Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,625)

Search Parameters:
Keywords = light irradiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2599 KB  
Article
Facile Synthesis of Ni3S2/ZnIn2S4 Photocatalysts for Benzyl Alcohol Splitting: A Pathway to Sustainable Hydrogen and Benzaldehyde
by Haibo Wang, Chen Zhou and Shengyang Yang
Catalysts 2025, 15(9), 830; https://doi.org/10.3390/catal15090830 (registering DOI) - 1 Sep 2025
Abstract
The escalating concerns about global warming and energy shortages have presented an urgent need for efficient and environmentally sustainable hydrogen production methods. This work presents an efficient Ni3S2/ZnIn2S4 (ZIS) composite photocatalyst synthesized via a hydrothermal process, [...] Read more.
The escalating concerns about global warming and energy shortages have presented an urgent need for efficient and environmentally sustainable hydrogen production methods. This work presents an efficient Ni3S2/ZnIn2S4 (ZIS) composite photocatalyst synthesized via a hydrothermal process, demonstrating enhanced performance for hydrogen evolution and benzyl alcohol oxidation under visible-light irradiation. Specifically, the optimized 3.2% Ni3S2/ZIS composite achieves hydrogen and benzaldehyde production rates of 4.342 mmol g–1 h–1 and 4.213 mmol g–1 h–1, respectively, 1.79 and 1.76 times greater than those of pristine ZIS. The system exhibits excellent selectivity, producing benzaldehyde as the sole by-product, and maintains stability over multiple reaction cycles. Mechanistic studies reveal that Ni3S2 facilitates charge separation and accelerates reaction dynamics by providing conductive channels and enhancing catalytic activity at the ZIS interface. These findings highlight the potential of Ni3S2/ZIS composites as cost-effective, scalable, and noble-metal-free photocatalysts for hydrogen production and green chemical synthesis, offering a promising pathway toward energy sustainability. Full article
Show Figures

Figure 1

15 pages, 6600 KB  
Article
Visible-Light-Controlled Thermal Energy Storage and Release: A Tetra-Ortho-Fluorinated Azobenzene-Doped Composite Phase Change Material
by Yating Zhang, Jing Qi, Jun Xia, Fei Zhai and Liqi Dong
Molecules 2025, 30(17), 3576; https://doi.org/10.3390/molecules30173576 (registering DOI) - 31 Aug 2025
Abstract
Organic phase change materials (OPCMs) offer high energy density for thermal storage but suffer from crystallization kinetics dependent on ambient temperature, leading to uncontrolled heat release and limited storage lifetime. Although doping OPCMs with azobenzene (Azo) derivatives enables optically controlled energy storage and [...] Read more.
Organic phase change materials (OPCMs) offer high energy density for thermal storage but suffer from crystallization kinetics dependent on ambient temperature, leading to uncontrolled heat release and limited storage lifetime. Although doping OPCMs with azobenzene (Azo) derivatives enables optically controlled energy storage and release, existing systems require UV irradiation for E-to-Z isomerization. This UV dependency seriously hinders their development in practical solar applications. Herein, we develop a visible-light-responsive Azo@OPCM composite by doping tetra-ortho-fluorinated azobenzene into eicosane. Systematic characterization of composites with different dopant ratios via UV–visible spectroscopy and differential scanning calorimetry reveals that green-light irradiation drives E-to-Z isomerization, achieving 97–99% Z-isomer conversion. This photoisomerization could introduce supercooling through photo-responsive energy barriers generated by Z-isomer, allowing thermal energy storage at lower temperatures. Subsequent blue-light irradiation triggers Z-to-E reversion to eliminate supercooling and enable optically controlled heat release. Additionally, by regulating the molar ratios of dopant, the optimized composites achieved 280.76 J/g energy density at 20% molar doping ratio, which surpassed that of pure eicosane and the reported Azo-based photothermal energy storage system. This work establishes a complete visible-light-controlled energy harvesting–storage–release cycle with significant potential for near-room-temperature solar thermal storage applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

