Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,127)

Search Parameters:
Keywords = live trees

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 589 KB  
Article
Unplugged Activities for Teaching Decision Trees to Secondary Students—A Case Study Analysis Using the SOLO Taxonomy
by Konstantinos Karapanos, Vassilis Komis, Georgios Fesakis, Konstantinos Lavidas, Stavroula Prantsoudi and Stamatios Papadakis
AI 2025, 6(9), 217; https://doi.org/10.3390/ai6090217 (registering DOI) - 5 Sep 2025
Abstract
The integration of Artificial Intelligence (AI) technologies in students’ lives necessitates the systematic incorporation of foundational AI literacy into educational curricula. Students are challenged to develop conceptual understanding of computational frameworks such as Machine Learning (ML) algorithms and Decision Trees (DTs). In this [...] Read more.
The integration of Artificial Intelligence (AI) technologies in students’ lives necessitates the systematic incorporation of foundational AI literacy into educational curricula. Students are challenged to develop conceptual understanding of computational frameworks such as Machine Learning (ML) algorithms and Decision Trees (DTs). In this context, unplugged (i.e., computer-free) pedagogical approaches have emerged as complementary to traditional coding-based instruction in AI education. This study examines the pedagogical effectiveness of an instructional intervention employing unplugged activities to facilitate conceptual understanding of DT algorithms among 47 9th-grade students within a Computer Science (CS) curriculum in Greece. The study employed a quasi-experimental design, utilizing the Structure of Observed Learning Outcomes (SOLO) taxonomy as the theoretical framework for assessing cognitive development and conceptual mastery of DT principles. Quantitative analysis of pre- and post-intervention assessments demonstrated statistically significant improvements in student performance across all evaluated SOLO taxonomy levels. The findings provide empirical support for the hypothesis that unplugged pedagogical interventions constitute an effective and efficient approach for introducing AI concepts to secondary education students. Based on these outcomes, the authors recommend the systematic implementation of developmentally appropriate unplugged instructional interventions for DTs and broader AI concepts across all educational levels, to optimize AI literacy acquisition. Full article
16 pages, 2835 KB  
Article
Improving Traps for Spotted Lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae), by Leveraging Their Own Signals
by Miriam F. Cooperband and Kelly M. Murman
Insects 2025, 16(9), 930; https://doi.org/10.3390/insects16090930 - 4 Sep 2025
Viewed by 181
Abstract
The spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae) (SLF), is a damaging invasive pest and generalist phloem feeder that has been found in 18 states in the United States. It has a complex multimodal communication system involving semiochemicals, emitted both from their honeydew and [...] Read more.
The spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae) (SLF), is a damaging invasive pest and generalist phloem feeder that has been found in 18 states in the United States. It has a complex multimodal communication system involving semiochemicals, emitted both from their honeydew and their bodies, and substrate-borne vibrations. Sensitive and effective traps for detection and survey are essential management tools, but no potent lures for SLF exist yet. We sought to test an alternative that relies on live-trapped SLF acting as lures to improve trap efficacy after the first SLF is captured. SLF circle traps were modified by replacing the commonly used plastic collection bag with a mesh bag pinned to the tree trunk. These allowed the trapped SLF to remain alive and generate signals through the mesh bag, thus leveraging their natural modes of communication to draw additional SLF into the traps. We compared mesh and plastic bags over three years targeting fourth instars and adults and found that prior to oviposition, circle traps with mesh bags captured significantly more fourth instar (70% mesh: 30% plastic) and adult SLF (59% mesh: 41% plastic) compared to plastic bags, but during oviposition time, the results were mixed. Full article
Show Figures

