Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (402)

Search Parameters:
Keywords = low-carbon preference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2041 KB  
Article
The Application of Blockchain Technology in Fresh Food Supply Chains: A Game-Theoretical Analysis Under Carbon Cap-And-Trade Policy and Consumer Dual Preferences
by Zheng Liu, Tianchen Yang, Bin Hu and Lihua Shi
Systems 2025, 13(9), 737; https://doi.org/10.3390/systems13090737 (registering DOI) - 25 Aug 2025
Abstract
Against the backdrop of the growing popularity of blockchain technology, this study investigates blockchain adoption strategies for the fresh food supply chain (FFSC) under a carbon cap-and-trade (CAT) policy. Taking a two-echelon supply chain consisting of a supplier and a retailer as an [...] Read more.
Against the backdrop of the growing popularity of blockchain technology, this study investigates blockchain adoption strategies for the fresh food supply chain (FFSC) under a carbon cap-and-trade (CAT) policy. Taking a two-echelon supply chain consisting of a supplier and a retailer as an example, we designed four blockchain adoption modes based on the supplier’s strategy (adopt or not) and the retailer’s strategy (adopt or not). Combining influencing factors such as consumers’ low-carbon preference, consumers’ freshness preference, and carbon trading price (CTP), we established four game-theoretic models. Using backward induction, we derived the equilibrium strategies for the supplier and retailer under different modes and analyzed the impact of key factors on these equilibrium strategies. The analysis yielded four key findings: (1) BB mode (both adopt blockchain) is the optimal adoption strategy for both FFSC parties when carbon prices are high, and consumers exhibit strong dual preferences. It most effectively mitigates the negative price impact of rising carbon prices by synergistically enhancing emission reduction efforts and freshness preservation efforts, thereby increasing overall profits and achieving a Pareto improvement in the benefits for both parties. (2) Consumers’ low-carbon preference and freshness preference exhibit an interaction effect. These two preferences mutually reinforce each other’s incentive effect on FFSC efforts (emission reduction/freshness preservation). Blockchain’s information transparency makes these efforts more perceptible to consumers, forming a synergistic “emission reduction-freshness preservation” cycle that further drives sales and profit growth. (3) The adoption of blockchain by either the supplier or the retailer significantly lowers the cost threshold for the other party to adopt blockchain, thereby increasing their willingness to adopt. (4) CAT and consumer preferences jointly influence the adoption strategies of suppliers and retailers. Additionally, the adoption strategies of FFSC participants are also affected by the other party’s blockchain adoption status. Drawing on the above conclusions, this study provides actionable guidance for suppliers and retailers in selecting optimal blockchain adoption strategies. Full article
(This article belongs to the Section Supply Chain Management)
28 pages, 3163 KB  
Article
Energy Management for Integrated Energy System Based on Coordinated Optimization of Electric–Thermal Multi-Energy Retention and Reinforcement Learning
by Yan Cheng, Song Yang, Shumin Sun, Peng Yu and Jiawei Xing
Processes 2025, 13(9), 2693; https://doi.org/10.3390/pr13092693 - 24 Aug 2025
Abstract
With the large-scale access to a large number of distributed electric and thermal flexible resources and multiple loads on the user side, the energy management of the integrated energy system (IES) has become an effective way for the efficient and low-carbon economic operation [...] Read more.
With the large-scale access to a large number of distributed electric and thermal flexible resources and multiple loads on the user side, the energy management of the integrated energy system (IES) has become an effective way for the efficient and low-carbon economic operation of energy systems. In order to explore a new mode of IES energy management with the participation of energy service providers (ESPs) and user clusters (UCs), this paper puts forward an energy management method for electric–thermal microgrids, considering the optimization of user energy consumption characteristics. Firstly, an energy management framework with multi-agent participation of ESP and user cluster is proposed, and a user energy preference model is established considering the user’s electricity and heat consumption preferences. Secondly, considering the operation benefit of ESP and user cluster, based on the reinforcement learning (RL) framework, an energy management model between ESPs and users is established, and a distributed solution algorithm combining Q-learning and quadratic programming is proposed. Finally, the IESs with different user scales and energy units are taken as the test system, and the optimal energy management strategy of the system, considering the user’s energy preference, is analyzed. The simulation results demonstrate that the energy management model proposed enhances the economic efficiency of IES operations and reduces emissions. In a test system with two UCs, the optimized system achieves a 5.05% reduction in carbon emissions. The RL-based distributed solution algorithm efficiently solves the energy management model for systems with varying UC scales, requiring only 6.55 s for systems with two UCs and 13.26 s for systems with six UCs. Full article
Show Figures