23 pages, 3279 KB  
Article
CFD Analysis of Irradiance and Its Distribution in a Photovoltaic Greenhouse
by Meir Teitel, Shay Ozer and Helena Vitoshkin
Agriculture 2025, 15(17), 1867; https://doi.org/10.3390/agriculture15171867 - 31 Aug 2025
Abstract
The integration of photovoltaic (PV) panels in greenhouses enables dual land use, combining crop production with electricity generation. However, PV installations can reduce both the intensity and uniformity of light at the canopy level, potentially affecting crop growth. This study employed computational fluid [...] Read more.
The integration of photovoltaic (PV) panels in greenhouses enables dual land use, combining crop production with electricity generation. However, PV installations can reduce both the intensity and uniformity of light at the canopy level, potentially affecting crop growth. This study employed computational fluid dynamics (CFD) simulations to evaluate the effects of different layouts of commercial-size thin PV modules—both opaque and semi-transparent—installed at gutter height in greenhouses on irradiance and, in particular, on its distribution within the greenhouse. Achieving a homogeneous distribution of light is critical for effective plant growth beneath photovoltaic systems. The influence of greenhouse size and roof shape on the intensity and uniformity of visible radiation was investigated as well. The results showed that during winter (21 December), irradiance in a mono-span tunnel greenhouse was 4–6% higher than in a multi-span large structure; in summer (21 June), this difference increased to 10–13%. Among the opaque PV layouts tested, the north–south (NS) straight-line arrangement provided the most uniform light distribution, outperforming the checkerboard and east–west (EW) layouts. The EW straight-line layout was the least effective regarding light uniformity. Roof shape (arched vs. pitched) had minimal impact on radiation distribution. Semi-transparent PV modules consistently resulted in 17% higher irradiance and more uniform light distribution than opaque ones. These findings can inform efficient PV deployment strategies in greenhouses to enhance both energy yield and crop productivity. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 1673 KB  
Article
Absorption, Thermal Relaxation Time, and Beam Penetration Depth of Laser Wavelengths in Ex Vivo Porcine Gingival Tissues
by Mayssaa Ismail, Thibault Michel, Daniel Heysselaer, Saad Houeis, Andre Peremans, Alain Vanheusden and Samir Nammour
Dent. J. 2025, 13(9), 397; https://doi.org/10.3390/dj13090397 (registering DOI) - 29 Aug 2025
Viewed by 51
Abstract
Background/Objectives: The laser beam absorption and thermal relaxation time (TRT) in oral tissues are key to optimizing treatment parameters. The aim of this study is to (1) evaluate, in an ex vivo study, the percentage of attenuation and transmittance of each wavelength [...] Read more.
Background/Objectives: The laser beam absorption and thermal relaxation time (TRT) in oral tissues are key to optimizing treatment parameters. The aim of this study is to (1) evaluate, in an ex vivo study, the percentage of attenuation and transmittance of each wavelength as a function of tissue thickness; (2) determine the global absorption coefficient, α, of pig gingival tissue for the most commonly used wavelengths in dentistry; (3) calculate the thermal relaxation time (TRT) of oral tissue for these wavelengths; and (4) determine their corresponding penetration depths. Methods: We measured the transmission of different laser wavelengths through pig oral gingival tissues (Mandibular labial gingiva). We placed each tissue sample between two glass slides with minimal light attenuation. The input and output powers were measured after irradiating the tissue at different specific wavelengths: 450 nm, 480 nm, 532 nm, 632 nm, 810 nm, 940 and 980 nm, 1064 nm, 1341, 2780 nm and 2940 nm. After calculating the transmittance values, we plotted transmittance curves for each wavelength. Using the Beer–Lambert law, we then calculated the absorption coefficient (α) of each wavelength in the oral gingival tissue. Absorption coefficients were then used to calculate the TRT and penetration depth for each wavelength. Results: Among the tested wavelengths, 810 nm exhibited the lowest absorption in ex vivo porcine gingival tissue (α = 9.60 cm−1). The 450 nm blue laser showed moderate absorption (α = 26.8 cm−1), while the Er:YAG laser at 2940 nm demonstrated the highest absorption (α = 144.8 cm−1). We ranked the wavelengths from most absorbed to least absorbed by porcine oral gingival mucosa as follows: 2940 nm > 2780 nm > 450 nm > 480 nm > 532 nm > 1341 nm > 632 nm > 940 nm > 980 nm > 1064 nm > 810 nm. Conclusions: Absorption and the TRT vary significantly across wavelengths. Erbium lasers are characterized by the highest absorption and minimal light penetration. Infrared diodes, particularly the 810 nm wavelength, showed the lowest absorption and deepest tissue penetration and exhibited the highest thermal relaxation time. The 480 nm laser demonstrated greater absorption by porcine gingival tissue compared to the 532 nm laser. These findings provide evidence-based guidance for wavelength selection in dental treatments and photobiomodulation, enabling improved precision, safety, and therapeutic efficacy in clinical practice. Full article
(This article belongs to the Special Issue Photobiomodulation Research and Applications in Dentistry)
Show Figures

