Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = leads repurposing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7565 KB  
Article
Ion-Channel-Targeting Drugs for Chikungunya Virus
by Hiya Lahiri, Kingshuk Basu and Isaiah T. Arkin
Molecules 2025, 30(19), 3942; https://doi.org/10.3390/molecules30193942 - 1 Oct 2025
Viewed by 202
Abstract
Alphaviruses are transmitted by Aedes mosquitoes and cause large-scale epidemics worldwide. Chikungunya virus (CHIKV) infection can cause febrile seizures known as chikungunya fever (CHIKF), which ultimately leads to severe joint pain and myalgia. While a vaccine has recently been introduced against CHIKV, at [...] Read more.
Alphaviruses are transmitted by Aedes mosquitoes and cause large-scale epidemics worldwide. Chikungunya virus (CHIKV) infection can cause febrile seizures known as chikungunya fever (CHIKF), which ultimately leads to severe joint pain and myalgia. While a vaccine has recently been introduced against CHIKV, at present, no anti-viral drug is available. CHIKV, like other alphaviruses, has a short 6K protein capable of forming an ion channel. Blocking this ion channel with drugs can therefore serve as a potential way to curtail CHIKV infection. To that end, we screened a repurposed drug library using three bacteria-based channel assays to detect blockers against 6K viroporin, yielding several hits. Interestingly, several of the blockers were able to inhibit the 6K protein from the similar Eastern equine encephalitis virus (EEEV), while others were not, pointing to structural specificity which may be explained by modeling studies. In conclusion, our study provides a starting point for developing a new route to potentially inhibit CHIKV. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

62 pages, 1598 KB  
Review
Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part B: Natural Compounds
by Mariyana Atanasova
Pharmaceuticals 2025, 18(10), 1457; https://doi.org/10.3390/ph18101457 - 28 Sep 2025
Viewed by 305
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive memory loss and cognitive decline. Its key pathological hallmarks include extracellular amyloid plaques composed of amyloid beta (Aβ) peptides and intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein. Although numerous [...] Read more.
Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive memory loss and cognitive decline. Its key pathological hallmarks include extracellular amyloid plaques composed of amyloid beta (Aβ) peptides and intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein. Although numerous studies have investigated the complex pathology of AD, its underlying mechanisms remain incompletely understood. The amyloid cascade hypothesis continues to be the leading model of AD pathogenesis. It suggests that Aβ aggregation is the initial trigger of neurotoxicity, setting off a cascade of pathological events including inflammation, oxidative stress, tau hyperphosphorylation, synaptic dysfunction, and, ultimately, dementia. Molecular dynamics (MD) is a powerful tool in structure-based drug design (SBDD). By simulating biomolecular motions at the atomic level, MD provides unique insights into molecular properties, functions, and inhibition mechanisms—insights often inaccessible through other experimental or computational techniques. When integrated with experimental data, MD further deepens our understanding of molecular interactions and biological processes. Natural compounds, known for their pleiotropic pharmacological activities, favorable safety profiles, and general tolerability (despite occasional side effects), are increasingly explored for their potential in both the treatment and prevention of various diseases, including AD. In this review, we summarize current findings from MD simulations of natural compounds with anti-amyloidogenic potential. This work builds upon our previous publication, which focused on endogenous compounds and repurposed drugs. The review is structured as follows: an overview of the amyloid cascade hypothesis; a discussion of Aβ oligomeric structures and their stabilizing interactions; a section on molecular dynamics, including its challenges and future directions; and a comprehensive analysis of the inhibitory mechanisms of natural compounds, categorized by their shared structural features. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

