Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (155)

Search Parameters:
Keywords = laser-matter interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 14292 KB  
Article
Non-Fourier Thermoelastic Peridynamic Modeling of Cracked Thin Films Under Short-Pulse Laser Irradiation
by Tao Wu, Tao Xue, Yazhou Wang and Kumar Tamma
Modelling 2025, 6(3), 68; https://doi.org/10.3390/modelling6030068 - 15 Jul 2025
Viewed by 2265
Abstract
In this paper, we develop a peridynamic computational framework to analyze thermomechanical interactions in fractured thin films subjected to ultrashort-pulsed laser excitation, employing nonlocal discrete material point discretization to eliminate mesh dependency artifacts. The generalized Cattaneo–Fourier thermal flux formulation uncovers contrasting dynamic responses: [...] Read more.
In this paper, we develop a peridynamic computational framework to analyze thermomechanical interactions in fractured thin films subjected to ultrashort-pulsed laser excitation, employing nonlocal discrete material point discretization to eliminate mesh dependency artifacts. The generalized Cattaneo–Fourier thermal flux formulation uncovers contrasting dynamic responses: hyperbolic heat propagation (FT=0) generates intensified temperature localization and elevates transient crack-tip stress concentrations relative to classical Fourier diffusion (FT=1). A GSSSS (Generalized Single Step Single Solve) i-Integration temporal scheme achieves oscillation-free numerical solutions across picosecond-level laser–matter interactions, effectively resolving steep thermal fronts through adaptive stabilization. These findings underscore hyperbolic conduction’s essential influence on stress-mediated fracture evolution during ultrafast laser processing, providing critical guidelines for thermal management in micro-/nano-electromechanical systems. Full article
(This article belongs to the Special Issue The 5th Anniversary of Modelling)
Show Figures

Figure 1

13 pages, 1035 KB  
Article
The Formation of Disinfection By-Products in Reactive Chlorine Species (RCS)-Mediated Advanced Oxidation Process
by Zishao Li and Zhong Zhang
Water 2025, 17(13), 1954; https://doi.org/10.3390/w17131954 - 30 Jun 2025
Viewed by 511
Abstract
This study investigates the formation and toxicity of disinfection by-products (DBPs) arising from the reactions between individual reactive chlorine species (RCS) and dissolved organic matter (DOM) during water treatment. Individual chlorine radicals (Cl) and dichloride radicals (Cl2•−) were [...] Read more.
This study investigates the formation and toxicity of disinfection by-products (DBPs) arising from the reactions between individual reactive chlorine species (RCS) and dissolved organic matter (DOM) during water treatment. Individual chlorine radicals (Cl) and dichloride radicals (Cl2•−) were selectively generated with a laser flash photolysis technique, and their interactions with Suwannee River natural organic matter (SRNOM) were analyzed. Results demonstrated a biphasic pattern of DBP formation, where initial increases in RCS exposure enhanced DBP concentrations and toxicities, followed by subsequent decreases at higher RCS exposure. Variations among DBP classes, including trichloromethanes, chloroacetic acids, and chloroacetaldehydes, highlighted the complexity of RCS-DOM interactions. Toxicity assessments further indicated chloroacetonitriles and chloroacetic acids as major toxicity contributors at varying RCS exposures. This study highlights the impact of RCS exposure levels to DBP formation and toxicities, providing mechanistic insights for optimizing parameters in RCS-mediated advanced oxidation processes (AOPs) for safer water treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

