Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = leukemia inhibitory factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4739 KB  
Article
EC359 Enhances Trametinib Efficacy in Ras/Raf-Driven Ovarian Cancer by Suppressing LIFR Signaling
by William C. Arnold, Durga Meenakshi Panneerdoss, Baskaran Subramani, Megharani Mahajan, Behnam Ebrahimi, Paulina Ramirez, Bindu Santhamma, Suryavathi Viswanadhapalli, Edward R. Kost, Yidong Chen, Zhao Lai, Hareesh B. Nair, Ratna K. Vadlamudi and Yasmin A. Lyons
Biomolecules 2025, 15(10), 1396; https://doi.org/10.3390/biom15101396 - 30 Sep 2025
Viewed by 239
Abstract
Ovarian cancer (OCa) remains the most lethal gynecologic malignancy in the United States, with low-grade serous and mucinous subtypes frequently driven by KRAS mutations. These mutations activate downstream MAPK and PI3K/AKT signaling pathways, contributing to tumor progression and resistance to therapy. Although the [...] Read more.
Ovarian cancer (OCa) remains the most lethal gynecologic malignancy in the United States, with low-grade serous and mucinous subtypes frequently driven by KRAS mutations. These mutations activate downstream MAPK and PI3K/AKT signaling pathways, contributing to tumor progression and resistance to therapy. Although the MEK inhibitor trametinib is used to target these pathways, its efficacy is limited in KRAS-mutant OCa due to compensatory activation of the leukemia inhibitory factor (LIF)/LIF receptor (LIFR) axis. In this study, we evaluated the therapeutic potential of combining trametinib with EC359, a selective LIFR inhibitor, in Ras/Raf-driven OCa models. EC359 significantly reduced cell viability, clonogenic survival, and induced cell death via ferroptosis in vitro. Mechanistic studies revealed that EC359 suppressed trametinib-induced activation of LIFR downstream signaling. RNA-seq analysis showed that combination therapy downregulated mitochondrial translation and MYC target genes while upregulating apoptosis-related genes. In vivo, EC359 and trametinib co-treatment significantly reduced tumor growth in xenograft and PDX models without inducing toxicity. Our studies identify LIFR signaling as a critical vulnerability in Ras/Raf-mutant and low grade serous OCa. Further, it provides strong preclinical rationale for EC359 and trametinib combination therapy as a new therapeutic strategy for treating Ras/Raf-driven OCa and low-grade serous OCa. Full article
Show Figures

Figure 1

18 pages, 2394 KB  
Article
Prostaglandin D2 Synthase: A Novel Player in the Pathological Signaling Mechanism of the Aldosterone–Mineralocorticoid Receptor Pathway in the Heart
by Ankita Garg, Malte Juchem, Sinje Biss, Carla Nunes Borisch, Julia Leonardy, Christian Bär, Shashi Kumar Gupta and Thomas Thum
Cells 2025, 14(19), 1485; https://doi.org/10.3390/cells14191485 - 23 Sep 2025
Viewed by 426
Abstract
Background: A deregulated aldosterone (Aldo)–mineralocorticoid receptor (MR) pathway is linked to cardiovascular disease (CVD), including hypertension and heart failure. Despite the association of elevated plasma Aldo levels with cardiac stress, inflammation, myocardial fibrosis, and cardiac remodeling, the underlying mechanisms remain elusive. Methods: To [...] Read more.
Background: A deregulated aldosterone (Aldo)–mineralocorticoid receptor (MR) pathway is linked to cardiovascular disease (CVD), including hypertension and heart failure. Despite the association of elevated plasma Aldo levels with cardiac stress, inflammation, myocardial fibrosis, and cardiac remodeling, the underlying mechanisms remain elusive. Methods: To study the impact of Aldo–MR pathway overactivation on cardiac health, a novel mouse model with AAV9-mediated MR overexpression and Aldo administration via subcutaneous osmotic pumps was generated. Echocardiographic analyses, transcriptome sequencing, and loss-of-function experiments of an identified lead candidate gene were performed. Additionally, cardiac tissue samples from human patients with end-stage heart failure were analyzed in the study. Results: Mice with an overactivated Aldo–MR pathway exhibited increased neutrophil gelatinase-associated lipocalin (NGAL) expression, cardiac dysfunction, hypertrophy, and fibrosis. Transcriptomics identified prostaglandin D2 synthase (Ptgds) as a novel downstream effector of the cardiac Aldo–MR pathway. SiRNA-mediated inhibition of Ptgds in primary cardiomyocytes reduced NGAL levels and the hypertrophic impact of Aldo, suggesting a role in mediating Aldo-induced cardiac pathologies. Elevated expression of PTGDS was observed in hiPSC-CMs treated with the pro-hypertrophic cytokine leukemia inhibitory factor (LIF) and in end-stage heart failure patients, ascertaining its importance in cardiac disease settings. Conclusions: PTGDS is a newly identified mediator of Aldo–MR-induced cardiac remodeling and may represent a potential therapeutic target for CVD. Full article
Show Figures