Figure 1

15 pages, 3131 KB  
Article
Effects of Red and Blue Laser Irradiation on the Growth and Development of Ostrinia furnacalis
by Xuemei Liang, Xintong Dai, Li Qin, Xiao Feng, Ge Chen and Minglai Yang
Insects 2025, 16(9), 906; https://doi.org/10.3390/insects16090906 - 29 Aug 2025
Viewed by 106
Abstract
This study evaluated the effects of red and blue laser irradiation on the development and reproduction of the Asian corn borer (Ostrinia furnacalis (Guenée)) under controlled laboratory conditions, aiming to explore its potential for non-chemical pest control. Larvae were exposed to laser [...] Read more.
This study evaluated the effects of red and blue laser irradiation on the development and reproduction of the Asian corn borer (Ostrinia furnacalis (Guenée)) under controlled laboratory conditions, aiming to explore its potential for non-chemical pest control. Larvae were exposed to laser light at different wavelengths and intensities, and key biological parameters—including egg hatching, larval duration, pupation, adult emergence, and oviposition—were assessed. Red laser light slightly delayed egg hatching but had minimal effects on subsequent developmental stages. In contrast, blue laser irradiation significantly prolonged the larval period and reduced pupation rates. Combined red–blue treatments produced similar inhibitory effects to blue light alone, suggesting that blue wavelengths were the primary factor driving developmental delays. These findings demonstrate that blue and red–blue laser irradiation can effectively interfere with the life cycle of O. furnacalis, offering a promising approach for sustainable, light-based pest management strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

24 pages, 3174 KB  
Article
Innovative Z-Scheme Heterojunction Photocatalyst ZnBiGdO4/SnS2 for Photocatalytic Degradation of Tinidazole Under Visible Light Irradiation
by Jingfei Luan, Boyang Liu, Liang Hao, Wenchen Han and Anan Liu
Int. J. Mol. Sci. 2025, 26(17), 8366; https://doi.org/10.3390/ijms26178366 - 28 Aug 2025
Viewed by 131
Abstract
A high-performance Z-scheme heterojunction photocatalytic compound, ZnBiGdO4/SnS2 (ZS), was prepared for the first time using a microwave-assisted solvothermal method. ZS significantly improved the separation efficiency of photoinduced carriers and effectively broadened the response range to visible light through the unique [...] Read more.
A high-performance Z-scheme heterojunction photocatalytic compound, ZnBiGdO4/SnS2 (ZS), was prepared for the first time using a microwave-assisted solvothermal method. ZS significantly improved the separation efficiency of photoinduced carriers and effectively broadened the response range to visible light through the unique mechanism of the Z-type heterojunction. Therefore, ZS exhibited an excellent photocatalytic performance during the degradation process of tinidazole (TNZ). Specifically, the removal rate of TNZ by ZS reached 99.63%, and the removal rate of total organic carbon (TOC) reached 98.37% with ZS as catalyst under visible light irradiation (VLIN). Compared to other photocatalysts, the photocatalytic performance of ZS was significantly better than that of ZnBiGdO4, SnS2, or N-doped TiO2 (N-T). The removal rate of TNZ by ZS was 1.12 times, 1.26 times, or 2.41 times higher than that by ZnBiGdO4, SnS2, or N-T, respectively. The mineralization efficiency of TNZ for TOC with ZS as a catalyst was 1.15 times, 1.28 times, or 2.57 times higher than that with ZnBiGdO4, SnS2, or N-T as a catalyst, respectively. Free radical scavenging experiments and the electron paramagnetic resonance experiments confirmed that ZS could generate multiple reactive species such as hydroxyl radicals (•OH), superoxide anions (•O2), and photoinduced holes (h+) during the photocatalytic degradation process of TNZ. The photocatalytic degradation performance of ZS on TNZ under VLIN was evaluated, concurrently, the reliability, reproducibility, and stability of ZS were verified by five cycle experiments. This study explored the degradation mechanism and degradation pathway of TNZ with ZS as a catalyst under VLIN. This study not only provides new ideas for the design and preparation of Z-type heterojunction photocatalysts but also lays an important foundation for the development of efficient environmental remediation technologies for TNZ pollution. Full article
(This article belongs to the Special Issue Latest Research in Photocatalysis)
Show Figures