11 pages, 6080 KB  
Article
Single-Shot Femtosecond Raster-Framing Imaging with High Spatio-Temporal Resolution Using Wavelength/Polarization Time Coding
by Yang Yang, Yongle Zhu, Xuanke Zeng, Dong He, Li Gu, Zhijian Wang and Jingzhen Li
Photonics 2025, 12(7), 639; https://doi.org/10.3390/photonics12070639 - 24 Jun 2025
Viewed by 377
Abstract
This paper introduces a single-shot ultrafast imaging technique termed wavelength and polarization time-encoded ultrafast raster imaging (WP-URI). By integrating raster imaging principles with wavelength- and polarization-based temporal encoding, the system uses a spatial raster mask and time–space mapping to aggregate multiple two-dimensional temporal [...] Read more.
This paper introduces a single-shot ultrafast imaging technique termed wavelength and polarization time-encoded ultrafast raster imaging (WP-URI). By integrating raster imaging principles with wavelength- and polarization-based temporal encoding, the system uses a spatial raster mask and time–space mapping to aggregate multiple two-dimensional temporal raster images onto a single detector plane, thereby enabling the effective spatial separation and extraction of target information. Finally, the target dynamics are recovered using a reconstruction algorithm based on the Nyquist–Shannon sampling theorem. Numerical simulations demonstrate the single-shot acquisition of four dynamic frames at 25 trillion frames per second (Tfps) with an intrinsic spatial resolution of 50 line pairs per millimeter (lp/mm) and a wide field of view. The WP-URI technique achieves unparalleled spatio-temporal resolution and frame rates, offering significant potential for investigating ultrafast phenomena such as matter interactions, carrier dynamics in semiconductor devices, and femtosecond laser–matter processes. Full article
Show Figures

Figure 1

11 pages, 430 KB  
Article
Experimental Observation of Laser Planar Trapping
by Silvânia A. Carvalho and Stefano De Leo
Optics 2025, 6(2), 27; https://doi.org/10.3390/opt6020027 - 18 Jun 2025
Viewed by 342
Abstract
This study experimentally demonstrates transverse symmetry breaking—a mechanism governing laser planar trapping—and distinguishes its unique role from related phenomena such as the lateral Goos–Hänchen shift and angular deviations. While the latter effects describe positional or angular beam displacements at interfaces, transverse symmetry breaking [...] Read more.
This study experimentally demonstrates transverse symmetry breaking—a mechanism governing laser planar trapping—and distinguishes its unique role from related phenomena such as the lateral Goos–Hänchen shift and angular deviations. While the latter effects describe positional or angular beam displacements at interfaces, transverse symmetry breaking fundamentally alters the beam’s spatial symmetry, enabling unprecedented control over its intensity and phase profiles. Empirical results exhibit exceptional agreement with a recently proposed theoretical model, validating its predictive capability. Crucially, our findings highlight transverse symmetry breaking as a critical tool for tailoring beam profiles, advancing applications in optical trapping, structured light systems, and photonic device engineering, where symmetry manipulation unlocks new degrees of freedom in light–matter interactions. Full article
(This article belongs to the Section Laser Sciences and Technology)
Show Figures

Figure 1

21 pages, 1298 KB  
Article
Electro-Optical Modulation of the Nonlinear Optical Response in a GaAs/AlGaAs Symmetric Multiple Quantum Well System
by Carlos Alberto Dagua-Conda, John Alexander Gil-Corrales, Rebeca Victoria Herrero-Hahn, Miguel Eduardo Mora-Ramos, Alvaro Luis Morales and Carlos Alberto Duque
Physics 2025, 7(2), 22; https://doi.org/10.3390/physics7020022 - 12 Jun 2025
Cited by 1 | Viewed by 1311
Abstract
External fields modify the confinement potential and electronic structure in a multiple quantum well system, affecting the light–matter interaction. Here, we present a theoretical study of the modulation of the nonlinear optical response simultaneously employing an intense non-resonant laser field and an electric [...] Read more.
External fields modify the confinement potential and electronic structure in a multiple quantum well system, affecting the light–matter interaction. Here, we present a theoretical study of the modulation of the nonlinear optical response simultaneously employing an intense non-resonant laser field and an electric field. Considering four occupied subbands, we focus on a GaAs/AlGaAs symmetric multiple quantum well system with five wells and six barriers. By solving the Schrödinger equation through the finite element method under the effective mass approximation, we determine the electronic structure and the nonlinear optical response using the density matrix formalism. The laser field dresses the confinement potential while the electric field breaks the inversion symmetry. The combined effect of both fields modifies the intersubband transition energies and the overlap of the wave functions. The results obtained demonstrate an active tunability of the nonlinear optical response, opening up the possibility of designing optoelectronic devices with tunable optical properties. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