Figure 1

14 pages, 885 KB  
Review
Epigallocatechin Gallate as a Targeted Therapeutic Strategy Against the JAK2V617F Mutation: New Perspectives for the Treatment of Myeloproliferative Neoplasms and Acute Myeloid Leukemia
by Leidivan Sousa Da Cunha, Isabelle Magalhães Farias, Beatriz Maria Dias Nogueira, Caio Bezerra Machado, Flávia Melo Cunha De Pinho Pessoa, Deivide De Sousa Oliveira, Guilherme Passos de Morais, André Pontes Thé, Patrícia Maria Pontes Thé, Manoel Odorico De Moraes Filho, Maria Elisabete Amaral De Moraes and Caroline Aquino Moreira-Nunes
Int. J. Transl. Med. 2025, 5(3), 43; https://doi.org/10.3390/ijtm5030043 - 15 Sep 2025
Viewed by 2704
Abstract
The JAK2V617F mutation is a major molecular factor in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and has been increasingly associated with clonal progression to acute myeloid leukemia (AML), resulting in a poorer prognosis and resistance to conventional therapies. This study integrates a comprehensive literature [...] Read more.
The JAK2V617F mutation is a major molecular factor in Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and has been increasingly associated with clonal progression to acute myeloid leukemia (AML), resulting in a poorer prognosis and resistance to conventional therapies. This study integrates a comprehensive literature review with bioinformatic approaches to investigate the potential inhibitory activity of Epigallocatechin Gallate (EGCG), a green tea polyphenol widely recognized for its antioxidant and anticancer properties, on the JAK2V617F mutation. Clinical data from case reports demonstrated heterogeneity in disease progression and frequent therapeutic failures. Molecular docking analysis using the Janus Kinase 2 (JAK2) protein structure (PDB ID: 6D2I) identified a high-affinity binding pocket for EGCG near the V617F mutation site. EGCG exhibited strong binding affinity (−9.2 kcal/mol), forming key interactions with residues Lys581, Ile559, and Leu680, suggesting allosteric modulation of the JH2 pseudokinase domain. To validate our docking protocol, redocking of the known inhibitor AT9283 yielded a favorable Root Mean Square Deviation (RMSD) 2.683 Å and binding energy (−8.3 kcal/mol), confirming the reliability of our approach. Notably, EGCG demonstrated superior binding affinity compared to AT9283 and targets a distinct allosteric site, highlighting its unique mechanism of action and potential as a selective allosteric inhibitor. These findings position EGCG as a promising candidate for future preclinical evaluation, offering a novel strategy to overcome therapy resistance in JAK2V617F-driven malignancies. Full article
Show Figures