Figure 1

23 pages, 2150 KB  
Article
Visible-Light-Driven Ferrioxalate Activation for Dye Degradation in a Recirculating Photoreactor: LED vs. Fluorescent Light Sources
by Slimane Merouani, Amina Kadri and Halima Chouib
Processes 2025, 13(9), 2716; https://doi.org/10.3390/pr13092716 - 26 Aug 2025
Viewed by 292
Abstract
This study explores the visible-light-driven photolysis of Ferrioxalate complexes for the degradation of Toluidine Blue (TB), a persistent phenothiazine dye, using a 1 L recirculating batch-loop photoreactor. The reactor system incorporated two tubular photochemical units (35 cm × 3 cm each) in series: [...] Read more.
This study explores the visible-light-driven photolysis of Ferrioxalate complexes for the degradation of Toluidine Blue (TB), a persistent phenothiazine dye, using a 1 L recirculating batch-loop photoreactor. The reactor system incorporated two tubular photochemical units (35 cm × 3 cm each) in series: the first equipped with an immersed blue fluorescent lamp (12 W, 30 cm-tube), and the second with dual external blue LED lamps (18 W total, 30 cm) encasing a double-walled glass cell. Continuous flow between the units was maintained via a peristaltic pump. Experimental investigations were used to evaluate the effects of key parameters such as Fe(III) and oxalate concentrations, initial TB load, pH, light source, flow rate, ligand type, dissolved gas type, external H2O2 addition, and the presence of various inorganic ions. The results demonstrate efficient dye degradation, with ~75% TB removal within 1 h under combined fluorescent and LED irradiation, where each reactor contributing comparably. The optimal performance was achieved at pH 4, with a 10 oxalate-to-Fe(III) molar ratio (1 mM:0.1 mM) and a flow rate of 25 mL s−1. Among various ligands tested (oxalate, acetate, citrate, EDTA), oxalate proved to be the most effective. The presence and type of anions significantly influenced degradation efficiency due to their potential scavenging effects. Although the process achieved high dye removal, TOC analysis indicated only moderate mineralization, suggesting the accumulation of non-colored intermediates. External H2O2 addition moderately improved TOC removal, likely due to enhanced hydroxyl radical generation via the Fenton mechanism. These findings highlight the promise of Ferrioxalate-based photochemical systems under visible light for dye removal, while also emphasizing the need for further research into by-product identification, mineralization enhancement, and toxicity reduction to ensure safe effluent discharge. Full article
Show Figures

Figure 1

13 pages, 1166 KB  
Article
Conversion and Tack-Curing of Light-Cured Veneer Luting Agents
by Aikaterini Petropoulou, Maria Dimitriadi, Spiros Zinelis, Ioannis Papathanasiou and George Eliades
J. Funct. Biomater. 2025, 16(9), 307; https://doi.org/10.3390/jfb16090307 - 26 Aug 2025
Viewed by 395
Abstract
Light attenuation and excess handling of light-cured luting agents create problems in bonding veneer restorations. The aim of the present study was to assess the curing capacity of light-cured veneer luting agents (VLA) [Choice 2 (CH2), G-Cem Veneer (GCV), Panavia LC Veneer (PNV), [...] Read more.
Light attenuation and excess handling of light-cured luting agents create problems in bonding veneer restorations. The aim of the present study was to assess the curing capacity of light-cured veneer luting agents (VLA) [Choice 2 (CH2), G-Cem Veneer (GCV), Panavia LC Veneer (PNV), PermaCem LC Veneer (PMS), and Variolink Esthetic LC (VEV)] under lithium disilicate veneers, in the presence or absence of touch-cure primers (Adhese Universal Bond DC for VEV, G Premio Bond + DCA Activator for GCV, and V5 Tooth Primer V5 for PNV) and to evaluate material setting under two tack-curing irradiation modes (contact, distant). The methods used were ATR–FTIR spectroscopy and Vickers hardness (VHN) tests (n = 5/product and test). According to the results, all materials cured under the ceramic demonstrated significantly lower DC% from the controls, with a ranking of VEV, CH2 > GCV, PMS, PNV. The primers improved DC% by 4–13% only in the veneer groups. Tack-curing in contact mode demonstrated conversion and hardness values ranging from 37% to 78% and 31% to 57% of the controls respectively, corresponding to a vitreous state. For the distant mode, very low conversion values were found (0–7% of the controls), with untraceable indentations. It can be concluded that low translucency veneers reduce conversion of VLAs, which can be improved by using touch-cure activators. Tack-curing, as instructed, creates vitrified materials, resulting in difficult removal of set excess, which implies the need for better standardization of the procedure. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