Figure 1

16 pages, 2039 KB  
Article
Machine Learning Models to Establish the Risk of Being a Carrier of Multidrug-Resistant Bacteria upon Admission to the ICU
by Sulamita Carvalho-Brugger, Mar Miralbés Torner, Gabriel Jiménez Jiménez, Montserrat Vallverdú Vidal, Begoña Balsera Garrido, Xavier Nuvials Casals, Mercedes Palomar Martínez and Javier Trujillano Cabello
Antibiotics 2025, 14(9), 889; https://doi.org/10.3390/antibiotics14090889 - 3 Sep 2025
Viewed by 170
Abstract
Objectives: To establish the risk of being a carrier of multidrug-resistant bacteria (MDR) upon ICU admission, according to the risk factors (RFs) from the Spanish “Resistencia Zero” (RZ) project checklist, using machine learning methodology. Methods: A retrospective cohort study, conducted with a consecutive [...] Read more.
Objectives: To establish the risk of being a carrier of multidrug-resistant bacteria (MDR) upon ICU admission, according to the risk factors (RFs) from the Spanish “Resistencia Zero” (RZ) project checklist, using machine learning methodology. Methods: A retrospective cohort study, conducted with a consecutive sample of patients admitted to the ICU between 2014 and 2016. The study analyzed the RZ RFs for MDR, as well as other pathological variables and comorbidities. The study group was randomly divided into a development group (70%) and a validation group (30%). Several machine learning models were used: binary logistic regression, CHAID-type decision tree, and the XGBOOST methodology (version 2.1.0) with SHAP analysis. Results: Data from 2459 patients were analyzed, of whom 210 (8.2%) were carriers of MDR. The risk grew with the accumulation of RF. Binary logistic regression identified colonization or previous infection by MDR, prior antibiotic treatment, living in a nursing home, recent hospitalization, and renal failure as the most influential factors. The CHAID tree detected MDR in 56% of patients with previous colonization or infection, a figure that increased to almost 74% if they had also received antibiotic therapy. The XGBOOST model determined that variables related to antibiotic treatment were the most important. Conclusions: The RZ RFs have limitations in predicting MDR upon ICU admission, and machine learning models offer certain advantages. Not all RFs have the same importance, but their accumulation increases the risk. There is a group of patients with no identifiable RFs, which complicates decisions on preventive isolation. Full article
Show Figures

Figure 1

26 pages, 1799 KB  
Article
Formal Modelling and Verification of Multi-Parameter Context and Agent Transition Systems: Application to Urban Delivery Zone and Autonomous Electric Vehicle
by Abir Nemouchi, Ahmed Bouzenada, Djamel Eddine Saidouni and Gregorio Díaz
World Electr. Veh. J. 2025, 16(9), 494; https://doi.org/10.3390/wevj16090494 - 1 Sep 2025
Viewed by 172
Abstract
The increasing integration of autonomous electric vehicles (EVs) into Intelligent Transportation Systems (ITSs) needs rigorous mechanisms to ensure their safe and effective operation in dynamic environments. The reliability of such vehicles depends not only on their internal capabilities but also on the suitability [...] Read more.
The increasing integration of autonomous electric vehicles (EVs) into Intelligent Transportation Systems (ITSs) needs rigorous mechanisms to ensure their safe and effective operation in dynamic environments. The reliability of such vehicles depends not only on their internal capabilities but also on the suitability and safety of the environments in which they operate. This paper introduces a formal modelling framework that captures independently the dynamic evolution of the environmental context and the EV agent using multi-parameter transition systems. Two distinct models are defined: the Context Transition System (CTS), which models changes in environmental states, and the Agent Transition System (ATS), which captures the internal state evolution of the EV. Safety and liveness properties are formally specified in Computation Tree Logic (CTL) and verified using the nuXmv model checker. The framework is validated through two representative use cases: a dynamic urban delivery zone and an autonomous electric delivery vehicle. The results highlight the framework’s effectiveness in detecting unsafe conditions, verifying mission objectives, and supporting the reliable deployment of EVs in ITS. Full article
Show Figures

