Backer, Conrad R. Wolf, Gerhard Fischerauer and Klaus Stefan Drese
Appl. Sci. 2025, 15(16), 9116; https://doi.org/10.3390/app15169116 - 19 Aug 2025
Viewed by 254
Abstract
Nowadays, guided acoustic waves (GAW) are used for many sensor and actuator applications. The use of numerical methods can facilitate the development and optimization process enormously. In this work, a universally applicable finite element method (FEM)-based model is introduced to determine the dispersion [...] Read more.
Nowadays, guided acoustic waves (GAW) are used for many sensor and actuator applications. The use of numerical methods can facilitate the development and optimization process enormously. In this work, a universally applicable finite element method (FEM)-based model is introduced to determine the dispersion relations of guided acoustic waves. A 2-dimensional unit cell model with Floquet periodicity is used to calculate the corresponding band structure diagrams. Starting from a free plate the model is expanded to encompass single-sided fluid loading. Followed by a straightforward algorithm for post-processing, the data is presented. Additionally, a parametric optimizer is used to adapt the simulations to experimental data measured by a laser Doppler vibrometer on an aluminum plate. Finally, the accuracy of the FEM model is compared to two reference models, achieving good consistency. In the case of the fluid-loaded model, the behavior of critical interactions between the dispersion curves and model-based artifacts is discussed. This approach can be used to model 2D structures like phononic crystals, which cannot be simulated by common GAW models. Moreover, this method can be used as input for advanced multiphysics simulations, including acoustic streaming applications. Full article
Show Figures

Figure 1

21 pages, 4886 KB  
Article
Field-Test-Driven Sensitivity Analysis and Model Updating of Aging Railroad Bridge Structures Using Genetic Algorithm Optimization Approach
by Rahul Anand, Sachin Tripathi, Celso Cruz De Oliveira and Ramesh B. Malla
Infrastructures 2025, 10(8), 195; https://doi.org/10.3390/infrastructures10080195 - 25 Jul 2025
Viewed by 424
Abstract
Aging railroad bridges present complex challenges due to advancing deterioration and outdated design assumptions. This study develops a comprehensive analytical approach for assessing an aging steel truss railroad bridge through finite element (FE) modeling, sensitivity analysis, and model updating, supported by field testing. [...] Read more.
Aging railroad bridges present complex challenges due to advancing deterioration and outdated design assumptions. This study develops a comprehensive analytical approach for assessing an aging steel truss railroad bridge through finite element (FE) modeling, sensitivity analysis, and model updating, supported by field testing. An initial FE model of the bridge was created based on original drawings and field observations. Field testing using a laser Doppler vibrometer captured the bridge’s dynamic response (vibrations and deflections) under regular train traffic. Key structural parameters (material properties, section properties, support conditions) were identified and varied in a sensitivity analysis to determine their influence on model outputs. A hybrid sensitivity analysis combining log-normal sampling and a genetic algorithm (GA) was employed to explore the parameter space and calibrate the model. The GA optimization tuned the FE model parameters to minimize discrepancies between simulated results and field measurements, focusing on vertical deflections and natural frequencies. The updated FE model showed significantly improved agreement with observed behavior; for example, vertical deflections under a representative train were matched within a few percent, and natural frequencies were accurately reproduced. This validated model provides a more reliable tool for predicting structural performance and fatigue life under various loading scenarios. The results demonstrate that integrating field data, sensitivity analysis, and model updating can greatly enhance the accuracy of structural assessments for aging railroad bridges, supporting more informed maintenance and management decisions. Full article
Show Figures