22 pages, 4349 KB  
Article
In Vitro Investigation of the Antiproliferative and Antimetastatic Effects of Atorvastatin: A Focus on Cervical and Head and Neck Cancers
by Hiba F. Muddather, Noémi Bózsity, György T. Balogh, Zsuzsanna Schelz and István Zupkó
Pharmaceutics 2025, 17(10), 1253; https://doi.org/10.3390/pharmaceutics17101253 - 24 Sep 2025
Viewed by 387
Abstract
Background/Objectives: In spite of substantial treatment progress, cancer persists as a leading health challenge. With the slow advancement in developing new anticancer agents, drug repurposing provides a promising strategy to enhance cancer therapy. This study investigates the antiproliferative and antimetastatic properties of [...] Read more.
Background/Objectives: In spite of substantial treatment progress, cancer persists as a leading health challenge. With the slow advancement in developing new anticancer agents, drug repurposing provides a promising strategy to enhance cancer therapy. This study investigates the antiproliferative and antimetastatic properties of two 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, atorvastatin and rosuvastatin, which represent lipophilic and hydrophilic statins, respectively. Methods: Growth inhibition was evaluated in a panel of human cancer cells using the standard MTT assay. Apoptotic effects were determined through flow cytometry, caspase-3 activity assay, mitochondrial membrane potential assessment, and Hoechst/Propidium iodide fluorescent double staining. Migration and invasion assays were conducted using wound-healing and Boyden chamber assays, respectively. Results: Atorvastatin demonstrated more pronounced growth-inhibitory effects than rosuvastatin, with the IC50 values in the range of 2.57–61.01 µM. Atorvastatin exhibited both biochemical and morphological indicators of apoptosis. Flow cytometry revealed cell cycle disruptions and increased sub-G1 apoptotic populations in HPV-positive oral squamous carcinoma cells (UPCI-SCC-154) and HPV-negative cervical cancer cells (C33A). Atorvastatin also significantly inhibited cell migration and invasion in the tested cell lines. Conclusions: Our results highlight the promising anticancer potential of atorvastatin in cervical cancer and oral squamous carcinoma cells. However, these findings are limited to in vitro models and warrant further in vivo validation. Full article
(This article belongs to the Special Issue Drug Delivery Strategies and Novel Approaches for Cancer Treatment)
Show Figures

Graphical abstract

22 pages, 2837 KB  
Article
Investigation of the Putative Relationship Between Copper Transport and the Anticancer Activity of Cisplatin in Ductal Pancreatic Adenocarcinoma
by Alina Doctor, Jonas Schädlich, Sandra Hauser and Jens Pietzsch
Cells 2025, 14(19), 1489; https://doi.org/10.3390/cells14191489 - 24 Sep 2025
Viewed by 438
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous cancer with a severe stromal reaction mediated by pancreatic stellate cells (PSCs), leading to increased resistance to chemotherapy and radiotherapy. Following a repurposing concept, this preclinical study investigates the potential of approved drugs, known to [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous cancer with a severe stromal reaction mediated by pancreatic stellate cells (PSCs), leading to increased resistance to chemotherapy and radiotherapy. Following a repurposing concept, this preclinical study investigates the potential of approved drugs, known to be modulators of cellular copper transport, in combination with cisplatin for therapeutic approaches in PDAC. Two major strategies were pursued: (i) inhibiting copper transporters ATP7A and B with tranilast (TR) and omeprazole (OM) to block the cellular copper and, potentially, also cisplatin efflux, and (ii) using the chelator elesclomol (ES) to elevate intracellular copper and cisplatin levels. Human cell lines PanC-1 (PDAC), HPaSteC (PSC), and their co-culture, as well as the hepatocellular carcinoma cell line HepG2 as a reference model, were used. In addition to an analysis of the expression of copper transport proteins, the dynamics of cellular copper uptake and transport were monitored using a [64Cu]CuCl2 radiotracer approach. In vitro, all drugs enhanced cellular copper uptake and/or reduced copper efflux. Moreover, all drugs contributed to the enhanced cellular anticancer activity of cisplatin, with ES being the most effective compound. The results suggest that the targeted modulation of copper transport mechanisms may offer novel adjuvant approaches for the treatment of PDAC. Full article
(This article belongs to the Collection Advances in Cell Culture and Tissue Engineering)
Show Figures