Figure 1

26 pages, 1398 KB  
Article
Research on Consumer Behavior-Driven Collaborative Mechanism of Green Supply Chain and Its Performance Optimization
by Wenbin Cao and Yuansiying Ge
Sustainability 2025, 17(17), 7601; https://doi.org/10.3390/su17177601 - 22 Aug 2025
Viewed by 179
Abstract
As a crucial vehicle for advancing the transition to a green low-carbon economy, the green supply chain plays a pivotal role in alleviating pollution pressures and facilitating the green transformation of products. Existing studies mainly focus on static optimization and cost coordination in [...] Read more.
As a crucial vehicle for advancing the transition to a green low-carbon economy, the green supply chain plays a pivotal role in alleviating pollution pressures and facilitating the green transformation of products. Existing studies mainly focus on static optimization and cost coordination in green supply chains, with limited attention to the dynamic impact of consumer behavior on green production and channel coordination. Based on consumer green preferences and the evolution of reference prices, we developed a differential game model for a two-tier green supply chain composed of a manufacturer and a retailer. The model incorporates green goodwill and consumer memory variables to capture the dynamic interaction among product greenness, sales effort, and consumer perception. By comparing the dynamic optimal response paths under integrated and non-integrated strategies, the study analyzes how reference price effects and goodwill accumulation influence decision-making and system performance. The results show that the stable reference price of green products is significantly higher than the actual selling price. When consumer environmental awareness is strong, cooperative strategies can markedly improve both green performance and supply chain profits, offering potential for Pareto improvement. This research enhances behavior-oriented modeling in green supply chains and provides theoretical and empirical support for designing collaboration mechanisms in green product promotion. Full article
Show Figures

Figure 1

35 pages, 5086 KB  
Article
Youth Perceptions of 1.5-Degree Lifestyle to Adapt to Climate Change: A Case Analysis of Japanese University Students
by Rong Huang and Rajib Shaw
Climate 2025, 13(9), 171; https://doi.org/10.3390/cli13090171 - 22 Aug 2025
Viewed by 69
Abstract
The 1.5-degree lifestyles aim to reduce household carbon footprints across six areas (food, housing, mobility, consumer goods, leisure, and services), as identified by IGES, relying on public efforts. This study seeks to understand Japanese university students’ perceptions of 1.5-degree lifestyles, their preferred actions [...] Read more.
The 1.5-degree lifestyles aim to reduce household carbon footprints across six areas (food, housing, mobility, consumer goods, leisure, and services), as identified by IGES, relying on public efforts. This study seeks to understand Japanese university students’ perceptions of 1.5-degree lifestyles, their preferred actions for implementation at the individual, family, and community levels, and the top three enablers and barriers they face. Using a questionnaire based on the KIDA (knowledge, interest, desire, action) framework, which aligns with IGES’s six sectors, data from 244 responses collected via snowball sampling were analyzed. Results reveal low awareness of 1.5-degree lifestyles among Japanese university students, along with a moderate desire to learn more. Gender differences were significant, with females showing higher awareness, desire, and action compared to males. Three common barriers identified include challenges with work–life balance, economic concerns, and gaps between knowledge and action. Recommendations emphasize increasing youth awareness and encouraging action on 1.5-degree lifestyles through early environmental education, youth-focused communication (such as social media), and securing strong political support to help address practical challenges. Full article
Show Figures

Figure 1

45 pages, 4647 KB  
Systematic Review
A Systematic Review of Biopolymer Phase Change Materials for Thermal Energy Storage: Challenges, Opportunities, and Future Direction
by Nadia Parwaty Wijanarko, Sindu Daniarta and Piotr Kolasiński
Energies 2025, 18(16), 4262; https://doi.org/10.3390/en18164262 - 11 Aug 2025
Viewed by 565
Abstract
This article systematically reviews biopolymer phase change materials (PCMs) for TES applications. The review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using databases from Scopus, Web of Science, and Google Scholar. The biopolymer PCMs are categorized [...] Read more.
This article systematically reviews biopolymer phase change materials (PCMs) for TES applications. The review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using databases from Scopus, Web of Science, and Google Scholar. The biopolymer PCMs are categorized as natural, synthetic, and hybrid (a combination of natural and synthetic). A total of 82 articles were included in the analysis. Several thermal properties, mechanical properties, advancements, and challenges are discussed. This article aims to review biopolymer PCMs and identify research gaps for future development. Natural biopolymer PCMs include lipid, lignin, polysaccharides, proteins, etc. Synthetic biopolymer PCMs include supramolecular, polyethylene glycol, polyurethane, polyrotaxane, polylactic acid, etc. Hybrid biopolymer PCMs combine natural and synthetic polymers with conductive fillers, balancing high latent heat with improved thermal stability and durability, although issues, like leakage and low conductivity, persist. It is found that biopolymers can be used as the core and supporting matrix of PCMs. Several cases and configurations of core, supporting matrix, and fillers in the development of PCM from biopolymers are discussed. This article also demonstrates that several natural, synthetic, and hybrid biopolymer PCMs hold promise for demanding TES applications due to their tunable properties and reliability. Biopolymer PCMs offer a sustainable alternative to petroleum-derived substances by minimizing environmental harm, cutting carbon emissions, and promoting a circular economy. This review also highlights several challenges, such as feedstock selection, purification and encapsulation, system compatibility, and standardization, that future research might address to enable scalable, safe, and cost-effective biopolymer PCM solutions. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