Figure 1

18 pages, 16017 KB  
Article
Design and Fabrication of Multi-Frequency and Low-Quality-Factor Capacitive Micromachined Ultrasonic Transducers
by Amirhossein Moshrefi, Abid Ali, Mathieu Gratuze and Frederic Nabki
Micromachines 2025, 16(7), 797; https://doi.org/10.3390/mi16070797 - 8 Jul 2025
Viewed by 648
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for air-coupled applications to address key challenges such as noise, prolonged ringing, and side-lobe interference. This study introduces an optimized CMUT design that leverages the squeeze-film damping effect to achieve a low-quality factor, enhancing resolution [...] Read more.
Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for air-coupled applications to address key challenges such as noise, prolonged ringing, and side-lobe interference. This study introduces an optimized CMUT design that leverages the squeeze-film damping effect to achieve a low-quality factor, enhancing resolution and temporal precision for imaging as one of the suggested airborne application. The device was fabricated using the PolyMUMPs process, ensuring high structural accuracy and consistency. Finite element analysis (FEA) simulations validated the optimized parameters, demonstrating improved displacement, reduced side-lobe artifacts, and sharper main lobes for superior imaging performance. Experimental validation, including Laser Doppler Vibrometer (LDV) measurements of membrane displacement and mode shapes, along with ring oscillation tests to assess Q-factor and signal decay, confirmed the device’s reliability and consistency across four CMUT arrays. Additionally, this study explores the implementation of multi-frequency CMUT arrays, enhancing imaging versatility across different air-coupled applications. By integrating multiple frequency bands, the proposed CMUTs enable adaptable imaging focus, improving their suitability for diverse diagnostic scenarios. These advancements highlight the potential of the proposed design to deliver a superior performance for airborne applications, paving the way for its integration into advanced diagnostic systems. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

14 pages, 3129 KB  
Article
Acoustic Bubbles as Small-Scale Energy Harvesters for Implantable Medical Devices
by Wenbo Li, Anthony Mercader and Sung Kwon Cho
Micromachines 2025, 16(4), 362; https://doi.org/10.3390/mi16040362 - 21 Mar 2025
Viewed by 688
Abstract
Piezoelectric acoustic energy harvesting within the human body has traditionally faced challenges due to insufficient energy levels for biomedical applications. Existing acoustic resonators are often much larger in size, making them impractical for microscale applications. This study investigates the use of acoustically oscillated [...] Read more.
Piezoelectric acoustic energy harvesting within the human body has traditionally faced challenges due to insufficient energy levels for biomedical applications. Existing acoustic resonators are often much larger in size, making them impractical for microscale applications. This study investigates the use of acoustically oscillated microbubbles as energy-harvesting resonators. A comparative study was conducted to determine the energy harvested by a freestanding diaphragm and a diaphragm coupled with an oscillating microbubble. The experimental results demonstrated that incorporating a microbubble enabled the flexible piezoelectric diaphragm to harvest seven times more energy than the freestanding diaphragm. These findings were further validated using Laser Doppler Vibrometer (LDV) measurements and stress calculations. Additional experiments with a phantom tissue tank confirmed the feasibility of this technology for biomedical applications. The results indicate that acoustically resonating microbubbles are a promising design for microscale acoustic energy-harvesting resonators in implantable biomedical devices. Full article
Show Figures