Graphical abstract

22 pages, 378 KB  
Review
Reimagining Oncologic Drugs in Atherosclerosis: Emerging Mechanisms and Therapeutic Potential
by George Liu, Guillaume De Vlaminck, Osayamen Atekha, Eric P. Grewal, Rishab Ramapriyan and Gautam Agarwal
Biomedicines 2025, 13(9), 2282; https://doi.org/10.3390/biomedicines13092282 - 17 Sep 2025
Viewed by 585
Abstract
Atherosclerosis is a chronic vascular disease that underlies the pathogenesis of both peripheral arterial disease and coronary artery disease, two of the leading causes of morbidity and mortality worldwide. Characterized by the accumulation of lipids, chronic inflammation, and fibrotic remodeling within vasculature, atherosclerosis [...] Read more.
Atherosclerosis is a chronic vascular disease that underlies the pathogenesis of both peripheral arterial disease and coronary artery disease, two of the leading causes of morbidity and mortality worldwide. Characterized by the accumulation of lipids, chronic inflammation, and fibrotic remodeling within vasculature, atherosclerosis involves a complex interplay of endothelial dysfunction, immune dysregulation, vascular smooth muscle cell proliferation, and maladaptive neovascularization. Increasing evidence now suggests that atherosclerosis has notable overlap with cancer biology, including sustained proliferative signaling, evasion of immune surveillance, angiogenesis, and resistance to cell death. These shared molecular features have prompted growing interest in the potential repurposing of oncologic treatments in the modulation of atherosclerotic disease. While preclinical data are promising, successful translation and integration of oncologic therapeutics will require overcoming critical barriers, including drug toxicity, long-term safety, regulatory constraints, and cost-effectiveness. Future work should focus on biomarker-guided patient selection, dose optimization, and targeted delivery systems to minimize off-target effects while enhancing efficacy. Full article
(This article belongs to the Section Cancer Biology and Oncology)
19 pages, 833 KB  
Review
Regeneration or Repurposing of Spent Pollutant Adsorbents in Energy-Related Applications: A Sustainable Choice?
by Anka Jevremović, Maja Ranković, Aleksandra Janošević Ležajić, Snežana Uskoković-Marković, Bojana Nedić Vasiljević, Nemanja Gavrilov, Danica Bajuk-Bogdanović and Maja Milojević-Rakić
Sustain. Chem. 2025, 6(3), 28; https://doi.org/10.3390/suschem6030028 - 13 Sep 2025
Viewed by 838
Abstract
This review sheds some light on the emerging niche of the reuse of spent adsorbents in electrochemical devices. Reuse and repurposing extend the adsorbent’s life cycle, remove the need for long-term storage, and generate additional value, making it a highly eco-friendly process. Main [...] Read more.
This review sheds some light on the emerging niche of the reuse of spent adsorbents in electrochemical devices. Reuse and repurposing extend the adsorbent’s life cycle, remove the need for long-term storage, and generate additional value, making it a highly eco-friendly process. Main adsorbent-type materials are overviewed, emphasising desired properties for initial adsorption and subsequent conversion to electroactive material step. The effects of the most frequent regeneration procedures are compared to highlight their strengths and shortcomings. The latest efforts of repurposing and reuse in supercapacitors, fuel cells, and batteries are analysed. Reuse in supercapacitors is dominated by materials that, after a regeneration step, lead to materials with high surface area and good pore structure and is mainly based on the conversion of organic adsorbents to some form of conductive carbon adlayer. Additionally, metal/metal-oxide and layered-double hydroxides are also being developed, but predominantly towards fuel cell and battery electrodes with respectable oxygen reduction characteristics and significant capacities, respectively. Repurposed adsorbents are being adopted for peroxide generation as well as direct methanol fuel cells. The work puts forward electrochemical devices as a valuable avenue for spent adsorbents and as a puzzle piece towards a greener and more sustainable future. Full article
Show Figures

Figure 1

38 pages, 674 KB  
Review
New Frontiers for Old Medications: Repurposing Approved Drugs Against Gram-Negative Bacterial Infections
by Ronit Aloni-Grinstein, Emanuelle Mamroud and Yoav Gal
Microorganisms 2025, 13(9), 2115; https://doi.org/10.3390/microorganisms13092115 - 10 Sep 2025
Viewed by 842
Abstract
The global escalation of antimicrobial resistance (AMR) among Gram-negative bacteria poses a severe threat to public health. Traditional antibiotic development struggles to keep pace with emerging resistant strains, necessitating innovative strategies to enhance therapeutic options. This review explores the potential of drug repurposing [...] Read more.
The global escalation of antimicrobial resistance (AMR) among Gram-negative bacteria poses a severe threat to public health. Traditional antibiotic development struggles to keep pace with emerging resistant strains, necessitating innovative strategies to enhance therapeutic options. This review explores the potential of drug repurposing as a strategic approach to combat Gram-negative bacterial infections, focusing on clinically approved drugs with antibacterial properties or the capacity to enhance antibiotic efficacy through direct or host-directed mechanisms. Within the review, a special section is dedicated to the potential usage of repurposed drugs against bacteria that can be used as biological warfare agents, exposure to which may lead to mass casualties, in particular if these pathogens are resistant to antibiotics. Repurposed drugs exhibit diverse antibacterial mechanisms, including membrane disruption, efflux pump inhibition, iron metabolism interference, quorum sensing suppression, and biofilm inhibition. Additionally, many agents demonstrated host-directed therapeutic effects by modulating inflammatory responses, enhancing autophagy, or boosting innate immune functions. Drug repurposing offers a promising avenue to mitigate the AMR crisis by providing rapid, cost-effective therapeutic solutions. Combining repurposed drugs with existing antibiotics or employing them as host-directed therapies holds significant potential for treating infections caused by multidrug-resistant Gram-negative pathogens. Continued research and clinical validation are essential to translate these findings into effective treatment regimens. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