5 pages, 170 KB  
Editorial
High-Power Lasers and Light–Matter Interactions
by Zhaohong Liu, Sensen Li and Jiawei Sun
Photonics 2025, 12(5), 464; https://doi.org/10.3390/photonics12050464 - 9 May 2025
Viewed by 480
Abstract
High-power laser systems and the study of light–matter interactions at high intensities are crucial for numerous scientific and technological fields, ranging from industrial materials processing [...] Full article
(This article belongs to the Special Issue Emerging Topics in High-Power Laser and Light–Matter Interactions)
23 pages, 4826 KB  
Article
Visualization of High-Intensity Laser–Matter Interactions in Virtual Reality and Web Browser
by Martin Matys, James P. Thistlewood, Mariana Kecová, Petr Valenta, Martina Greplová Žáková, Martin Jirka, Prokopis Hadjisolomou, Alžběta Špádová, Marcel Lamač and Sergei V. Bulanov
Photonics 2025, 12(5), 436; https://doi.org/10.3390/photonics12050436 - 30 Apr 2025
Viewed by 1834
Abstract
We present the Virtual Beamline (VBL) application, an interactive web-based platform for visualizing high-intensity laser–matter interactions using particle-in-cell (PIC) simulations, with future potential for experimental data visualization. These interactions include ion acceleration, electron acceleration, γ-flash generation, electron–positron pair production, and attosecond and [...] Read more.
We present the Virtual Beamline (VBL) application, an interactive web-based platform for visualizing high-intensity laser–matter interactions using particle-in-cell (PIC) simulations, with future potential for experimental data visualization. These interactions include ion acceleration, electron acceleration, γ-flash generation, electron–positron pair production, and attosecond and spiral pulse generation. Developed at the ELI Beamlines facility, VBL integrates a custom-built WebGL engine with WebXR-based Virtual Reality (VR) support, allowing users to explore complex plasma dynamics in non-VR mode on a computer screen or in fully immersive VR mode using a head-mounted display. The application runs directly in a standard web browser, ensuring broad accessibility. VBL enhances the visualization of PIC simulations by efficiently processing and rendering four main data types: point particles, 1D lines, 2D textures, and 3D volumes. By utilizing interactive 3D visualization, it overcomes the limitations of traditional 2D representations, offering enhanced spatial understanding and real-time manipulation of visualization parameters such as time steps, data layers, and colormaps. Users can interactively explore the visualized data by moving their body or using a controller for navigation, zooming, and rotation. These interactive capabilities improve data exploration and interpretation, making VBL a valuable tool for both scientific analysis and educational outreach. The visualizations are hosted online and freely accessible on our server, providing researchers, the general public, and broader audiences with an interactive tool to explore complex plasma physics simulations. By offering an intuitive and dynamic approach to large-scale datasets, VBL enhances both scientific research and knowledge dissemination in high-intensity laser–matter physics. Full article
Show Figures

Figure 1

17 pages, 4106 KB  
Review
Molecular Alignment Under Strong Laser Pulses: Progress and Applications
by Ming Wang, Enliang Zhang, Qingqing Liang and Yi Liu
Photonics 2025, 12(5), 422; https://doi.org/10.3390/photonics12050422 - 28 Apr 2025
Viewed by 1011
Abstract
Molecular alignment under strong laser pulses is an important tool for manipulating quantum states and investigating ultrafast phenomena. This review summarizes two decades of advancement in laser-driven alignment techniques, such as cross-polarized double pulses, optical centrifuges, and elliptically truncated fields. Given the prominent [...] Read more.
Molecular alignment under strong laser pulses is an important tool for manipulating quantum states and investigating ultrafast phenomena. This review summarizes two decades of advancement in laser-driven alignment techniques, such as cross-polarized double pulses, optical centrifuges, and elliptically truncated fields. Given the prominent emphasis on transformational applications in current alignment research, we outline its importance in cutting-edge applications under strong laser pulses, such as chiral discrimination, high-harmonic generation (HHG), photoelectron angular distributions (PADs) and ionization yields in photoionization, and Terahertz (THz) manipulation. These interdisciplinary developments provide fundamental insights into ultrafast molecular dynamics. They also establish frameworks for advanced light–matter interaction control. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