Figure 1

11 pages, 1192 KB  
Brief Report
Saving the Near Extinct Harbison Hawthorn (Crataegus harbisonii): An Ex Situ Approach for Woody Plant Species Conservation
by Jesse B. Parker, Mike Hansbrough, Ron Lance and Scott E. Schlarbaum
Forests 2025, 16(9), 1394; https://doi.org/10.3390/f16091394 - 1 Sep 2025
Viewed by 267
Abstract
Crataegus harbisonii Beadle (Harbison’s or Harbison hawthorn) is a Tennessee (USA) endemic tree of the Rosaceae family, currently considered “critically imperiled” at the state, national, and global levels. It is known from only two extant wild locations, one in Davidson County, Tennessee consisting [...] Read more.
Crataegus harbisonii Beadle (Harbison’s or Harbison hawthorn) is a Tennessee (USA) endemic tree of the Rosaceae family, currently considered “critically imperiled” at the state, national, and global levels. It is known from only two extant wild locations, one in Davidson County, Tennessee consisting of a single living individual and a population of less than 100 individuals in Obion County, Tennessee. Key ex situ conservation efforts undertaken over the last three years with this critically imperiled species are reported here. The Obion County population was intensively surveyed and all C. harbisonii individuals documented. Over three seasons, seeds were collected and propagated, and clones were generated via chip-budding and grafting. Conservation seed orchards were planned and established to provide a stable, long-term source of genetically robust seed for reforestation and research. To date, 19 sources from the Obion County location as well as the single Davidson County genotype have been successfully preserved through clonal propagation, and open-pollinated seedlings produced from 12 unique mother trees. Additional material is being added annually. We report lessons learned as well as key future research directions, now enabled through the establishment of germplasm resources. Full article
(This article belongs to the Special Issue Genetic Resources and Prebreeding)
Show Figures

Figure 1

20 pages, 3049 KB  
Article
Differences in Weed Taxa Community in a Young Apple Orchard (‘King Roat Red Delicious’ Cultivar) Depending on the Presence of Living Mulch and the Application of Two Nitrogen Fertilization Rates
by Urszula Barbara Bałuszyńska and Maria Licznar-Małańczuk
Agronomy 2025, 15(9), 2106; https://doi.org/10.3390/agronomy15092106 - 31 Aug 2025
Viewed by 393
Abstract
The objective of this study was to evaluate the impact of two nitrogen doses in combination with strong creeping fescue (Festuca rubra L. ssp. rubra Gaudin) and Chewing’s red fescue (Festuca rubra L. ssp. commutata Gaudin) used as living mulches on [...] Read more.
The objective of this study was to evaluate the impact of two nitrogen doses in combination with strong creeping fescue (Festuca rubra L. ssp. rubra Gaudin) and Chewing’s red fescue (Festuca rubra L. ssp. commutata Gaudin) used as living mulches on the weed community in an apple tree (Malus domestica Borkh.) orchard. The cover grasses were sown in the tree rows, and herbicide fallow served as the control. Grass living mulches effectively reduced the number and share of annual weed cover and limited the spread of perennial plants compared with herbicide fallow. Use of F. rubra L. subspecies did not favor the biodiversity of the orchard agroecosystem flora, due to the effective soil surface coverage by sod in the tree rows. Living mulch sod was characterized by lower variability in weed taxa compared with the abundant weed composition in the herbicide fallow, which also exhibited the highest number of weed taxa each year. Dominant species in the orchard across all treatments included Trifolium repens L. and Taraxacum spp. Doubling the nitrogen fertilization rate, while limiting the application area to the tree canopy, did not increase the perennial weed population in the living mulch sod. Both subspecies are useful as living mulch in a young apple orchard, but from the perspective of sod durability and weed control, strong creeping red fescue offers better prospects. Full article
(This article belongs to the Special Issue Weed Biology and Ecology: Importance to Integrated Weed Management)
Show Figures