18 pages, 2432 KB  
Article
High Carbon Dioxide Concentration Inhibits Pileus Growth of Flammulina velutipes by Downregulating Cyclin Gene Expression
by Kwan-Woo Lee, Che-Hwon Park, Seong-Chul Lee, Ju-Hyeon Shin and Young-Jin Park
J. Fungi 2025, 11(8), 551; https://doi.org/10.3390/jof11080551 - 24 Jul 2025
Viewed by 430
Abstract
Flammulina velutipes is a widely cultivated edible mushroom in East Asia, recognized for its nutritional benefits and distinct morphology characterized by a long stipe and a compact, hemispherical pileus. The pileus not only plays a critical biological role in reproduction through spore formation [...] Read more.
Flammulina velutipes is a widely cultivated edible mushroom in East Asia, recognized for its nutritional benefits and distinct morphology characterized by a long stipe and a compact, hemispherical pileus. The pileus not only plays a critical biological role in reproduction through spore formation but also serves as a key commercial trait influencing consumer preference and market value. Despite its economic importance, pileus development in F. velutipes is highly sensitive to environmental factors, among which carbon dioxide (CO2) concentration is particularly influential under indoor cultivation conditions. While previous studies have reported that elevated CO2 levels can inhibit pileus expansion in other mushroom species, the molecular mechanisms by which CO2 affects pileus growth in F. velutipes remain poorly understood. In this study, we investigated the impact of CO2 concentration on pileus morphology and gene expression in F. velutipes by cultivating fruiting bodies under two controlled atmospheric conditions: low (1000 ppm) and high (10,000 ppm) CO2. Morphometric analysis revealed that elevated CO2 levels significantly suppressed pileus expansion, reducing the average diameter by more than 50% compared to the low CO2 condition. To elucidate the underlying genetic response, we conducted RNA sequencing and identified 102 differentially expressed genes (DEGs), with 78 being downregulated under elevated CO2. Functional enrichment analysis highlighted the involvement of cyclin-dependent protein kinase regulatory pathways in this response. Two cyclin genes were found to be significantly downregulated under elevated CO2 conditions, and their suppression was validated through quantitative real-time PCR. These genes, possessing conserved cyclin_N domains, are implicated in the regulation of the eukaryotic cell cycle, particularly in mitotic growth. These results indicate that CO2-induced downregulation of cyclin genes may underlie cell cycle arrest, contributing to inhibited pileus development. This study is the first to provide transcriptomic evidence that elevated CO2 concentrations specifically repress PHO80-like cyclin genes in F. velutipes, revealing a molecular mechanism by which CO2 stress inhibits pileus development. These findings suggest that elevated CO2 triggers a morphogenetic checkpoint by repressing PHO80-like cyclins, thereby modulating cell cycle progression during fruiting body development. This study provides the first evidence of such a transcriptional response in edible mushrooms and offers promising molecular targets for breeding CO2-resilient strains and optimizing commercial cultivation conditions. Full article
(This article belongs to the Special Issue Molecular Biology of Mushroom)
Show Figures