Figure 1

18 pages, 10575 KB  
Article
Generation of Active Neurons from Mouse Embryonic Stem Cells Using Retinoic Acid and Purmorphamine
by Ruby Vajaria, DeAsia Davis, Francesco Tamagnini, Duncan G. G. McMillan, Nandini Vasudevan and Evangelos Delivopoulos
Int. J. Mol. Sci. 2025, 26(17), 8372; https://doi.org/10.3390/ijms26178372 - 28 Aug 2025
Viewed by 545
Abstract
Multiple differentiation protocols have emerged in recent years, producing neurons with diverse morphologies, gene and protein expression profiles, and functionality. Many of these differentiation techniques require months of culture and the use of expensive growth factors. Most importantly, the derived neurons usually do [...] Read more.
Multiple differentiation protocols have emerged in recent years, producing neurons with diverse morphologies, gene and protein expression profiles, and functionality. Many of these differentiation techniques require months of culture and the use of expensive growth factors. Most importantly, the derived neurons usually do not exhibit any electrical activity. This limits the value of the protocol as a tool for engineering and investigating neural networks. Here, we describe an efficacious method for differentiating mouse embryonic stem cells into functional neurons. CGR8 cells were neurally induced via the simultaneous application of retinoic acid and purmorphamine. The derived cells expressed neuronal (TUJ1 and NeuN) and synaptic (GAD2, PSD-95, Synaptophysin, and VGLUT1) markers. During whole-cell recordings, neurons exhibited inward and outward currents, likely caused by fast-inactivating voltage-gated potassium channels. Upon current injection, miniature action potentials were also recorded. The efficient generation of diverse subtypes of functional neurons can be a useful tool in fundamental investigations of neural network activity and translational studies. Full article
(This article belongs to the Special Issue Neural Stem Cells: Latest Applications and Future Perspectives)
Show Figures

Figure 1

17 pages, 386 KB  
Article
Growth Hormone Therapy in Recurrent Implantation Failure: Stratification by FSH Receptor Polymorphism (Asn680Ser) Reveals Genotype-Specific Benefits
by Mihai Surcel, Georgiana Nemeti, Iulian Gabriel Goidescu, Romeo Micu, Cristina Zlatescu-Marton, Ariana Anamaria Cordos, Gabriela Caracostea, Ioana Cristina Rotar, Daniel Muresan and Dan Boitor-Borza
Int. J. Mol. Sci. 2025, 26(15), 7367; https://doi.org/10.3390/ijms26157367 - 30 Jul 2025
Viewed by 588
Abstract
Recurrent implantation failure (RIF) remains a challenging clinical problem. Growth hormone (GH) co-treatment has been explored as an adjunct in poor responders and RIF patients, with inconsistent evidence of benefit. This prospective cohort study assessed the impact of GH supplementation in 91 RIF [...] Read more.
Recurrent implantation failure (RIF) remains a challenging clinical problem. Growth hormone (GH) co-treatment has been explored as an adjunct in poor responders and RIF patients, with inconsistent evidence of benefit. This prospective cohort study assessed the impact of GH supplementation in 91 RIF patients undergoing in vitro fertilization, stratified by FSHR (follicular stimulating hormone receptor) genotype Asn680Ser with or without GH supplementation. Patients were stratified by FSHR genotype into homozygous Ser/Ser versus Ser/Asn or Asn/Asn groups. Overall, GH co-treatment conferred modest benefits in the unselected RIF cohort, limited to a higher cumulative live birth rate compared to controls and elevated leukemia inhibitory factor (LIF) levels (p < 0.05 both). When stratified by FSHR genotype, the Ser/Ser subgroup exhibited markedly better outcomes with GH. These patients showed a higher (0.5 vs. 0.33, p = 0.003), produced more embryos (2.88 vs. 1.53, p = 0.02), and had a markedly improved cumulative live birth rate—50% with GH versus 13% without—highlighting a clinically meaningful benefit of GH in the Ser/Ser subgroup. No significant benefit was observed in Asn allele carriers. These findings suggest that FSHR genotyping may help optimize treatment selection in RIF patients by identifying those most likely to benefit from GH supplementation. Full article
Show Figures