Figure 1

32 pages, 2277 KB  
Hypothesis
POLETicians in the Mud: Preprokaryotic Organismal Lifeforms Existing Today (POLET) Hypothesis
by Douglas M. Ruden and Glen Ray Hood
Bacteria 2025, 4(3), 42; https://doi.org/10.3390/bacteria4030042 - 29 Aug 2025
Viewed by 424
Abstract
The discovery of Asgard archaea has reshaped our understanding of eukaryotic origins, supporting a two-domain tree of life in which eukaryotes emerged from Archaea. Building on this revised framework, we propose the Pre-prokaryotic Organismal Lifeforms Existing Today (POLET) hypothesis, which suggests that relic [...] Read more.
The discovery of Asgard archaea has reshaped our understanding of eukaryotic origins, supporting a two-domain tree of life in which eukaryotes emerged from Archaea. Building on this revised framework, we propose the Pre-prokaryotic Organismal Lifeforms Existing Today (POLET) hypothesis, which suggests that relic pre-prokaryotic life forms—termed POLETicians—may persist in deep, anoxic, energy-limited environments. These organisms could represent a living bridge to the RNA world and other origin-of-life models, utilizing racemic oligoribonucleotides and peptides, non-enzymatic catalysis, and mineral-assisted compartmentalization. POLETicians might instead rely on radical-based redox chemistry or radiolysis for energy and maintenance. These biomolecules may be racemic or noncanonical, eluding conventional detection. New detection methods are required to determine such life. We propose generalized nanopore sequencing of any linear polymer—including mirror RNAs, mirror DNAs, or any novel genetic material—as a potential strategy to overcome chirality bias in modern sequencing technologies. These approaches, combined with chiral mass spectrometry and stereoisomer-resolved analytics, may enable the detection of molecular signatures from non-phylogenetic primitive lineages. POLETicians challenge the assumption that all life must follow familiar biochemical constraints and offer a compelling extension to our search for both ancient and extant forms of life hidden within Earth’s most extreme environments. Full article
Show Figures

Figure 1

24 pages, 2578 KB  
Article
Food Insecurity and Community Resilience Among Indonesia’s Indigenous Suku Anak Dalam
by Sadar Ginting, Anurak Wongta, Sumed Yadoung, Sakaewan Ounjaijean and Surat Hongsibsong
Sustainability 2025, 17(17), 7750; https://doi.org/10.3390/su17177750 - 28 Aug 2025
Viewed by 442
Abstract
In the forests of Jambi Province, Indonesia, the Indigenous Suku Anak Dalam have encountered rapid alterations to the environment upon which they previously depended. Their culinary traditions—and the knowledge that accompanies them—are placed at a greater risk as palm oil plantations expand and [...] Read more.
In the forests of Jambi Province, Indonesia, the Indigenous Suku Anak Dalam have encountered rapid alterations to the environment upon which they previously depended. Their culinary traditions—and the knowledge that accompanies them—are placed at a greater risk as palm oil plantations expand and forest areas diminish. This research is based on extensive interviews with customary leaders (called Tumenggung, who guide communal life and cultural practices), elders, and women in five settlements in Merangin District. Rather than regarding participants as research subjects, we engaged with their narratives. The image that emerged was not merely one of food scarcity but also one of cultural loss. Instead of forest tubers, untamed fruits, or fish, families now depend on instant noodles or cassava. The rivers are no longer clean, and the trees that were once a source of both sustenance and medicine are largely extinct. Nevertheless, individuals devise strategies to adapt, including cultivating small crops in the vicinity of their dwellings, collecting what is left along the plantation’s perimeter, and distributing their meager possessions to their neighbors. This research demonstrates that food security for Indigenous peoples is not solely dependent on agriculture or nutrition. It is about the right to have a voice in one’s own land, dignity, and memory. Genuine solutions must transcend technical fixes and nutritional aid. The first step is to respect Indigenous voices, protect their territories, and support their methods of knowing and living before they are also lost. Full article
Show Figures