20 pages, 4657 KB  
Article
Experimental and Numerical Analysis of Nozzle-Induced Cavitating Jets: Optical Instrumentation, Pressure Fluctuations and Anisotropic Turbulence Modeling
by Luís Gustavo Macêdo West, André Jackson Ramos Simões, Leandro do Rozário Teixeira, Igor Silva Moreira dos Anjos, Antônio Samuel Bacelar de Freitas Devesa, Lucas Ramalho Oliveira, Juliane Grasiela de Carvalho Gomes, Leonardo Rafael Teixeira Cotrim Gomes, Lucas Gomes Pereira, Luiz Carlos Simões Soares Junior, Germano Pinto Guedes, Geydison Gonzaga Demetino, Marcus Vinícius Santos da Silva, Vitor Leão Filardi, Vitor Pinheiro Ferreira, André Luiz Andrade Simões, Luciano Matos Queiroz and Iuri Muniz Pepe
Fluids 2025, 10(9), 223; https://doi.org/10.3390/fluids10090223 - 26 Aug 2025
Viewed by 297
Abstract
Cavitation has been widely explored to enhance physical and chemical processes across various applications. This study aimed to model the key characteristics of a cavitation jet, induced by a triangular-orifice nozzle, using both experimental and numerical methods. Optical instrumentation, a pressure transducer and [...] Read more.
Cavitation has been widely explored to enhance physical and chemical processes across various applications. This study aimed to model the key characteristics of a cavitation jet, induced by a triangular-orifice nozzle, using both experimental and numerical methods. Optical instrumentation, a pressure transducer and the Reynolds-Averaged Navier–Stokes (RANS) equations were employed. Optical instrumentation and high-speed photography detected the two-phase flow generated by water vaporization, revealing a mean decay pattern. Irradiance fluctuations and photographic evidence provided results about the light transmission dynamics through cavitating jets. Pressure fluctuations exhibited similar growth and decay, supporting optical instrumentation as a viable method for assessing cavitation intensity. Experimental data showed a strong relationship between irradiance and flow rate (R2 = 0.998). This enabled the correlation of the standard deviation of instantaneous pressure measurements and normalized flow rate (R2 = 0.977). Furthermore, vapor volume fraction and normalized flow rate reached a correlation coefficient of 0.999. On the simulation side, the SSG-RSM turbulence mode showed better agreement with experimental data, with relative deviations ranging from 2.1% to 6.6%. The numerical results suggest that vapor jet length is related to vapor fraction through a power law, enabling the development of new equations. These results demonstrated that anisotropic turbulence modeling is essential to reproduce experimental observations compared to mean flow properties. Based on the agreement between the numerical model and the experimental data for mean flow quantities, a formulation is proposed to estimate the jet length originating from the nozzle, offering a predictive approach for cavitating jet behavior. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