Figure 1

24 pages, 1394 KB  
Review
Muscle in Endocrinology: From Skeletal Muscle Hormone Regulation to Myokine Secretion and Its Implications in Endocrine–Metabolic Diseases
by Pedro Iglesias
J. Clin. Med. 2025, 14(13), 4490; https://doi.org/10.3390/jcm14134490 - 25 Jun 2025
Cited by 3 | Viewed by 3845
Abstract
Skeletal muscle, traditionally recognized for its motor function, has emerged as a key endocrine organ involved in metabolic regulation and interorgan communication. This narrative review addresses the dual role of muscle as a target tissue for classical hormones—such as growth hormone (GH), insulin-like [...] Read more.
Skeletal muscle, traditionally recognized for its motor function, has emerged as a key endocrine organ involved in metabolic regulation and interorgan communication. This narrative review addresses the dual role of muscle as a target tissue for classical hormones—such as growth hormone (GH), insulin-like growth factor type 1 (IGF-1), thyroid hormones, and sex steroids—and as a source of myokines, bioactive peptides released in response to muscle contraction that exert autocrine, paracrine, and endocrine effects. Several relevant myokines are discussed, such as irisin and Metrnl-like myokines (Metrnl), which mediate exercise-associated metabolic benefits, including improved insulin sensitivity, induction of thermogenesis in adipose tissue, and immunometabolic modulations. It also examines how muscle endocrine dysfunction, caused by chronic inflammation, hormone resistance, or sedentary lifestyle, contributes to the development and progression of metabolic diseases such as obesity, type 2 diabetes, and sarcopenia, highlighting the importance of muscle mass in the prognosis of these pathologies. Finally, the therapeutic potential of interventions aimed at preserving or enhancing muscle function—through physical exercise, hormone therapy and anabolic agents—is highlighted, together with the growing research on myokines as biomarkers and pharmacological targets. This review expands the understanding of muscle in endocrinology, proposing an integrative approach that recognizes its central role in metabolic health and its potential to innovate the clinical management of endocrine–metabolic diseases. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

14 pages, 567 KB  
Review
Pathophysiology of Endometriosis: Insights from Immunohistochemical Analysis of Ectopic and Eutopic Tissues
by Fahad T. Alotaibi
Int. J. Mol. Sci. 2025, 26(13), 5998; https://doi.org/10.3390/ijms26135998 - 22 Jun 2025
Viewed by 1131
Abstract
Endometriosis is a complex gynecological disorder characterized by the presence of endometrial-like tissue outside the uterus, leading to chronic pain and infertility. Immunohistochemistry (IHC) serves as a vital technique for elucidating the molecular and cellular differences between ectopic endometriotic tissues and eutopic endometrium. [...] Read more.
Endometriosis is a complex gynecological disorder characterized by the presence of endometrial-like tissue outside the uterus, leading to chronic pain and infertility. Immunohistochemistry (IHC) serves as a vital technique for elucidating the molecular and cellular differences between ectopic endometriotic tissues and eutopic endometrium. IHC reveals significant variations in the expression of inflammatory markers, adhesion molecules, and cell cycle regulators. This literature review compiles findings from various studies that assess the role of key proteins, such as leukemia inhibitory factor (LIF), cyclooxygenase-2 (COX-2), and b-cell lymphoma 2 (BCL-2), across different menstrual phases and lesion types. Notably, elevated LIF levels and increased mast cell activity in ectopic tissues underscore the inflammatory landscape of endometriosis. Additionally, altered expression of adhesion molecules like integrins and cluster of differentiation 44 (CD44) suggests modified cellular interactions, while apoptotic markers reveal a survival advantage for ectopic cells. These insights enhance our understanding of endometriosis pathophysiology. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