Figure 1

16 pages, 570 KB  
Article
A Novel Approach to the Collatz Conjecture with Petri Nets
by David Mailland and Iwona Grobelna
Information 2025, 16(9), 745; https://doi.org/10.3390/info16090745 - 28 Aug 2025
Viewed by 500
Abstract
The Collatz conjecture is a famous unsolved problem in mathematics, known for its deceptively simple rules that generate complex, unpredictable behaviour. It can be efficiently modelled using a Petri net that represents its inverse graph, where each place corresponds to an integer and [...] Read more.
The Collatz conjecture is a famous unsolved problem in mathematics, known for its deceptively simple rules that generate complex, unpredictable behaviour. It can be efficiently modelled using a Petri net that represents its inverse graph, where each place corresponds to an integer and each transition encodes an inverse rule. The net, constructed up to a bound n, reveals the tree-like structure of predecessors and highlights properties such as recurrence, reachability, and liveness. Token flows simulate possible trajectories towards 1. This formal approach enables the investigation of the problem through discrete event systems theory and opens perspectives for parametric or inductive extensions beyond the bounded domain. The model proposed provides a structured framework for visualising and analysing the inverse dynamics of the conjecture. Some key numerical results highlight the challenges of working within a finite domain: for nmax=1000, the constructed Petri net comprises 1000 places and 667 transitions, including 417 source nodes (no predecessors), 333 sink nodes (no successors), and 218 isolated orphans, i.e., nodes only reachable via Div2 transitions with no incoming 3n+1 edge. Full article
(This article belongs to the Special Issue Intelligent Information Technology, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 5843 KB  
Article
Scaling Plant Functional Strategies from Species to Communities in Regenerating Amazonian Forests: Insights for Restoration in Deforested Landscapes
by Carlos H. Rodríguez-León, Armando Sterling, Dorman D. Daza-Giraldo, Yerson D. Suárez-Córdoba and Lilia L. Roa-Fuentes
Diversity 2025, 17(8), 570; https://doi.org/10.3390/d17080570 - 14 Aug 2025
Viewed by 376
Abstract
Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional [...] Read more.
Understanding how main plant functional strategies scale from species to communities is critical for guiding restoration in tropical disturbed areas by unsustainable livestock grazing; yet, the patterns and drivers of functional trait space along successional trajectories remain poorly understood. Here, we investigated functional trait space using principal component analyses (PCAs) based on eight traits related to leaf, stem, and seed morphology across 226 tree species and 33 forest communities along a chronosequence of natural regeneration following cattle ranching abandonment in deforested landscapes of the Colombian Amazon. We identified three species-level functional axes—namely, the ‘Structural–Reproductive Allocation Axis’, the ‘Mechanical Support and Tissue Investment Axis’, and the ‘Leaf Economics Axis’—and two community-level axes: the ‘Colonization–Longevity Axis’ and the ‘Persistence–Acquisition Axis’. These axes aligned with the life-history strategies of short-lived pioneers, long-lived pioneers, and old-growth species, and reflected their relationships with key environmental drivers. Community-level functional composition reflected species-level patterns, but was also shaped by soil properties, microclimate, and tree species richness. Forest age and precipitation promoted conservative strategies, while declining soil fertility suggested a decoupling between above- and belowground recovery. Functional richness and divergence were highest in mid-successional forests dominated by long-lived pioneers. Our findings highlight the role of environmental and successional filters in shaping functional trait space and emphasize the value of functionally diverse communities. Particularly, our results indicate that long-lived pioneers (LLP) such as Astrocaryum chambira Burret and Pouteria campanulata Baehni, with traits like large height, intermediate wood density, and larger seed size, represent ideal candidates for early enrichment strategies due to their facilitation roles in succession supporting restoration efforts in regenerating Amazonian forests. Full article
Show Figures