33 pages, 4369 KB  
Review
Fuel-Cell Thermal Management Strategies for Enhanced Performance: Review of Fuel-Cell Thermal Management in Proton-Exchange Membrane Fuel Cells (PEMFCs) and Solid-Oxide Fuel Cells (SOFCs)
by Ibham Veza
Hydrogen 2025, 6(3), 65; https://doi.org/10.3390/hydrogen6030065 - 4 Sep 2025
Viewed by 1230
Abstract
Effective thermal management is crucial for optimizing the performance, efficiency, and durability of fuel-cell technologies, including proton-exchange membrane fuel cells (PEMFCs) and solid-oxide fuel cells (SOFCs). The operation of fuel cells involves complex heat generation mechanisms, primarily driven by electrochemical reactions, which can [...] Read more.
Effective thermal management is crucial for optimizing the performance, efficiency, and durability of fuel-cell technologies, including proton-exchange membrane fuel cells (PEMFCs) and solid-oxide fuel cells (SOFCs). The operation of fuel cells involves complex heat generation mechanisms, primarily driven by electrochemical reactions, which can lead to significant energy loss as heat. This review examines the specific heat generation sources and challenges associated with different fuel-cell types, highlighting the critical importance of effective thermal management strategies. Key techniques for thermal regulation, including active and passive cooling systems, are examined in detail. Active cooling methods like liquid cooling and air cooling are effective in dissipating excess heat, while passive methods leverage advanced materials and optimized designs to enhance natural heat dissipation. Furthermore, innovative heat recovery systems are explored, demonstrating their potential to enhance overall energy efficiency by capturing and repurposing waste heat. The integration of machine learning techniques has arisen as a promising avenue for advancing temperature control in fuel cells. Reinforcement learning, deep learning algorithms, and support vector machines, along with artificial neural networks, are discussed in the context of their application in managing temperature dynamics and optimizing thermal performance. The review also emphasizes the significance of real-time monitoring, as well as adaptive control strategies to respond effectively to the dynamic operating conditions of fuel cells. Understanding and applying these thermal management strategies is essential for the successful commercialization of fuel cells across various sectors, ranging from automotive to stationary power generation. With the growing demand for clean energy solutions, progress in thermal management techniques will be crucial in improving the dependability and practicality of fuel-cell systems. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

16 pages, 8551 KB  
Article
Pharmacoepigenomic Impact of Antihypertensive Drugs on miRNome and Proteome and Its Potential Influence on Health and Side Effects
by Samyukta Bhass and Moinak Banerjee
Cells 2025, 14(17), 1359; https://doi.org/10.3390/cells14171359 - 31 Aug 2025
Viewed by 935
Abstract
Antihypertensive drugs are widely used for the treatment of hypertension, and the choice of drug and dosage is based on trial and error. The variability in drug response and adverse reactions leads to the poor adherence to treatment. Epigenetic modulation is one of [...] Read more.
Antihypertensive drugs are widely used for the treatment of hypertension, and the choice of drug and dosage is based on trial and error. The variability in drug response and adverse reactions leads to the poor adherence to treatment. Epigenetic modulation is one of the major mechanisms that may contribute to the variability in drug responses, and microRNAs (miRNAs) can serve as crucial epigenetic regulators and have also been reported to be associated with hypertension pathogenesis. The objective of this study is to investigate the regulatory effects of commonly used antihypertensive drugs on the endothelial miRNome in human aortic endothelial cells. We aim to integrate miRNA expression data with proteomic analyses to elucidate drug-induced molecular mechanisms relevant to hypertension treatment. Whole genome small RNA sequencing was performed, followed by whole proteome analysis using LC-MS/MS comparing between control and treated samples. The treatments induced significant differential regulation of several miRNAs and proteins; among these, a few reflected reverse relationships with miRNA regulation and protein expression. Certain miRNAs and their corresponding target proteins seem to distinguish between good therapeutic outcomes and potential side effects. This study unravels the potential role of drug-induced miRNAs in inducing post-transcriptional modifications to cause the differential expression of certain proteins that may induce not only therapeutic effects or drug side effects but can also indicate the potential for drug-repurposing in other diseases. Full article
Show Figures