16 pages, 1003 KB  
Review
Biological Actions of Bile Acids via Cell Surface Receptors
by Yoshimitsu Kiriyama, Hiroshi Tokumaru, Hisayo Sadamoto and Hiromi Nochi
Int. J. Mol. Sci. 2025, 26(11), 5004; https://doi.org/10.3390/ijms26115004 - 22 May 2025
Viewed by 1581
Abstract
Bile acids (BAs) are synthesized in the liver from cholesterol and are subsequently conjugated with glycine and taurine. In the intestine, bile acids undergo various modifications, such as deconjugation, dehydrogenation, oxidation, and epimerization by the gut microbiota. These bile acids are absorbed in [...] Read more.
Bile acids (BAs) are synthesized in the liver from cholesterol and are subsequently conjugated with glycine and taurine. In the intestine, bile acids undergo various modifications, such as deconjugation, dehydrogenation, oxidation, and epimerization by the gut microbiota. These bile acids are absorbed in the intestine and transported to the liver as well as the systemic circulation. BAs can activate many types of receptors, including nuclear receptors and cell surface receptors. By activating these receptors, BAs can exert various effects on the metabolic, immune, and nervous systems. Recently, the detailed structure of TGR5, the major plasma membrane receptor for BAs, was elucidated, revealing a putative second BA binding site along with the orthosteric binding site. Furthermore, BAs act as ligands for bitter taste receptors and the Leukemia inhibitory factor receptor. In addition, the Mas-related, G-protein-coupled receptor X4 interacts with receptor activity-modifying proteins. Thus, a variety of cell surface receptors are associated with BAs, and BAs are thought to have very complex activities. This review focuses on recent advances regarding cell surface receptors for bile acids and the biological actions they mediate. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1833 KB  
Article
Sex- and Tissue-Specific Effects of Leukemia Inhibitory Factor on Mitochondrial Bioenergetics Following Ischemic Stroke
by Hemendra J. Vekaria, Sarah J. Shelley, Sarah J. Messmer, Prashant D. Kunjadia, Christopher J. McLouth, Patrick G. Sullivan, Justin F. Fraser, Keith R. Pennypacker and Chirayu D. Pandya
Biomolecules 2025, 15(5), 738; https://doi.org/10.3390/biom15050738 - 20 May 2025
Viewed by 837
Abstract
Oxidative stress due to increased reactive oxygen species (ROS) formation and/or inflammation is considered to play an important role in ischemic stroke injury. Leukemia inhibitory factor (LIF) has been shown to protect both oligodendrocytes and neurons from ischemia by upregulating endogenous anti-oxidants, though [...] Read more.
Oxidative stress due to increased reactive oxygen species (ROS) formation and/or inflammation is considered to play an important role in ischemic stroke injury. Leukemia inhibitory factor (LIF) has been shown to protect both oligodendrocytes and neurons from ischemia by upregulating endogenous anti-oxidants, though the effect of ischemia and the protective role of LIF treatment in mitochondrial function have not been studied. The goal of this study was to determine whether LIF protects ischemia-induced altered mitochondrial bioenergetics in reproductively senescent aged rats of both sexes (≥18 months old), approximately equivalent to the average age of human stroke patients. Animals were euthanized at 3 days after permanent middle cerebral artery occlusion (MCAO) surgery. We found that MCAO surgery significantly reduced mitochondrial oxidative phosphorylation in both the ipsilateral striatum and prefrontal cortex in male aged rats compared to their respective contralateral regions of the brain. MCAO injury showed mitochondrial bioenergetic dysfunction only in the striatum in female rats; however, the prefrontal cortex remained unaffected to the injury. LIF-treated rats significantly prevented mitochondrial dysfunction in the striatum in male rats compared to their vehicle-treated counterparts. Collectively, MCAO-induced mitochondrial dysfunction and LIF’s potential as a therapeutic biomolecule exhibited sex- and tissue-specific effects, varying between the striatum and prefrontal cortex in male and female rats. Full article
Show Figures