17 pages, 2310 KB  
Article
High-Performance X-Ray Detection and Optical Information Storage via Dual-Mode Luminescent Modulation in Na3KMg7(PO4)6:Eu
by Yanshuo Han, Yucheng Li, Xue Yang, Yibo Hu, Yuandong Ning, Meng Gu, Guibin Zhai, Sihan Yang, Jingkun Chen, Naixin Li, Kuan Ren, Jingtai Zhao and Qianli Li
Molecules 2025, 30(17), 3495; https://doi.org/10.3390/molecules30173495 - 26 Aug 2025
Viewed by 544
Abstract
Lanthanide-doped inorganic luminescent materials have been extensively studied and applied in X-ray detection and imaging, anti-counterfeiting, and optical information storage. However, many reported rare-earth-based luminescent materials show only single-mode optical responses, which limits their applications in complex scenarios. Here, we report a novel [...] Read more.
Lanthanide-doped inorganic luminescent materials have been extensively studied and applied in X-ray detection and imaging, anti-counterfeiting, and optical information storage. However, many reported rare-earth-based luminescent materials show only single-mode optical responses, which limits their applications in complex scenarios. Here, we report a novel Na3KMg7(PO4)6:Eu phosphor synthesized by a simple high-temperature solid-state method. The multi-color luminescence of Eu2+ and Eu3+ ions in a single matrix of Na3KMg7(PO4)6:Eu, known as radio-photoluminescence, is achieved through X-ray-induced ion reduction. It demonstrated a good linear response (R2 = 0.9897) and stable signal storage (storage days > 50 days) over a wide range of X-ray doses (maximum dose > 200 Gy). In addition, after X-ray irradiation, this material exhibits photochromic properties ranging from white to brown in a bright field and shows remarkable bleaching and recovery capabilities under 254 nm ultraviolet light or thermal stimulation. This dual-modal luminescent phosphor Na3KMg7(PO4)6:Eu, which combines photochromism and radio-photoluminescence, presents a dual-mode X-ray detection and imaging strategy and offers a comprehensive and novel solution for applications in anti-counterfeiting and optical information encryption. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Figure 1

18 pages, 4134 KB  
Article
Stirring-Assisted In Situ Construction of Highly Dispersed MoS2/g-C3N4 Heterojunctions with Enhanced Edge Exposure for Efficient Photocatalytic Hydrogen Evolution
by Shuai Liu, Yipei Chen, Honglei Zhang, Yang Meng, Tao Wu and Guangsuo Yu
Catalysts 2025, 15(9), 808; https://doi.org/10.3390/catal15090808 - 25 Aug 2025
Viewed by 357
Abstract
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during [...] Read more.
Constructing heterojunction photocatalysts with efficient interfacial charge transfer is critical for solar-driven hydrogen evolution. In this study, a highly dispersed MoS2/g-C3N4 composite was successfully synthesized via a stirring-assisted hydrothermal in situ growth strategy. The introduction of stirring during synthesis significantly enhanced the uniform dispersion of MoS2 nanosheets and exposed abundant edge sites, leading to well-integrated heterojunctions with enhanced interfacial contact. Comprehensive structural and photoelectronic characterizations (XRD, SEM, TEM, EDS mapping, UV–Vis, TRPL, EIS, EPR) confirmed that the composite exhibited improved visible-light absorption, accelerated charge separation, and suppressed recombination. Under simulated solar irradiation with triethanolamine (TEOA) as a sacrificial agent, the optimized 24% MoS2/g-C3N4-S catalyst achieved a high hydrogen evolution rate of 14.33 mmol·g−1·h−1 at a catalyst loading of 3.2 mg, significantly outperforming the unstirred and pristine components, and demonstrating excellent cycling stability. Mechanistic studies revealed that the performance enhancement is attributed to the synergistic effects of Type-II heterojunction formation and edge-site-rich MoS2 co-catalysis. This work provides a scalable approach for non-noble metal interface engineering and offers insight into the design of efficient and durable photocatalysts for solar hydrogen production. Full article
Show Figures