Graphical abstract

28 pages, 1361 KB  
Review
Artificial Intelligence in Small-Molecule Drug Discovery: A Critical Review of Methods, Applications, and Real-World Outcomes
by Sarfaraz K. Niazi
Pharmaceuticals 2025, 18(9), 1271; https://doi.org/10.3390/ph18091271 - 26 Aug 2025
Viewed by 3077
Abstract
Artificial intelligence (AI) is emerging as a valuable complementary tool in small-molecule drug discovery, augmenting traditional methodologies rather than replacing them. This review examines the evolution of AI from early rule-based systems to advanced deep learning, generative models, diffusion models, and autonomous agentic [...] Read more.
Artificial intelligence (AI) is emerging as a valuable complementary tool in small-molecule drug discovery, augmenting traditional methodologies rather than replacing them. This review examines the evolution of AI from early rule-based systems to advanced deep learning, generative models, diffusion models, and autonomous agentic AI systems, highlighting their applications in target identification, hit discovery, lead optimization, and safety prediction. We present both successes and failures to provide a balanced perspective. Notable achievements include baricitinib (BenevolentAI/Eli Lilly, an existing drug repurposed through AI-assisted analysis for COVID-19 and rheumatoid arthritis), halicin (MIT, preclinical antibiotic), DSP-1181 (Exscientia, discontinued after Phase I), and ISM001-055/rentosertib (Insilico Medicine, positive Phase IIa results). However, several AI-assisted compounds have also faced challenges in clinical development. DSP-1181 was discontinued after Phase I, despite a favorable safety profile, highlighting that the acceleration of discovery timelines by AI does not guarantee clinical success. Despite progress, challenges such as data quality, model interpretability, regulatory hurdles, and ethical concerns persist. We provide practical insights for integrating AI into drug discovery workflows, emphasizing hybrid human-AI approaches and the emergence of agentic AI systems that can autonomously navigate discovery pipelines. A critical evaluation of current limitations and future opportunities reveals that while AI offers significant potential as a complementary technology, realistic expectations and careful implementation are crucial for delivering innovative therapeutics. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

18 pages, 2125 KB  
Article
Beyond One-Size-Fits-All: Addressing Methodological Constraints in Novel Antimicrobials Discovery
by Silvia Puxeddu, Serena Canton, Alessandra Scano, Ilenia Delogu, Andrea Pibiri, Cristiana Cabriolu, Sarah Vascellari, Francesca Pettinau, Tiziana Pivetta, Guido Ennas, Aldo Manzin and Fabrizio Angius
Antibiotics 2025, 14(8), 848; https://doi.org/10.3390/antibiotics14080848 - 21 Aug 2025
Viewed by 799
Abstract
Background: Antimicrobial resistance is a growing global health concern that requires multiple strategies to be tackled effectively. While the discovery of new antimicrobial molecules is essential, the repurposing of existing compounds also plays a significant role. Standard methods to evaluate antimicrobial efficacy, [...] Read more.
Background: Antimicrobial resistance is a growing global health concern that requires multiple strategies to be tackled effectively. While the discovery of new antimicrobial molecules is essential, the repurposing of existing compounds also plays a significant role. Standard methods to evaluate antimicrobial efficacy, regulated by the Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and Laboratory Standards Institute (CLSI), such as the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), are available. However, several potential antimicrobics show interference with these standard methods, resulting in underestimated activity and their premature dismissal from further studies. This work compares reference methods in evaluating different compounds with unique physico-chemical characteristics. We aim to demonstrate that combining different susceptibility tests is mandatory for a successful preclinical screening of antimicrobial compounds. Methods: A selection of substances including natural extracts, both free and in the form of nanocomposites with fumed silica, ionic liquids, ozonated oils, commercial and pure antibiotics, was tested using broth microdilution, disk diffusion, and agar dilution. These methods were chosen following EUCAST and CLSI guidelines, and comparisons were made to evaluate their applicability and limitations for non-conventional substances. Results: The study highlighted significant variability in the outcomes depending on the method used, especially for substances with intrinsic properties such as high viscosity, poor solubility, or specific interactions with the testing medium. In several cases, the use of a single standard method failed to accurately reflect the real antimicrobial activity, leading to potential misinterpretation of effectiveness. Conclusions: A combined methodological approach is recommended to overcome the limitations of individual techniques. The integration of multiple reference methods offers a more accurate screening strategy for identifying and characterizing new and repurposed antimicrobials. Full article
Show Figures