Figure 1

28 pages, 19126 KB  
Article
Digital Geospatial Twinning for Revaluation of a Waterfront Urban Park Design (Case Study: Burgas City, Bulgaria)
by Stelian Dimitrov, Bilyana Borisova, Antoaneta Ivanova, Martin Iliev, Lidiya Semerdzhieva, Maya Ruseva and Zoya Stoyanova
Land 2025, 14(8), 1642; https://doi.org/10.3390/land14081642 - 14 Aug 2025
Viewed by 1155
Abstract
Digital twins play a crucial role in linking data with practical solutions. They convert raw measurements into actionable insights, enabling spatial planning that addresses environmental challenges and meets the needs of local communities. This paper presents the development of a digital geospatial twin [...] Read more.
Digital twins play a crucial role in linking data with practical solutions. They convert raw measurements into actionable insights, enabling spatial planning that addresses environmental challenges and meets the needs of local communities. This paper presents the development of a digital geospatial twin for a residential district in Burgas, the largest port city on Bulgaria’s southern Black Sea coast. The aim is to provide up-to-date geospatial data quickly and efficiently, and to merge available data into a single, accurate model. This model is used to test three scenarios for revitalizing coastal functions and improving a waterfront urban park in collaboration with stakeholders. The methodology combines aerial photogrammetry, ground-based mobile laser scanning (MLS), and airborne laser scanning (ALS), allowing for robust 3D modeling and terrain reconstruction across different land cover conditions. The current topography, areas at risk from geological hazards, and the vegetation structure with detailed attribute data for each tree are analyzed. These data are used to evaluate the strengths and limitations of the site concerning the desired functionality of the waterfront, considering urban priorities, community needs, and the necessity of addressing contemporary climate challenges. The carbon storage potential under various development scenarios is assessed. Through effective visualization and communication with residents and professional stakeholders, collaborative development processes have been facilitated through a series of workshops focused on coastal transformation. The results aim to support the design of climate-neutral urban solutions that mitigate natural risks without compromising the area’s essential functions, such as residential living and recreation. Full article
Show Figures

Figure 1

12 pages, 510 KB  
Review
Emerging Ornamental Plant Diseases and Their Management Trends in Northern Italy
by Maria Lodovica Gullino, Domenico Bertetti, Massimo Pugliese and Angelo Garibaldi
Horticulturae 2025, 11(8), 955; https://doi.org/10.3390/horticulturae11080955 - 13 Aug 2025
Viewed by 383
Abstract
The ornamental plant sector is characterized by the production of a large variety of genera, species and cultivars that are much more numerous than those of other agricultural production sectors. Many countries throughout the world are involved in an intensive exchange of potted [...] Read more.
The ornamental plant sector is characterized by the production of a large variety of genera, species and cultivars that are much more numerous than those of other agricultural production sectors. Many countries throughout the world are involved in an intensive exchange of potted plants, cut flowers and propagation material. This intense trade exchange favors the introduction of the causal agents of new diseases on farms, in parks, along tree-lined avenues and in city gardens. Global warming can favor plant pathogens that thrive under high temperatures. Moreover, the interaction between the ongoing increase in temperature and in the CO2 concentration has caused a significant increase in the disease severity of many pathosystems. The numerous reports of new plant pathogens on ornamental plants in Italy in recent years fall into this context. In plant pathology research, living labs incorporate the complexities and variability of natural conditions, and they can thus be used to conduct experiments and test hypotheses. A private garden, located in the hamlet of Bariola (Piedmont, Biella province, northern Italy), has become an ideal living lab that is used to monitor the evolution of the phytosanitary situation of ornamental plants. The results obtained in this living lab are reported hereafter. Moreover, new trends in disease prevention and management, such as the adoption of appropriate prevention practices, water and fertilization management and use of environmentally friendly methods to reduce pesticide use as part of an integrated pest management approach, are also examined. Full article
Show Figures

Figure 1

22 pages, 1750 KB  
Article
Towards Energy Efficiency of HPC Data Centers: A Data-Driven Analytical Visualization Dashboard Prototype Approach
by Keith Lennor Veigas, Andrea Chinnici, Davide De Chiara and Marta Chinnici
Electronics 2025, 14(16), 3170; https://doi.org/10.3390/electronics14163170 - 8 Aug 2025
Viewed by 562
Abstract
High-performance computing (HPC) data centers are experiencing rising energy consumption, despite the urgent need for increased efficiency. In this study, we develop an approach inspired by digital twins to enhance energy and thermal management in an HPC facility. We create a comprehensive framework [...] Read more.
High-performance computing (HPC) data centers are experiencing rising energy consumption, despite the urgent need for increased efficiency. In this study, we develop an approach inspired by digital twins to enhance energy and thermal management in an HPC facility. We create a comprehensive framework that incorporates a digital twin for the CRESCO7 supercomputer cluster at ENEA in Italy, integrating data-driven time series forecasting with an interactive analytical dashboard for resource prediction. We begin by reviewing relevant literature on digital twins and modern time series modeling techniques. After ingesting and cleansing sensor and job scheduling datasets, we perform exploratory and inferential analyses to understand key correlations. We then conduct descriptive statistical analyses and identify important features, which are used to train machine learning models for accurate short- and medium-term forecasts of power and temperature. These models feed into a simulated environment that provides real-time prediction metrics and a holistic “health score” for each node, all visualized in a dashboard built with Streamlit. The results demonstrate that a digital twin-based approach can help data center operators efficiently plan resources and maintenance, ultimately reducing the carbon footprint and improving energy efficiency. The proposed framework uniquely combines concepts inspired by digital twins with time series machine learning and interactive visualization for enhanced HPC energy planning. Key contributions include the novel integration of predictive models into a live virtual replica of the HPC cluster, employing a gradient-boosted tree-based LightGBM model. Our findings underscore the potential of data-driven digital twins to facilitate sustainable and intelligent management of HPC data centers. Full article
Show Figures