Figure 1

15 pages, 14165 KB  
Article
LIFR-Mediated ERBB2 Signaling Is Essential for Successful Embryo Implantation in Mice
by Jumpei Terakawa, Sakura Nakamura, Mana Ohtomo, Saki Uehara, Yui Kawata, Shunsuke Takarabe, Hibiki Sugita, Takafumi Namiki, Atsuko Kageyama, Michiko Noguchi, Hironobu Murakami, Naomi Kashiwazaki and Junya Ito
Biomolecules 2025, 15(5), 698; https://doi.org/10.3390/biom15050698 - 10 May 2025
Cited by 1 | Viewed by 1113
Abstract
In eutherian mammals, embryo implantation is a critical process for a successful pregnancy. In mice, the activation of the leukemia inhibitory factor (LIF) receptor–STAT3 signaling axis induces embryo adhesion and decidualization. The LIF receptor is believed to function as a heterodimer composed of [...] Read more.
In eutherian mammals, embryo implantation is a critical process for a successful pregnancy. In mice, the activation of the leukemia inhibitory factor (LIF) receptor–STAT3 signaling axis induces embryo adhesion and decidualization. The LIF receptor is believed to function as a heterodimer composed of LIFR (encoded by Lifr) and GP130 (encoded by Il6st); however, their distinct expression patterns in the uterine epithelium immediately prior to implantation suggest divergent functional roles. In this study, we generated uterine epithelium-specific Lifr knockout (Lifr eKO) mice and conducted a comprehensive gene expression analysis of the endometrium before implantation. We compared these results with those from uterine epithelium-specific Gp130 knockout (Gp130 eKO) mice. Similarly to Gp130 eKO mice, Lifr eKO mice were completely infertile. We identified 299 genes with expression changes greater than twofold following gene deletion; among these, 31 genes were downregulated and 57 genes were upregulated in both eKO models. Many of the downregulated genes were previously implicated in uterine function. Hub gene analysis identified Erbb2 and c-Fos as key regulators in both models. Further experiments using an ERBB2 inhibitor suggested that LIFR–ERBB2-mediated signaling plays a crucial role in embryo implantation. Full article
(This article belongs to the Special Issue Properties and Functions of Endometrial Stromal Cells)
Show Figures

Figure 1

29 pages, 3410 KB  
Review
HOXA10 and HOXA11 in Human Endometrial Benign Disorders: Unraveling Molecular Pathways and Their Impact on Reproduction
by Lorin-Manuel Pîrlog, Andrada-Adelaida Pătrășcanu, Mara-Diana Ona, Andreea Cătană and Ioana Cristina Rotar
Biomolecules 2025, 15(4), 563; https://doi.org/10.3390/biom15040563 - 10 Apr 2025
Cited by 3 | Viewed by 2675
Abstract
HOX genes, a family of conserved transcription factors, are critical for reproductive tract development and endometrial functionality. This review highlights the molecular underpinnings of HOXA10/HOXA11 in reproductive health and their dysregulation in benign pathologies associated with infertility, such as endometriosis, adenomyosis, and endometrial [...] Read more.
HOX genes, a family of conserved transcription factors, are critical for reproductive tract development and endometrial functionality. This review highlights the molecular underpinnings of HOXA10/HOXA11 in reproductive health and their dysregulation in benign pathologies associated with infertility, such as endometriosis, adenomyosis, and endometrial polyps. These genes are dynamically regulated by estrogen and progesterone, with peak expression during the secretory phase of the menstrual cycle when implantation takes place. The molecular mechanisms underlying their action include the modulation of extracellular matrix (ECM) remodeling via metalloproteinases, cytokines like leukemia inhibitory factor, and cell adhesion molecules such as β3-integrin, all of which are essential for the differentiation of epithelial and stromal cells, as well as for trophoblast invasion. Aberrant HOX gene expression, driven by DNA hypermethylation or altered histone acetylation, compromises endometrial receptivity and implantation. For instance, reduced HOXA10 expression in endometriosis stems from hypermethylation and chronic inflammation, disrupting immune modulation and cytokine signaling. Similarly, adenomyosis alters HOXA11-regulated ECM remodeling and β3-integrin expression, impairing embryo attachment. Furthermore, regulatory pathways involving vitamin D and retinoic acid offer promising therapeutic avenues pathways, as they enhance HOXA10/HOXA11 expression and endometrial receptivity. This review underscores the critical molecular roles of HOXA10/HOXA11 genes as biomarkers and therapeutic targets to optimize fertility outcomes and address reproductive pathologies. Full article
Show Figures