Graphical abstract

32 pages, 9996 KB  
Article
Innovative Composite Aggregates from Thermoplastic Waste for Circular Economy Mortars
by Abdelhak Badache, Noureddine Latroch, Mostefa Hacini, Ahmed Soufiane Benosman, Mohamed Mouli, Yassine Senhadji and Walid Maherzi
Constr. Mater. 2025, 5(3), 58; https://doi.org/10.3390/constrmater5030058 - 20 Aug 2025
Viewed by 639
Abstract
This study investigates sustainable mortars using lightweight synthetic sand (LSS), made from dune sand and recycled PET bottles, to replace natural sand (0–100% by volume). This aligns with circular economy principles by valorizing plastic waste into a construction aggregate. LSS is produced via [...] Read more.
This study investigates sustainable mortars using lightweight synthetic sand (LSS), made from dune sand and recycled PET bottles, to replace natural sand (0–100% by volume). This aligns with circular economy principles by valorizing plastic waste into a construction aggregate. LSS is produced via controlled thermal treatment (250 ± 5 °C, 50–60 rpm), crushing, and sieving (≤3.15 mm), leading to a significantly improved interfacial transition zone (ITZ) with the cement matrix. The evaluation included physico-mechanical tests (density, strength, UPV, dynamic modulus, ductility), thermal properties (conductivity, diffusivity, heat capacity), porosity, sorptivity, alkali–silica reaction (ASR), and SEM. The results show LSS incorporation reduces mortar density (4–23% for 25–100% LSS), lowering material and logistical costs. While compressive strength decreases (35–70%), these mortars remain suitable for low-stress applications. Specifically, at ≤25% LSS, composites retain 80% of their strength, making them ideal for structural uses. LSS also enhances ductility and reduces dynamic modulus (18–69%), providing beneficial flexibility. UPV decreases (8–39%), indicating improved acoustic insulation. Thermal performance improves (4–18% conductivity reduction), suggesting insulation applicability. A progressive decrease in sorptivity (up to 46%) enhances durability. Crucially, the lack of ASR susceptibility reinforces long-term durability. This research significantly contributes to the repurposing of plastic waste into sustainable cement-based materials, advancing sustainable material management in the construction sector. Full article
Show Figures

Figure 1

13 pages, 286 KB  
Review
Drug Repurposing and Artificial Intelligence in Multiple Sclerosis: Emerging Strategies for Precision Therapy
by Pedro Henrique Villar-Delfino, Paulo Pereira Christo and Caroline Maria Oliveira Volpe
Sclerosis 2025, 3(3), 28; https://doi.org/10.3390/sclerosis3030028 - 6 Aug 2025
Viewed by 1139
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional [...] Read more.
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional decline. Although significant advances have been made in disease-modifying therapies (DMTs), many patients continue to experience disease progression and unmet therapeutic needs. Drug repurposing—the identification of new indications for existing drugs—has emerged as a promising strategy in MS research, offering a cost-effective and time-efficient alternative to traditional drug development. Several compounds originally developed for other diseases, including immunomodulatory, anti-inflammatory, and neuroprotective agents, are currently under investigation for their efficacy in MS. Repurposed agents, such as selective sphingosine-1-phosphate (S1P) receptor modulators, kinase inhibitors, and metabolic regulators, have demonstrated potential in promoting neuroprotection, modulating immune responses, and supporting remyelination in both preclinical and clinical settings. Simultaneously, artificial intelligence (AI) is transforming drug discovery and precision medicine in MS. Machine learning and deep learning models are being employed to analyze high-dimensional biomedical data, predict drug–target interactions, streamline drug repurposing workflows, and enhance therapeutic candidate selection. By integrating multiomics and neuroimaging data, AI tools facilitate the identification of novel targets and support patient stratification for individualized treatment. This review highlights recent advances in drug repurposing and discovery for MS, with a particular emphasis on the emerging role of AI in accelerating therapeutic innovation and optimizing treatment strategies. Full article
Show Figures