Figure 1

32 pages, 11570 KB  
Article
Damage Identification Using Measured and Simulated Guided Wave Damage Interaction Coefficients Predicted Ad Hoc by Deep Neural Networks
by Christoph Humer, Simon Höll and Martin Schagerl
Sensors 2025, 25(6), 1681; https://doi.org/10.3390/s25061681 - 8 Mar 2025
Viewed by 944
Abstract
Thin-walled structures are widely used in aeronautical and aerospace engineering due to their light weight and high structural performance. Ensuring their integrity is crucial for safety and reliability, which is why structural health monitoring (SHM) methods, such as guided wave-based techniques, have been [...] Read more.
Thin-walled structures are widely used in aeronautical and aerospace engineering due to their light weight and high structural performance. Ensuring their integrity is crucial for safety and reliability, which is why structural health monitoring (SHM) methods, such as guided wave-based techniques, have been developed to detect and characterize damage in such components. This study presents a novel damage identification procedure for guided wave-based SHM using deep neural networks (DNNs) trained with experimental data. This technique employs the so-called wave damage interaction coefficients (WDICs) as highly sensitive damage features that describe the unique scattering pattern around possible damage. The DNNs learn intricate relationships between damage characteristics, e.g., size or orientation, and corresponding WDIC patterns from only a limited number of damage cases. An experimental training data set is used, where the WDICs of a selected damage type are extracted from measurements using a scanning laser Doppler vibrometer. Surface-bonded artificial damages are selected herein for demonstration purposes. It is demonstrated that smart DNN interpolations can replicate WDIC patterns even when trained on noisy measurement data, and their generalization capabilities allow for precise predictions for damages with arbitrary properties within the range of trained damage characteristics. These WDIC predictions are readily available, i.e., ad hoc, and can be compared to measurement data from an unknown damage for damage characterization. Furthermore, the fully trained DNN allows for predicting WDICs specifically for the sensing angles requested during inspection. Additionally, an anglewise principal component analysis is proposed to efficiently reduce the feature dimensionality on average by more than 90% while accounting for the angular dependencies of the WDICs. The proposed damage identification methodology is investigated under challenging conditions using experimental data from only three sensors of a damage case not contained in the training data sets. Detailed statistical analyses indicate excellent performance and high recognition accuracy for this experimental data-based approach. This study also analyzes differences between simulated and experimental WDIC patterns. Therefore, an existing DNN trained on simulated data is also employed. The differences between the simulations and experiments affect the identification performance, and the resulting limitations of the simulation-based approach are clearly explained. This highlights the potential of the proposed experimental data-based DNN methodology for practical applications of guided wave-based SHM. Full article
Show Figures

Figure 1

20 pages, 6026 KB  
Article
Analysis of Collapse–Snapback Phenomena in Capacitive Micromachined Ultrasound Transducers
by Chloé Halbach, Veronique Rochus, Jan Genoe, Xavier Rottenberg, David Cheyns and Paul Heremans
Micromachines 2025, 16(2), 160; https://doi.org/10.3390/mi16020160 - 29 Jan 2025
Cited by 2 | Viewed by 2884
Abstract
The pull-in and pull-out voltages are important characteristics of Capacitive Micromachined Ultrasound Transducers (CMUTs), marking the transition between conventional and collapse operation regimes. These voltages are commonly determined using capacitance–voltage (C-V) sweeps. By modeling the operating conditions of an LCR meter in COMSOL [...] Read more.
The pull-in and pull-out voltages are important characteristics of Capacitive Micromachined Ultrasound Transducers (CMUTs), marking the transition between conventional and collapse operation regimes. These voltages are commonly determined using capacitance–voltage (C-V) sweeps. By modeling the operating conditions of an LCR meter in COMSOL Multiphysics®, we demonstrate that the measured capacitance comprises both static and dynamic capacitances, with the dynamic capacitance causing the appearance of a peak in the effective C-V curve. Furthermore, Laser Doppler Vibrometer (LDV) measurements and electromechanical simulations indicate the occurrence of collapse–snapback phenomena during the C-V sweeps. This study, through advanced simulations and experimental analyses, demonstrates that the transient membrane behavior significantly affects the apparent capacitance–voltage characteristics of electrostatically actuated Micro-Electromechanical Systems (MEMS). Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers)
Show Figures