Figure 1

37 pages, 863 KB  
Systematic Review
Sustainable Water Resource Management to Achieve Net-Zero Carbon in the Water Industry: A Systematic Review of the Literature
by Jorge Alejandro Silva
Water 2025, 17(14), 2136; https://doi.org/10.3390/w17142136 - 17 Jul 2025
Viewed by 616
Abstract
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This [...] Read more.
With water scarcity becoming worse, and demand increasing, the urgency for the water industry to hit net-zero carbon is accelerating. Even as a multitude of utilities have pledged to reach net-zero by 2050, advancing beyond the energy–water nexus remains a heavy lift. This paper, using a systematic literature review that complies with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA), aims to propose sustainable water resource management (SWRM) strategies that may assist water utilities in decarbonizing their value chains and achieving net-zero carbon. In total, 31 articles were included from SCOPUS, ResearchGate, ScienceDirect, and Springer. The findings show that water utilities are responsible for 3% of global greenhouse gas emissions and could reduce these emissions by more than 45% by employing a few strategies, including the electrification of transport fleets, the use of renewables, advanced oxidation processes (AOPs) and energy-efficient technologies. A broad-based case study from Scottish Water shows a 254,000-ton CO2 reduction in the period since 2007, indicative of the potential of these measures. The review concludes that net-zero carbon is feasible through a mix of decarbonization, wastewater reuse, smart systems and policy-led innovation, especially if customized to both large and small utilities. To facilitate a wider and a more scalable transition, research needs to focus on development of low-cost and flexible strategies for underserved utilities. Full article
Show Figures

Figure 1

31 pages, 1708 KB  
Systematic Review
Circular Economy and Water Sustainability: Systematic Review of Water Management Technologies and Strategies (2018–2024)
by Gary Christiam Farfán Chilicaus, Luis Edgardo Cruz Salinas, Pedro Manuel Silva León, Danny Alonso Lizarzaburu Aguinaga, Persi Vera Zelada, Luis Alberto Vera Zelada, Elmer Ovidio Luque Luque, Rolando Licapa Redolfo and Emma Verónica Ramos Farroñán
Sustainability 2025, 17(14), 6544; https://doi.org/10.3390/su17146544 - 17 Jul 2025
Cited by 1 | Viewed by 698
Abstract
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant [...] Read more.
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant patterns: (i) rapid diffusion of membrane bioreactors, constructed wetlands, and advanced oxidation processes; (ii) research geographically concentrated in Asia and the European Union; (iii) industry’s marked preference for by-product valorization. Key barriers—high energy costs, fragmented regulatory frameworks, and low social acceptance—converge as critical constraints during scale-up. The following three practical action lines emerge: (1) adopt progressive tariffs and targeted tax credits that internalize environmental externalities; (2) harmonize water-reuse regulations with comparable circularity metrics; (3) create multi-actor platforms that co-design projects, boosting local legitimacy. These findings provide policymakers and water-sector practitioners with a clear roadmap for accelerating Sustainable Development Goals 6, 9, and 12 through circular, inclusive, low-carbon water systems. Full article
Show Figures

Figure 1

23 pages, 841 KB  
Article
Green Investment Strategies and Pricing Decisions in a Supply Chain Considering Blockchain Technology
by Songshi Shao, Yutong Li, Xu Cheng and Jinzhu Qu
Sustainability 2025, 17(14), 6491; https://doi.org/10.3390/su17146491 - 16 Jul 2025
Viewed by 423
Abstract
With rising environmental awareness, numerous firms are transitioning to green investment, such as low-carbon production. However, the consumer adoption of low-carbon products remains low due to transparency concerns. Many firms are leveraging blockchain to address information asymmetry in the supply chain, thereby building [...] Read more.
With rising environmental awareness, numerous firms are transitioning to green investment, such as low-carbon production. However, the consumer adoption of low-carbon products remains low due to transparency concerns. Many firms are leveraging blockchain to address information asymmetry in the supply chain, thereby building consumer confidence in low-carbon products. The purpose of this work is to provide decision support for business firms by analyzing the strategic choices regarding the manufacturer’s green investment and the e-retailer’s adoption of blockchain technology. Three strategy combinations are considered, including the baseline strategy combination without green investment and blockchain technology (NN), the strategy combination with only green investment (LN), and the strategy combination with both green investment and blockchain technology (LB). The optimal pricing and green level decisions are derived, and the conditions under which green investment and blockchain technology are beneficial to the supply chain members are examined. The findings suggest that the e-retailer can obtain the highest profit without adopting blockchain technology if it holds a substantial or extremely low market share, if the consumers’ low-carbon preference is at a low to medium level, or if the consumer green trust coefficient is high when the manufacturer implements the green investment strategy. When consumers exhibit a weak preference for low-carbon products, the strategy combination NN is optimal for the supply chain members. The strategy combination LB becomes optimal if the consumer green trust coefficient is near or below the moderate threshold, if the market share of a channel is neither extremely high nor low, or if consumers exhibit a strong preference for low-carbon products. Full article
Show Figures