Graphical abstract

22 pages, 2357 KB  
Article
Targeting GLP-1 Signaling Ameliorates Cystogenesis in a Zebrafish Model of Nephronophthisis
by Priska Eckert, Maike Nöller, Merle Müller, Rebecca Haas, Johannes Ruf, Henriette Franz, Katharina Moos, Jia-ao Yu, Dongfang Zhao, Wanqiu Xie, Melanie Boerries, Gerd Walz and Toma A. Yakulov
Int. J. Mol. Sci. 2025, 26(15), 7366; https://doi.org/10.3390/ijms26157366 - 30 Jul 2025
Viewed by 2465
Abstract
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing [...] Read more.
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing screen in zebrafish. By simultaneously depleting nphp1 and nphp4, we developed a robust zebrafish model that reproduces key features of human NPH, including glomerular cyst formation. Our screen revealed that dipeptidyl peptidase-4 (DPP4) inhibitors (Omarigliptin and Linagliptin) and GLP-1 receptor agonists (Semaglutide) significantly reduce cystogenesis in a dose-dependent manner. Genetic analysis demonstrated that GLP-1 receptor signaling is important for maintaining pronephros integrity, with gcgra and gcgrb (GLP-1 receptor genes) playing a particularly important role. Transcriptomic profiling identified adenosine receptor A2ab (adora2ab) as a key downstream effector of GLP-1 signaling, which regulates ciliary morphology and prevents cyst formation. Notably, nphp1/nphp4 double mutant zebrafish exhibited the upregulation of gcgra as a compensatory mechanism, which might explain their resistance to cystogenesis. This compensation was disrupted by the targeted depletion of GLP-1 receptors or the inhibition of adenylate cyclase, resulting in enhanced cyst formation, specifically in the mutant background. Our findings establish a signaling cascade from GLP-1 receptors to adora2ab in terms of regulating ciliary organization and preventing cystogenesis, offering new therapeutic opportunities for NPH through the repurposing of FDA-approved medications with established safety profiles. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease: 3rd Edition)
Show Figures

Figure 1

20 pages, 12367 KB  
Article
Chemosensitizer Effects of Cisplatin- and 5-Fluorouracil-Treated Hepatocellular Carcinomas by Lidocaine
by Teng-Wei Chen, Hsiu-Lung Fan, Shu-Ting Liu and Shih-Ming Huang
Int. J. Mol. Sci. 2025, 26(15), 7137; https://doi.org/10.3390/ijms26157137 - 24 Jul 2025
Viewed by 679
Abstract
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This [...] Read more.
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This collateral damage to healthy cells, along with the potential for cancer cells to develop resistance, presents significant challenges for conventional chemotherapy in liver cancer patients. Hepatic artery infusion of chemotherapy (HAIC) generally leads to reduced toxicity and fewer side effects. The process of catheter insertion is usually performed under local anesthesia, with lidocaine being the preferred choice to combine with various chemotherapeutics in HCC treatment. In our study, we explored the effects of repurposing lidocaine in combination with cisplatin or 5-fluorouracil (5-FU) on two HCC cell lines, HepG2 and Hep3B. Our cytotoxicity analysis revealed that lidocaine functions as a chemosensitizer for cisplatin and 5-FU in both HepG2 and Hep3B cells. Specifically, we observed an increase in the subG1 population and a reduction in cytosolic reactive oxygen species in cisplatin- or 5-FU-treated HepG2 and Hep3B cells. Interestingly, lidocaine selectively decreased the reduced/oxidized glutathione ratio in cisplatin- or 5-FU-treated HepG2 cells but not in Hep3B cells. Furthermore, lidocaine induced endoplasmic reticulum stress, apoptosis, mitochondrial membrane depolarization, lipid peroxidation, and autophagy while suppressing cellular proliferation HepG2 and Hep3B cells. In conclusion, our study demonstrates the synergistic potential of combining lidocaine with cisplatin or 5-FU for the treatment of HCC, indicating that lidocaine may serve as an effective chemosensitizer. These findings highlight a new clinical advantage of using repurposing lidocaine as a chemosensitizer in the current HAIC procedure, suggesting that this combination warrants further exploration through rigorous clinical trials. In the future, we can better optimize therapeutic regimens, potentially leading to improved patient outcomes in HCCs. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: Third Edition)
Show Figures

Figure 1

Back to TopTop