Figure 1

14 pages, 2695 KB  
Article
Sound-Induced Round Window Vibration—Experiment and Numerical Simulations of Energy Transfer Through the Cochlea of the Human Ear
by Robert Zablotni, Sylwester Tudruj, Jaroslaw Latalski, Marcin Szymanski, Andrzej Kucharski, Grzegorz Zając and Rafał Rusinek
Appl. Sci. 2025, 15(1), 301; https://doi.org/10.3390/app15010301 - 31 Dec 2024
Cited by 1 | Viewed by 1228
Abstract
This study investigates the dynamic properties of the human middle ear and the energy transfer phenomena between the stapes footplate (SF) and the round window membrane (RWM) under sound stimulation. A series of laboratory tests were conducted, and a numerical model of the [...] Read more.
This study investigates the dynamic properties of the human middle ear and the energy transfer phenomena between the stapes footplate (SF) and the round window membrane (RWM) under sound stimulation. A series of laboratory tests were conducted, and a numerical model of the system was prepared. During the experiments, vibrations in human temporal bones were recorded using a Laser Doppler Vibrometer (LDV), and the frequency response functions (FRFs) of the RWM and SF footplate were computed. Key resonances were identified, with notable differences in vibration amplitude depending on whether the artificial external ear canal was left open or closed. To evaluate the amplification of acoustic waves within the cochlea, the authors proposed a novel index defined as the ratio of the FRF of the RWM and SF, respectively. The performed computations showed that signal amplification is particularly noticeable in the frequency range from 1 to 2 kHz. Subsequently, a simplified computational fluid dynamics (CFD) model of the cochlea was developed to simulate internal pressure distribution within the scala vestibuli (SV) and scala tympani (ST) spaces. The numerical computations of acoustic signal amplification showed good agreement with the experimental data, particularly at the frequencies of 1 and 2 kHz. These findings provide new insights into cochlear acoustics and offer a potential tool for evaluating pathological disorders and designing prosthetic devices. Full article
Show Figures

Figure 1

19 pages, 5980 KB  
Article
Study on the Transient Extraction Transform Algorithm for Defect Detection in Welded Plates Based on Laser Vibrometer
by Yu Du, Xinke Xu, Longbiao Zhao, Dijian Yuan and Jinwen Wang
Photonics 2024, 11(12), 1193; https://doi.org/10.3390/photonics11121193 - 19 Dec 2024
Cited by 1 | Viewed by 1034
Abstract
This paper addresses the issue of detecting welding defects in steel plates during the welding process by proposing a method that combines the laser vibrometer with transient feature extraction technology. The method employs a high-resolution laser vibrometer to collect vibration signals from excited [...] Read more.
This paper addresses the issue of detecting welding defects in steel plates during the welding process by proposing a method that combines the laser vibrometer with transient feature extraction technology. The method employs a high-resolution laser vibrometer to collect vibration signals from excited weld plates, followed by feature extraction and analysis for defect detection and identification. The focus of the research is on the optimization and application of the transient extraction transform algorithm, which plays a crucial role in signal feature extraction for defect recognition. By optimizing the short-time Fourier transform, we further propose the use of the transient extraction transform algorithm to effectively characterize and extract transient components from defect signals. To validate the proposed algorithm, we compare the defect recognition performance of several algorithms using quantitative metrics such as Rényi entropy and kurtosis. The results indicate that the proposed method yields a more centralized time–frequency representation and significantly increases the kurtosis of transient components, providing a new approach for detecting welding defects in steel plates. Full article
(This article belongs to the Special Issue Advances and Applications of Laser Measurements)
Show Figures

Figure 1

14 pages, 3485 KB  
Article
Fiber-Based Laser Doppler Vibrometer for Middle Ear Diagnostics
by Adam T. Waz, Marcin Masalski and Krzysztof Morawski
Photonics 2024, 11(12), 1152; https://doi.org/10.3390/photonics11121152 - 6 Dec 2024
Cited by 1 | Viewed by 1683
Abstract
Laser Doppler vibrometry (LDV) is an essential tool in assessing by evaluating ossicle vibrations. It is used in fundamental research to understand hearing physiology better and develop new surgical techniques and implants. It is also helpful for the intraoperative hearing assessment and evaluation [...] Read more.
Laser Doppler vibrometry (LDV) is an essential tool in assessing by evaluating ossicle vibrations. It is used in fundamental research to understand hearing physiology better and develop new surgical techniques and implants. It is also helpful for the intraoperative hearing assessment and evaluation of postoperative treatment results. Traditional volumetric LDVs require access in a straight line to the test object, which is challenging due to the structure of the middle ear and the way the auditory ossicles are accessible. Here, we demonstrate the usage of a fiber-based laser Doppler vibrometer (FLDV) for middle ear diagnostics. Compared to classical vibrometers, the main advantages of this device are the ability to analyze several arbitrarily selected points simultaneously and the flexibility achieved by employing fiber optics to perform analysis in hard-to-reach locations, which are particularly important during endoscopic ear surgery. The device also allows for a simple change in measuring probes depending on the application. In this work, we demonstrate the properties of the designed probe and show that using it together with the FLDV enables recording vibrations of the auditory ossicles of the human ear. The obtained signals enable hearing analysis. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
Show Figures