Figure 1

13 pages, 2029 KB  
Article
Human Recombinant Interleukin-6 and Leukemia Inhibitory Factor Improve Inner Cell Mass Cell Number but Lack Cryoprotective Activities on In Vitro-Produced Bovine Blastocysts
by Mary A. Oliver, Kayla J. Alward, Michelle L. Rhoads and Alan D. Ealy
Animals 2025, 15(5), 668; https://doi.org/10.3390/ani15050668 - 25 Feb 2025
Cited by 1 | Viewed by 946
Abstract
This work explored whether supplementing recombinant human interleukin-6 (IL6), interleukin-11 (IL11), or leukemia inhibitory factor (LIF) improves IVP bovine embryo development, morphology, and cryosurvivability. Embryos were treated from day 5 to 8 post-fertilization with either the carrier only (control) or 100 ng/mL of [...] Read more.
This work explored whether supplementing recombinant human interleukin-6 (IL6), interleukin-11 (IL11), or leukemia inhibitory factor (LIF) improves IVP bovine embryo development, morphology, and cryosurvivability. Embryos were treated from day 5 to 8 post-fertilization with either the carrier only (control) or 100 ng/mL of IL6, IL11, or LIF. Blastocyst formation and stage were determined on day 7 and 8. A subset of day 8 blastocysts was processed for immunofluorescence to count trophectoderm (TE) and inner cell mass (ICM) cell numbers and another subset was slow frozen and stored in liquid nitrogen until thawing. No differences in the blastocyst rate or blastocyst stage of development were detected. Increases in ICM cell numbers were observed for IL6 and LIF but not the IL11 treatment. None of the cytokine treatments applied before freezing affected post-thaw survival, TE or ICM cell number, or cell death 24 h after thawing. In conclusion, supplementing IL6 and LIF improves ICM cell numbers in non-frozen blastocysts, but there was no evidence that any of these cytokine treatments contain cryoprotective properties in bovine embryos. Full article
(This article belongs to the Special Issue Recent Advances in Reproductive Biotechnologies—Second Edition)
Show Figures

Figure 1

12 pages, 2507 KB  
Article
Targeting the Leukemia Inhibitory Factor/Leukemia Inhibitory Factor Receptor Axis Reduces the Growth of Inflammatory Breast Cancer by Promoting Ferroptosis
by Bianca Romo, Zenaida Fuentes, Lois Randolph, Megharani Mahajan, Emily J. Aller, Behnam Ebrahimi, Bindu Santhamma, Uday P. Pratap, Panneerdoss Subbarayalu, Harika Nagandla, Christoforos Thomas, Hareesh B. Nair, Ratna K. Vadlamudi and Suryavathi Viswanadhapalli
Cancers 2025, 17(5), 790; https://doi.org/10.3390/cancers17050790 - 25 Feb 2025
Cited by 1 | Viewed by 1407
Abstract
Background: Inflammatory breast cancer (IBC) is a rare subtype of breast cancer accounting for 7% of breast cancer-related fatalities. There is an urgent need to develop new targeted treatments for IBC. The progression of IBC has been associated with alterations in growth factor [...] Read more.
Background: Inflammatory breast cancer (IBC) is a rare subtype of breast cancer accounting for 7% of breast cancer-related fatalities. There is an urgent need to develop new targeted treatments for IBC. The progression of IBC has been associated with alterations in growth factor and cytokine signaling; however, the function of the LIF (leukemia inhibitory factor)/LIFR (leukemia inhibitory factor receptor) cytokine pathway in the progression of IBC remains unknown. This study evaluated the role of LIFR signaling and tested the efficacy of the LIFR inhibitor EC359 in treating IBC. Methods: The utility of using LIFR inhibition as a treatment strategy in IBC was tested using cell survival, apoptosis, colony formation, invasion, and pre-clinical KPL4 xenografts. Western blotting, siRNA, RT-qPCR, and lipid peroxidation assays were used to establish the mechanism of EC359 therapy. Results: The reduction in LIFR levels using siRNA markedly decreased growth in colony formation assays and reduced the invasion of IBC cells. Pharmacological inhibition of LIFR with EC359 effectively reduced cell survival and the clonogenic capacity of IBC cells. RT-qPCR assays revealed that EC359 markedly decreased the expression of the LIFR target genes. Western blot analyses confirmed that EC359 treatment suppressed downstream LIF/LIFR signaling pathways and promoted apoptosis. Treatment of cells with the ferroptosis inhibitor Fer-1 negated the capacity of EC359 to induce apoptosis. Mechanistic investigations demonstrated that EC359 predominantly triggered ferroptosis by inhibiting the glutathione antioxidant defense system through the downregulation of Glutathione peroxidase 4 (GPX4) levels. EC359 (5 mg/kg/day) was effective in reducing the growth of the IBC KPL4 xenograft tumors. Conclusion: These findings demonstrates that LIFR inhibition promote ferroptosis-mediated cell death in IBC and that EC359 represent novel therapeutic for IBC treatment. Full article
(This article belongs to the Special Issue Signaling Pathways in Breast Cancer: 2nd Edition)
Show Figures