10 pages, 3146 KB  
Article
Compact Nanolaser Relying on Bound States in the Continuum with Simultaneous Pump and Emission Enhancement
by Yifei Ma, Jingyuan Ji, Xiaoyan Zhou and Lin Zhang
Photonics 2025, 12(3), 247; https://doi.org/10.3390/photonics12030247 - 10 Mar 2025
Viewed by 663
Abstract
Bound states in the continuum (BICs), characterized by high-Q modes, have demonstrated exceptional capabilities for enhancing light-matter interactions and, when combined with gain media, can enable compact lasers with low threshold power. However, conventional BIC lasers typically rely on the emitting light forming [...] Read more.
Bound states in the continuum (BICs), characterized by high-Q modes, have demonstrated exceptional capabilities for enhancing light-matter interactions and, when combined with gain media, can enable compact lasers with low threshold power. However, conventional BIC lasers typically rely on the emitting light forming a BIC mode, leading to vertical emission, and often lack mechanisms to enhance pump efficiency. In this work, we propose a photonic crystal laser design that incorporates high-Q modes at both pump and emitting wavelengths. The pump light at 980 nm is designed to form a BIC state near the Γ-point, while the emitting light at 1550 nm is confined within a bandgap-defined cavity mode at the M-point, allowing efficient in-plane emission. This design leads to a compact footprint of 19.7 × 17.1 μm2 and predicts a significant reduction in threshold power compared with a laser with a single resonance at the emission wavelength, providing a promising approach for developing compact on-chip lasers with significantly improved efficiency. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

42 pages, 5853 KB  
Review
Harnessing Ultra-Intense Long-Wave Infrared Lasers: New Frontiers in Fundamental and Applied Research
by Igor V. Pogorelsky and Mikhail N. Polyanskiy
Photonics 2025, 12(3), 221; https://doi.org/10.3390/photonics12030221 - 28 Feb 2025
Cited by 1 | Viewed by 1262 | Correction
Abstract
This review explores two main topics: the state-of-the-art and emerging capabilities of high-peak-power, ultrafast (picosecond and femtosecond) long-wave infrared (LWIR) laser technology based on CO2 gas laser amplifiers, and the current and advanced scientific applications of this laser class. The discussion is [...] Read more.
This review explores two main topics: the state-of-the-art and emerging capabilities of high-peak-power, ultrafast (picosecond and femtosecond) long-wave infrared (LWIR) laser technology based on CO2 gas laser amplifiers, and the current and advanced scientific applications of this laser class. The discussion is grounded in expertise gained at the Accelerator Test Facility (ATF) of Brookhaven National Laboratory (BNL), a leading center for ultrafast, high-power CO2 laser development and a National User Facility with a strong track record in high-intensity physics experiments. We begin by reviewing the status of 9–10 μm CO2 laser technology and its applications, before exploring potential breakthroughs, including the realization of 100 terawatt femtosecond pulses. These advancements will drive ongoing research in electron and ion acceleration in plasma, along with applications in secondary radiation sources and atmospheric energy transport. Throughout the review, we highlight how wavelength scaling of physical effects enhances the capabilities of ultra-intense lasers in the LWIR spectrum, expanding the frontiers of both fundamental and applied science. Full article
(This article belongs to the Special Issue High-Power Ultrafast Lasers: Development and Applications)
Show Figures