Figure 1

1247 KB  
Proceeding Paper
Designing Novel MEMS Cantilevers for Marine Sensing Robots Using COMSOL Modeling and Different Piezoelectric Materials
by Basit Abdul, Abdul Qadeer and Abdul Rab Asary
Eng. Proc. 2024, 82(1), 116; https://doi.org/10.3390/ecsa-11-20496 - 26 Nov 2024
Viewed by 217
Abstract
The present work presents an innovative marine sensing robotics device based on piezoelectric cantilever-integrated micro-electro-mechanical systems (MEMSs) modeled on fish lateral lines. The device comprises 12 cantilevers of different shapes and sizes in a cross-shaped configuration, embedded between molybdenum (Mo) electrodes in a [...] Read more.
The present work presents an innovative marine sensing robotics device based on piezoelectric cantilever-integrated micro-electro-mechanical systems (MEMSs) modeled on fish lateral lines. The device comprises 12 cantilevers of different shapes and sizes in a cross-shaped configuration, embedded between molybdenum (Mo) electrodes in a piezoelectric thin film (PbTiO3, GaPO4). It has the advantage of a directional response due to the unique design of the circular cantilevers. In COMSOL software 5.5, we designed, modeled, and simulated a piezoelectric device based on a comparative study of these piezoelectric materials. Simulations were performed on cantilever microstructures ranging in length from 100 µm to 500 µm. These materials perform best when lead titanate (PbTiO3) is used. A maximum voltage of 4.9 mV was obtained with the PbTiO3-material cantilever with a displacement of 37 µm. A laser Doppler vibrometer was used to measure the resonance frequency mode and displacement. Our simulations and experiments were in good agreement. Its performance and compactness allow us to envision its employment in underwater acoustics for monitoring marine cetaceans and ultrasound communications. In conclusion, MEMS piezoelectric transducers can be used as hydrophones to sense underwater acoustic pulses. Full article
Show Figures

Figure 1

25 pages, 27379 KB  
Article
Modal Parameters Estimation of Circular Plates Manufactured by FDM Technique Using Vibrometry: A Comparative Study
by Martin Hagara, Miroslav Pástor, Pavol Lengvarský, Peter Palička and Róbert Huňady
Appl. Sci. 2024, 14(22), 10609; https://doi.org/10.3390/app142210609 - 18 Nov 2024
Viewed by 1003
Abstract
This paper presents a comparative study focused on a modal parameters estimation of specimens manufactured by the FDM technique using a fixed embedded vibrometer based on the laser Doppler principle and roving hammer-impact method. Part of this paper is devoted to testing a [...] Read more.
This paper presents a comparative study focused on a modal parameters estimation of specimens manufactured by the FDM technique using a fixed embedded vibrometer based on the laser Doppler principle and roving hammer-impact method. Part of this paper is devoted to testing a fixed circular plate with a honeycomb infill pattern while varying the number of excitation points (DOFs), the number of analysis lines of fast Fourier transformation (FFT), and the locations or numbers of reference degrees of freedom (REFs). Although these parameters did not significantly affect the values found for the natural frequencies of the structure, there were changes in the estimates of the mode shapes (affected by the low number of DOFs), in the height and sharpness of the peaks of the CMIF functions (caused by the increased number of FFT lines), and in the number of identified modes (influenced by the chosen location(s) of REFs), respectively. Subsequently, the authors compared the results of experimental modal analyses carried out under the same conditions on three circular plates with honeycomb, star, and concentric infill patterns made of PLA. The results confirm that specimens with honeycomb or star infill patterns have a higher stiffness than those with concentric infill patterns. The low values of the damping ratios obtained for each structure indicate a strong response to excitation at or near their natural frequencies. Full article
Show Figures