Figure 1

19 pages, 3596 KB  
Article
Radon Exposure to the General Population of the Fernald Community Cohort
by John F. Reichard, Swade Barned, Angelico Mendy and Susan M. Pinney
Atmosphere 2025, 16(8), 939; https://doi.org/10.3390/atmos16080939 - 5 Aug 2025
Viewed by 423
Abstract
The Fernald Feed Materials Production Center (FMPC), located in Fernald, Ohio, USA, released radon (Rn) as a byproduct of the processing of uranium materials during the years from 1951 to 1989. Rn is a colorless, odorless gas that emits charged alpha radiation that [...] Read more.
The Fernald Feed Materials Production Center (FMPC), located in Fernald, Ohio, USA, released radon (Rn) as a byproduct of the processing of uranium materials during the years from 1951 to 1989. Rn is a colorless, odorless gas that emits charged alpha radiation that interacts with cells in the lung and trachea-bronchial tree, leading to DNA damage, mutations, and tumor initiation. The purpose of this project was to use evidence collected by the Fernald Dosimetry Reconstruction Project and other sources to estimate the outdoor Rn exposure to individuals in the community immediately surrounding the FMPC during the years of plant operation. Using previously tabulated source terms, diffusion and meteorological data, and self-reported detailed residential histories, we estimated radon exposure for approximately 9300 persons who lived at more than 14,000 addresses. The results indicated that a portion of the population cohort experiences mean annual Rn exposure exceeding the U.S. Environmental Protection Agency (EPA) action limit of 4 pCiL−1. These exposure estimates support the analysis of the incidence of lung cancer in the Fernald Community Cohort (FCC). Full article
Show Figures

Figure 1

30 pages, 4014 KB  
Article
Spatial Heterogeneity in Carbon Pools of Young Betula sp. Stands on Former Arable Lands in the South of the Moscow Region
by Gulfina G. Frolova, Pavel V. Frolov, Vladimir N. Shanin and Irina V. Priputina
Plants 2025, 14(15), 2401; https://doi.org/10.3390/plants14152401 - 3 Aug 2025
Viewed by 356
Abstract
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. [...] Read more.
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. The research focuses on understanding the interactions between plant cover and the environment, i.e., how environmental factors such as stand density, tree diameter and height, light conditions, and soil properties affect ecosystem carbon pools. We also studied how heterogeneity in edaphic conditions affects the formation of plant cover, particularly tree regeneration and the development of ground layer vegetation. Field measurements were conducted on a permanent 50 × 50 m sampling plot divided into 5 × 5 m subplots, in order to capture variability in vegetation and soil characteristics. Key findings reveal significant differences in carbon stocks across subplots with varying stand densities and light conditions. This highlights the role of the spatial heterogeneity of soil properties and vegetation cover in carbon sequestration. The study demonstrates the feasibility of indirect estimation of carbon stocks using stand parameters (density, height, and diameter), with results that closely match direct measurements. The total ecosystem carbon stock was estimated at 80.47 t ha−1, with the soil contribution exceeding that of living biomass and dead organic matter. This research emphasizes the importance of accounting for spatial heterogeneity in carbon assessments of post-agricultural ecosystems, providing a methodological framework for future studies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

Back to TopTop