Figure 1

24 pages, 13647 KB  
Article
Blockade of LIF and PD-L1 Enhances Chemotherapy in Preclinical PDAC Models
by Jian Ye, Shuyang S. Qin, Angela L. Hughson, Gary Hannon, Tara G. Vrooman, Maggie L. Lesch, Sarah L. Eckl, Lauren Benoodt, Bradley N. Mills, Edith M. Lord, Brian A. Belt, David C. Linehan, Nadia Luheshi, Jim Eyles and Scott A. Gerber
Cancers 2025, 17(2), 204; https://doi.org/10.3390/cancers17020204 - 9 Jan 2025
Cited by 1 | Viewed by 2009
Abstract
Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial–mesenchymal transition [...] Read more.
Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial–mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy. Methods: We assessed the combination of chemotherapy (gemcitabine/nab-paclitaxel) and dual blockade of LIF and PD-L1 on tumor growth and survival in orthotopic and spontaneous PDAC models. Flow cytometry and scRNA-seq were utilized to monitor the antitumor immune response. The role of key immune cells was further confirmed by depleting these immune cells, including CD4, CD8, or inflammatory monocytes. Results: Sequential treatment with chemotherapy (gemcitabine/nab-paclitaxel) and dual blockade of LIF and PD-L1 significantly improved antitumor efficacy compared to monotherapy or dual combinations of these therapies. This chemo/anti-LIF/anti-PD-L1 approach reduced EMT in tumor cells and enhanced the antitumor immune response, primarily through CD8 T cells, as depleting CD8 cells largely abrogated the effect of treatment. This combination therapy also shifted macrophages and dendritic cells towards an antitumor phenotype. Conclusions: The combination of chemotherapy, anti-LIF, and anti-PD-L1 not only targeted tumor cells but also augmented the anti-tumor immune response. These findings strongly support advancing chemo/anti-LIF/anti-PD-L1 combination therapy to clinical trials in PDAC. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

20 pages, 2879 KB  
Article
Activation of Bradykinin B2 Receptors in Astrocytes Stimulates the Release of Leukemia Inhibitory Factor for Autocrine and Paracrine Signaling
by Ying Lu, Yishan Gu, Anthony S. L. Chan, Ying Yung and Yung H. Wong
Int. J. Mol. Sci. 2024, 25(23), 13079; https://doi.org/10.3390/ijms252313079 - 5 Dec 2024
Viewed by 1570
Abstract
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we [...] Read more.
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons. In astrocytic cell lines and primary astrocytes, bradykinin and several other ligands acting on Gq-coupled receptors stimulated Ca2+ mobilization, which subsequently led to the release of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The bradykinin B2 receptor antagonist, HOE-140, effectively blocked the ability of bradykinin to mobilize Ca2+ and stimulate mitogen-activated protein kinases (MAPKs) in astrocytes. Interestingly, incubation of neuronal cell lines and primary cortical neurons with conditioned media from bradykinin-treated astrocytes resulted in the activation of STAT3, a key component downstream of LIF and IL-6 receptors. LIF was apparently the major active factor in the conditioned media as the STAT3 response was almost completely neutralized by an anti-LIF antiserum. The presence of kininogen and kallikrein transcripts in neuronal cells but not in astrocytic cells indicates that neurons can produce bradykinin. Correspondingly, conditioned media from neuronal cells stimulated MAPKs in astrocytes in a HOE-140-sensitive manner. These studies demonstrate that paracrine signaling between neurons and astrocytes may involve ligands of Gq-coupled receptors and cytokines such as LIF. Full article
Show Figures

Figure 1

Back to TopTop