Figure 1

13 pages, 5081 KB  
Article
Low-Power Field-Deployable Interdigital Transducer-Based Scanning Laser Doppler Vibrometer for Wall-Thinning Detection in Plates
by To Kang, Soonwoo Han, Yun-Taek Yeom and Ho-Yong Lee
Materials 2024, 17(20), 5098; https://doi.org/10.3390/ma17205098 - 18 Oct 2024
Viewed by 827
Abstract
Lamb waves have become a focal point in ultrasonic testing owing to their potential for long-range and inaccessible detection. However, accurately estimating the flaws in plates using Lamb waves remains challenging because of scattering, mode conversion, and dispersion effects. Recent advances in laser [...] Read more.
Lamb waves have become a focal point in ultrasonic testing owing to their potential for long-range and inaccessible detection. However, accurately estimating the flaws in plates using Lamb waves remains challenging because of scattering, mode conversion, and dispersion effects. Recent advances in laser ultrasonic wave techniques have introduced innovative visualization methods that exploit the dispersion effect of Lamb waves to visualize defects via, for example, acoustic wavenumber spectroscopy. In this study, we developed an interdigital transducer (IDT)-based scanning laser Doppler vibrometer (SLDV) system without a power amplifier using a low-power IDT fabricated from lead magnesium niobate–lead zirconate titanate single crystals. To validate the proposed low-power IDT-based SLDV, four different defective plates were measured for defects. A comparison between a conventional IDT-based SLDV, a dry-coupled IDT-based SLDV, and the proposed method demonstrated that the latter is highly reliable for measuring thin plate defects. Full article
Show Figures