Figure 1

18 pages, 2589 KB  
Article
Synthesis of Nb-Doped TiO2 Nanoparticles for Photocatalytic Degradation of Ciprofloxacin: A Combined Experimental and DFT Approach
by Bouthaina Shili, Othmen Khaldi, Cristian Mendes-Felipe, Maibelin Rosales, Dinis C. Alves, Pedro M. Martins, Rached Ben Younes and Senentxu Lanceros-Mendez
Nanomaterials 2025, 15(17), 1307; https://doi.org/10.3390/nano15171307 - 25 Aug 2025
Viewed by 423
Abstract
The persistence of pharmaceutical pollutants such as ciprofloxacin (CIP) in aquatic environments represents a critical environmental threat due to their potential to induce antimicrobial resistance. Photocatalysis using TiO2-based materials offers a promising solution for their mineralization; however, the limited visible-light response [...] Read more.
The persistence of pharmaceutical pollutants such as ciprofloxacin (CIP) in aquatic environments represents a critical environmental threat due to their potential to induce antimicrobial resistance. Photocatalysis using TiO2-based materials offers a promising solution for their mineralization; however, the limited visible-light response of TiO2 and charge carrier recombination restricts its overall efficiency. In this study, Nb-doped TiO2 nanoparticles were synthesized via the sol–gel method, incorporating Nb5+, ions into the TiO2 lattice to modulate the structural and electronic properties of TiO2 to enhance its photocatalytic performance for CIP degradation under UV and visible irradiation. Comprehensive structural, morphological, and optical analyses revealed that Nb incorporation stabilizes the anatase phase, reduces particle size (from 21.42 nm to 10.29 nm), and induces a slight band gap widening (from 2.85 to 2.87 eV) due to the Burstein–Moss effect. Despite this blue shift, Nb-TiO2 exhibited significantly improved photocatalytic activity under visible light, achieving 86% CIP degradation with a reaction rate 16 times higher than that of undoped TiO2. This enhancement was attributed to improved charge separation and higher hydroxyl radical (OH) generation, driven by excess conduction band electrons introduced by Nb doping. Density Functional Theory (DFT) calculations further elucidated the electronic structure modifications responsible for this behavior, offering molecular-level insights into Nb dopant-induced property tuning. These findings demonstrate how targeted doping strategies can engineer multifunctional nanomaterials with superior photocatalytic efficiencies, especially under visible light, highlighting the synergy between experimental design and theoretical modeling for environmental applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

14 pages, 4483 KB  
Article
Spectral and Geometrical Guidelines for Low-Concentration Oil-in-Seawater Emulsion Detection Based on Monte Carlo Modeling
by Barbara Lednicka and Zbigniew Otremba
Sensors 2025, 25(17), 5267; https://doi.org/10.3390/s25175267 - 24 Aug 2025
Viewed by 484
Abstract
This paper is a result of the search for design assumptions for a sensor to detect oil dispersed in the sea waters (oil-in-water emulsions). Our approach is based on analyzing changes in the underwater solar radiance (L) field caused by the presence of [...] Read more.
This paper is a result of the search for design assumptions for a sensor to detect oil dispersed in the sea waters (oil-in-water emulsions). Our approach is based on analyzing changes in the underwater solar radiance (L) field caused by the presence of oil droplets in the water column. This method would enable the sensor to respond to the presence of oil contaminants dispersed in the surrounding environment, even if they are not located directly at the measurement point. This study draws on both literature sources and the results of current numerical modeling of the spread of solar light in the water column to account for both downward and upward irradiance (Es). The core principle of the analysis involves simulating the paths of a large number of virtual solar photons in a seawater model defined by spatially distributed Inherent Optical Properties (IOPs). The IOPs data were taken from the literature and pertain to the waters of the southern Baltic Sea. The optical properties of the oil used in the model correspond to crude oil extracted from the Baltic shelf. The obtained results were compared with previously published spectral analyses of an analogous polluted sea model, considering vertical downward radiance, vertical upward radiance, and downward and upward irradiance. It was found that the optimal wavelength ratio of 555/412, identified for these quantities, is also applicable to scalar irradiance. The findings indicate that the most effective way to determine this index is by measuring it using a sensor with its window oriented in the direction of upward-traveling light. Full article
Show Figures