Figure 1

11 pages, 4127 KB  
Article
Optimizing Semiconductor Saturable Absorption Mirrors Using Subwavelength Dielectric Gratings for Fiber Lasers
by Chaoqun Wei, Xiansheng Jia, Hongmei Chen, Boyuan Liu, Ziyang Zhang and Cheng Jiang
Photonics 2025, 12(3), 213; https://doi.org/10.3390/photonics12030213 - 28 Feb 2025
Viewed by 744
Abstract
Ultrafast fiber lasers have shown exceptional performance across various domains, including material processing, medical applications, and optoelectronic communication. The semiconductor saturable absorber mirror (SESAM) is a key enabler of ultrafast laser operation. However, the narrow wavelength range and limited modulation depth of conventional [...] Read more.
Ultrafast fiber lasers have shown exceptional performance across various domains, including material processing, medical applications, and optoelectronic communication. The semiconductor saturable absorber mirror (SESAM) is a key enabler of ultrafast laser operation. However, the narrow wavelength range and limited modulation depth of conventional SESAMs pose challenges to further advancing ultrafast fiber laser technology. To address these limitations, we explored the integration of guided mode resonance (GMR) effects to enhance light–matter interaction within the absorption layer. By incorporating subwavelength dielectric film gratings onto the cap layer of SESAMs, we excited GMR and formed a microcavity structure in conjunction with the distributed Bragg mirror (DBR). This design significantly improved the absorption efficiency of InAs quantum dots. The experimental results demonstrate that the modulation depth of the SESAM increased from 6.7% to 17.3%, while the pulse width was reduced by 2.41 times. These improvements facilitated the realization of a high-quality, stable ultrafast fiber laser. This study not only broadens the application potential of ultrafast lasers in diverse fields but also offers a practical pathway for advancing SESAM technology toward industrial-scale deployment. Full article
(This article belongs to the Special Issue Fiber Lasers: Recent Advances and Applications)
Show Figures

Figure 1

15 pages, 11221 KB  
Article
Longitudinal Multi-Channel Focused Vortex and Vector Beams Generation by Quarter-Wave Plate Meta-Atom Metasurfaces
by Teng Ma, Kaixin Zhao, Manna Gu, Haoyan Zhou, Chunxiang Liu, Chuanfu Cheng, Qingrui Dong and Li Ma
Nanomaterials 2025, 15(5), 324; https://doi.org/10.3390/nano15050324 - 20 Feb 2025
Cited by 1 | Viewed by 1038
Abstract
Metasurface-based longitudinal modulation introduces the propagation distance as a new degree of freedom, extending the light modulation with metasurfaces from 2D to 3D space. However, relevant longitudinal studies have been constrained to designing the metasurface of half-wave plate (HWP) meta-atoms and generating either [...] Read more.
Metasurface-based longitudinal modulation introduces the propagation distance as a new degree of freedom, extending the light modulation with metasurfaces from 2D to 3D space. However, relevant longitudinal studies have been constrained to designing the metasurface of half-wave plate (HWP) meta-atoms and generating either non-focused or two-channel vortex and vector beams. In this study, we propose a metasurface composed of quarter-wave plate (QWP) meta-atoms to generate the longitudinal multi-channel focused vortex and vector beams. The metasurface consists of two interleaved sub-metasurfaces of QWP meta-atoms. For each sub-metasurface, the helical and hyperbolic phase profiles are designed independently in the propagation and geometric phases to generate focused co- and cross-polarized vortices with corresponding topological charges. Under the illumination of x-linearly polarized light, the metasurface generates two circularly polarized vortices, two linearly polarized vortices, and one vector beam on five focal planes. Theoretical analysis and simulation results demonstrate the feasibility of the proposed QWP metasurface. Our study presents a significant advancement in the development of integrated and multifunctional optical devices and systems, with significant potential applications in light–matter interaction, laser processing, and optical communication. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

12 pages, 1587 KB  
Article
Investigation of Pre-Pulse Effects on Ultrashort-Pulse Laser Interaction with Structured Targets
by Artem Kim, Indranuj Dey, Alexander Bespaly, Pavel Komm, Assaf Shaham, Jenya Papeer, Mordechai Botton and Arie Zigler
Appl. Sci. 2025, 15(1), 237; https://doi.org/10.3390/app15010237 - 30 Dec 2024
Viewed by 1318
Abstract
The role of pre-plasma in the efficient generation of protons by intense laser-matter interaction from structured targets is investigated. Optimal energy coupling between laser and plasma is found by varying the fluence and arrival time of an independently controllable ultrashort pre-pulse with respect [...] Read more.
The role of pre-plasma in the efficient generation of protons by intense laser-matter interaction from structured targets is investigated. Optimal energy coupling between laser and plasma is found by varying the fluence and arrival time of an independently controllable ultrashort pre-pulse with respect to the main interaction pulse. The coupling is evaluated based on the energy of the accelerated protons. The accelerated proton energy is maximized at optimal pre-pulse delay and fluence conditions. Plasma emission spectrum and Particle-in-Cell simulations provide a possible explanation of the obtained experiment results. Full article
(This article belongs to the Special Issue Ultrafast and Nonlinear Laser Applications)
Show Figures