Figure 1

18 pages, 16140 KB  
Article
Development and Validation of a New Type of Displacement-Based Miniatured Laser Vibrometers
by Ke Yuan, Zhonghua Zhu, Wei Chen and Weidong Zhu
Sensors 2024, 24(16), 5230; https://doi.org/10.3390/s24165230 - 13 Aug 2024
Cited by 1 | Viewed by 1979
Abstract
Developing a miniatured laser vibrometer becomes important for many engineering areas, such as experimental and operational modal analyses, model validation, and structural health monitoring. Due to its compact size and light weight, a miniatured laser vibrometer can be attached to various mobilized platforms, [...] Read more.
Developing a miniatured laser vibrometer becomes important for many engineering areas, such as experimental and operational modal analyses, model validation, and structural health monitoring. Due to its compact size and light weight, a miniatured laser vibrometer can be attached to various mobilized platforms, such as an unmanned aerial vehicle and a robotic arm whose payloads can usually not be large, to achieve a flexible vibration measurement capability. However, integrating optics into a miniaturized laser vibrometer presents several challenges. These include signal interference from ghost reflectance signals generated by the sub-components of integrated photonics, polarization effects caused by waveguide structures, wavelength drifting due to the semiconductor laser, and the poorer noise characteristics of an integrated laser chip compared to a non-integrated circuit. This work proposes a novel chip-based high-precision laser vibrometer by incorporating two or more sets of quadrature demodulation networks into its design. An additional set of quadrature demodulation networks with a distinct reference arm delay line length can be used to conduct real-time compensation to mitigate linear interference caused by temperature and environmental variations. A series of vibration measurements with frequencies ranging from 0.1 Hz to 1 MHz were conducted using the proposed laser vibrometer to show its repeatability and accuracy in vibration and ultrasonic vibration measurements, and its robustness to test surface conditions. The proposed laser vibrometer has the advantage of directly measuring the displacement response of a vibrating structure rather than integrating its velocity response to yield the measured displacement with a conventional laser Doppler vibrometer. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 7749 KB  
Article
A Novel Debonding Damage Identification Approach of Hidden Frame-Supported Glass Curtain Walls Based on UAV-LDV System
by Haoyang Zheng, Tong Guo, Guoliang Zhi and Zhiwei Hu
Appl. Sci. 2024, 14(13), 5412; https://doi.org/10.3390/app14135412 - 21 Jun 2024
Cited by 2 | Viewed by 1707
Abstract
This study introduces a novel Unmanned Aerial Vehicle-mounted (UAV-mounted) Laser Doppler Vibrometer (LDV) system for detecting debonding damage in Hidden Frame-Supported Glass Curtain Walls (HFSGCW). The established system enables UAVs to transport the LDV to high altitudes for operation. The vibration signals acquired [...] Read more.
This study introduces a novel Unmanned Aerial Vehicle-mounted (UAV-mounted) Laser Doppler Vibrometer (LDV) system for detecting debonding damage in Hidden Frame-Supported Glass Curtain Walls (HFSGCW). The established system enables UAVs to transport the LDV to high altitudes for operation. The vibration signals acquired by the UAV-LDV system are decomposed into different energy bands by wavelet packet analysis, and then the occurrence and location of the damage are identified by the Sum of Squared Differences (SSD) of the wavelet packet bands’ energy. This paper investigates the potential factors affecting the performance of the Unmanned Aerial Vehicle-Laser Doppler Vibrometer (UAV-LDV) system, including the arrangement of measuring points, measuring distance, noise level, and wind speed through the first-order natural frequency, the normalized frequency response functions, and the SSD indicator. Experimental and simulation results confirm the effectiveness of the UAV-LDV system, highlighting its advantages over traditional methods by offering remote, non-contact, and efficient debonding detection. This method not only indicates the presence of the damage, as traditional indicators do, but also pinpoints the exact location of it, ensuring safety and cost-effectiveness in high-rise inspections. The proposed method and indicator offer advantages in terms of convenience, visualization, and efficiency. The study discusses the impact of measurement point arrangement, measuring distance, noise levels, and wind speed on the system’s performance. The findings demonstrate that while the UAV-LDV system introduces new capabilities in rapid and reliable structural damage assessment, operational challenges such as wind and noise levels significantly influence its accuracy. Full article
(This article belongs to the Special Issue Advances in Bridge Design and Structural Performance: 2nd Edition)
Show Figures

Figure 1

8 pages, 5773 KB  
Article
Temporal Analysis of Speckle Images in Full-Field Interferometric and Camera-Based Optical Dynamic Measurement
by Guojun Bai, Yuchen Wei, Bing Chen and Yu Fu
Photonics 2024, 11(6), 548; https://doi.org/10.3390/photonics11060548 - 8 Jun 2024
Viewed by 1764
Abstract
Vibration measurement is crucial in fields like aviation, aerospace, and automotive engineering, which are trending towards larger, lighter, and more complex structures with increasingly complicated dynamics. Consequently, measuring a structure’s dynamic characteristics has gained heightened importance. Among non-contact approaches, those based on high-speed [...] Read more.
Vibration measurement is crucial in fields like aviation, aerospace, and automotive engineering, which are trending towards larger, lighter, and more complex structures with increasingly complicated dynamics. Consequently, measuring a structure’s dynamic characteristics has gained heightened importance. Among non-contact approaches, those based on high-speed cameras combined with laser interferometry or computational imaging have gained widespread attention. These techniques yield sequences of images that form a three-dimensional space-time data set. Effectively processing these data is a prerequisite for accurately extracting dynamic deformation information. This paper presents two examples to illustrate the significant advantages of signal processing along the time axis in dynamic interferometric and digital speckle-image-based dynamic measurements. The results show that the temporal process effectively minimizes speckle and electronic noise in the spatial domain and dramatically increases measurement resolutions. Full article
(This article belongs to the Special Issue Recent Advances in 3D Optical Measurement)
Show Figures

Figure 1

Back to TopTop