Figure 1

17 pages, 2956 KB  
Article
Impact of Photobiomodulation on the Pro-Osteogenic Activity of Dental Pulp Mesenchymal Stem/Stromal Cells
by Marcella Rodrigues Ueda Fernandes, Gabriella Teti, Valentina Gatta, Aurora Longhin, Ana Cecilia Corrêa Aranha and Mirella Falconi
Int. J. Mol. Sci. 2025, 26(17), 8174; https://doi.org/10.3390/ijms26178174 - 22 Aug 2025
Viewed by 428
Abstract
Photobiomodulation (PBM) consists of applying low-level laser light to biological tissues, leading to modulation of cellular functions. PBM has recently gained much attention in the field of regenerative dentistry thanks to its powerful effect on tissue repair and regeneration. Dental pulp mesenchymal stem/stromal [...] Read more.
Photobiomodulation (PBM) consists of applying low-level laser light to biological tissues, leading to modulation of cellular functions. PBM has recently gained much attention in the field of regenerative dentistry thanks to its powerful effect on tissue repair and regeneration. Dental pulp mesenchymal stem/stromal cells (DP-MSCs) represent the ideal targets in regenerative dentistry due to their ability to stimulate the regeneration of mineralized and soft tissues and the paracrine factors that they produce. Although there have been several studies evaluating the influence of PBM on DP-MSCs’ regenerative capacity, the results are conflicting, and there are few studies on the influence of PBM on the paracrine factors released by DP-MSCs. Therefore, the aim of this study was to investigate the effect of PBM, using different energy doses of laser irradiation, on the osteogenic capacity of DP-MSCs, focusing on changes in gene expression, mineralizing ability, and release of pro-osteogenic factors. DP-MSCs were irradiated in vitro and differentiated into an osteogenic phenotype. A cell viability assay, alizarin red staining, and TEM analysis were carried out to evaluate the effect of PBM on cell activity, morphology, and mineralization ability. The expression of the main osteogenesis-related markers Runx2, Col1A1, ALP, and BMP was measured to evaluate the influence of PBM on the ability of DP-MSCs to differentiate toward an osteogenic phenotype. The release of IL-6 and IL-8, which are mainly involved in bone remodeling processes, was investigated in the cell medium following PBM irradiation. The results showed a high level of cell viability, suggesting a lack of phototoxicity under the tested conditions. Furthermore, PBM had a significant effect on mineral deposition, IL-6 and IL-8 release, and expression of osteogenic markers. TEM analysis showed intracellular modifications linked mainly to mitochondria, the endoplasmic reticulum, and autophagic vesicles after PBM treatment. These findings demonstrated that the impact of PBM on the osteogenic potential of DP-MSCs is energy dose-dependent, supporting its potential as an effective strategy in regenerative dentistry, particularly for enhancing bone remodeling. Full article
(This article belongs to the Special Issue Application of Biotechnology to Dental Treatment)
Show Figures

Figure 1

21 pages, 2807 KB  
Review
Interfacial Solar Evaporation for Treating High-Salinity Wastewater: Chance and Necessity
by Shunjian Ji, Zhihong Zhang, Meijie Zhang, Zexin Yang, Yaguang Fan, Juan Zhang, Yingping Pang and Lin Cui
Processes 2025, 13(9), 2679; https://doi.org/10.3390/pr13092679 - 22 Aug 2025
Viewed by 606
Abstract
The tension in the relationship between water and energy seriously restricts the harmonious coexistence between man and the ecological environment. The solar-powered interface evaporation technology emerging in recent years has shown good application prospects in high-salt wastewater treatment for achieving the zero-discharge treatment [...] Read more.
The tension in the relationship between water and energy seriously restricts the harmonious coexistence between man and the ecological environment. The solar-powered interface evaporation technology emerging in recent years has shown good application prospects in high-salt wastewater treatment for achieving the zero-discharge treatment of wastewater. In this review, advanced solar-driven interfacial evaporation is primarily focused on its mechanisms, photothermal materials optimization, and the structure of solar evaporators for salt removal. The high wide-spectrum solar absorption rate of photothermal materials determines the total energy that can be utilized in the evaporation system. The light-to-heat conversion capacity of photothermal materials directly affects the efficiency and performance of solar interface evaporators. We highlight the microstructures enabled by the nanophotonic designs of photothermal material-based solar absorbers, which can achieve highly efficient light harvesting across the entire solar irradiance spectral range with weighted solar absorptivity. Finally, based on current research, existing problems, and future development directions for high-salt wastewater evaporation research are proposed. The review provides insights into the effective treatment of high-salt wastewater. Full article
(This article belongs to the Special Issue Clean Combustion and Emission Control Technologies)
Show Figures

Figure 1

Back to TopTop