Figure 1

21 pages, 2161 KB  
Review
On the Similarity and Differences Between Nano-Enhanced Laser-Induced Breakdown Spectroscopy and Nano-Enhanced Laser-Induced Plasma Spectroscopy in Laser-Induced Nanomaterials Plasma
by Ashraf EL Sherbini, AbdelNasser Aboulfotouh and Tharwat EL Sherbini
Quantum Beam Sci. 2025, 9(1), 1; https://doi.org/10.3390/qubs9010001 - 24 Dec 2024
Cited by 1 | Viewed by 1555
Abstract
The interaction of pulsed lasers with matter involving nanomaterials as a pure target or thin layer deposited on a target initiates transient plasma, which shows strong enhancement in a spectral line emission. This domain of research has been explored via two well-established techniques [...] Read more.
The interaction of pulsed lasers with matter involving nanomaterials as a pure target or thin layer deposited on a target initiates transient plasma, which shows strong enhancement in a spectral line emission. This domain of research has been explored via two well-established techniques dubbed NELIBS and NELIPS. These Nano-Enhanced Laser-Induced Breakdown or Plasma Spectroscopy techniques entail similarities as well as differences. The newly defined concept of Nano-Enhanced Laser-Induced Plasma Spectroscopy NELIPS is introduced. Thereupon, certain confusion has arisen from various aspects of the similarities as well as differences between the two techniques. In this article, we will investigate the application of either technique to retrieve relevant data about the enhanced spectral line plasma emission phenomenon. To discriminate between these two techniques, a survey on the nature of the target, the origin of enhancement and prevalent theoretical approaches is presented. In this context, the potential achievements, challenges and expected prospects are comparatively highlighted. This review emphasizes the unique contributions of NELIPS, particularly the advanced approach in nanoscale thermal modeling and spectroscopic applications. Full article
Show Figures

Figure 1

15 pages, 5042 KB  
Article
Characterization of kHz Repetition Rate Laser-Driven Electron Beams by an Inhomogeneous Field Dipole Magnet Spectrometer
by Illia Zymak, Marco Favetta, Gabriele Maria Grittani, Carlo Maria Lazzarini, Gianfranco Tassielli, Annika Grenfell, Leonardo Goncalves, Sebastian Lorenz, Vanda Sluková, Filip Vitha, Roberto Versaci, Edwin Chacon-Golcher, Michal Nevrkla, Jiří Šišma, Roman Antipenkov, Václav Šobr, Wojciech Szuba, Theresa Staufer, Florian Grüner, Loredana Lapadula, Ezio Ranieri, Michele Piombino, Nasr A. M. Hafz, Christos Kamperidis, Daniel Papp, Sudipta Mondal, Pavel Bakule and Sergei V. Bulanovadd Show full author list remove Hide full author list
Photonics 2024, 11(12), 1208; https://doi.org/10.3390/photonics11121208 - 23 Dec 2024
Cited by 2 | Viewed by 1860
Abstract
We demonstrate a method to characterize the beam energy, transverse profile, charge, and dose of a pulsed electron beam generated by a 1 kHz TW laser-plasma accelerator. The method is based on imaging with a scintillating screen in an inhomogeneous, orthogonal magnetic field [...] Read more.
We demonstrate a method to characterize the beam energy, transverse profile, charge, and dose of a pulsed electron beam generated by a 1 kHz TW laser-plasma accelerator. The method is based on imaging with a scintillating screen in an inhomogeneous, orthogonal magnetic field produced by a wide-gap magnetic dipole. Numerical simulations were developed to reconstruct the electron beam parameters accurately. The method has been experimentally verified and calibrated using a medical LINAC. The energy measurement accuracy in the 6–20 MeV range is proven to be better than 10%. The radiation dose has been calibrated by a water-equivalent phantom, RW3, showing a linear response of the method within 2% in the 0.05–0.5 mGy/pulse range. Full article
Show Figures

Figure 1

Back to TopTop