Figure 1

42 pages, 951 KB  
Article
Construction of Evaluation Indicator System and Analysis for Low-Carbon Economy Development in Chengdu City of China
by Yan Jia, Yuanyuan Huang, Junyang Zhou and Jushuang Sun
Systems 2025, 13(7), 573; https://doi.org/10.3390/systems13070573 - 11 Jul 2025
Viewed by 506
Abstract
In order to promote the green and low-carbon transformation of the economy and society, as the economic center of the western region of China, Chengdu actively promotes the national green and low-carbon policies. Some specific measures are proposed to develop Chengdu’s low-carbon economy, [...] Read more.
In order to promote the green and low-carbon transformation of the economy and society, as the economic center of the western region of China, Chengdu actively promotes the national green and low-carbon policies. Some specific measures are proposed to develop Chengdu’s low-carbon economy, such as increasing the ownership of new energy vehicles, promoting the development of park cities and increasing the proportion of clean energy and non-fossil energy, etc. So, in order to accurately evaluate Chengdu’s low-carbon economy-development achievements, firstly, this paper uses literature research to construct an evaluation indicator system for the low-carbon economy development of Chengdu city from five dimensions: economy, energy, technology, environment, and transportation. Then, an improved Analytic Hierarchy Process (AHP) method based on judgment matrices is proposed to determine subjective weights of indicators, while Entropy Weight Method (EWM) and Variation Coefficient (VC) method are used to determine objective weights of the evaluation indicators. Finally, the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) is used for the multi-indicator comprehensive evaluation of Chengdu’s low-carbon economy development. The evaluation results show that the comprehensive performance of Chengdu’s low-carbon economy has continued to improve from 2018 to 2023, simultaneously, the main influencing factors and weak links are analyzed, and targeted suggestions and strategies for improvement are put forward to promote the low-carbon economy development of Chengdu city. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

23 pages, 1176 KB  
Article
Optimal Strategies in a Manufacturer-Led Supply Chain Under Hybrid Carbon Policies and Retailer’s Fairness Concerns
by Ping Li, Shuxuan Ai and Yangmei Zeng
Sustainability 2025, 17(14), 6309; https://doi.org/10.3390/su17146309 - 9 Jul 2025
Viewed by 316
Abstract
Implementing hybrid carbon policies is crucial for supply chains’ low-carbon transition. However, the downstream retailer is often passive in low-carbon strategies, leading to fair issues that may influence the decision-making of channel members. Therefore, this study integrates green technology, remanufacturing, retailer’s fairness concerns, [...] Read more.
Implementing hybrid carbon policies is crucial for supply chains’ low-carbon transition. However, the downstream retailer is often passive in low-carbon strategies, leading to fair issues that may influence the decision-making of channel members. Therefore, this study integrates green technology, remanufacturing, retailer’s fairness concerns, low-carbon preference, and hybrid carbon policies into a manufacturer-led supply chain through differential game theory. Then, the equilibrium solutions for each member are analyzed under the centralized case and decentralized case involving a cost-sharing contract for low-carbon promotion. Our results show that centralized decision-making can optimize both the economic and environmental performances of channel members; retailer’s fairness concerns can enhance low-carbon promotional efforts and the cost-sharing ratio for such initiatives, but do not impact low-carbon production efforts. Additionally, a threshold exists on the relationship between retailer’s fairness concerns and the cost-sharing ratio; increased low-carbon preference motivates more efforts in low-carbon production and promotion. Moreover, stricter carbon policies motivate the manufacturer to increase low-carbon efforts, but the retailer tailors its low-carbon promotional strategy according to the unit carbon emissions of products to maintain an adequate level of low-carbon goodwill. Full article
Show Figures

Figure 1

25 pages, 1563 KB  
Article
Sustainable Decision Systems in Green E-Business Models: Pricing and Channel Strategies in Low-Carbon O2O Supply Chains
by Yulin Liu, Tie Li and Yang Gao
Sustainability 2025, 17(13), 6231; https://doi.org/10.3390/su17136231 - 7 Jul 2025
Viewed by 432
Abstract
This paper investigates sustainable decision systems within green E-business models by analyzing how different O2O (online-to-offline) fulfillment structures affect emission-reduction efforts and pricing strategies in a two-tier supply chain consisting of a manufacturer and a new retailer. Three practical sales formats—package self-pickup, nearby [...] Read more.
This paper investigates sustainable decision systems within green E-business models by analyzing how different O2O (online-to-offline) fulfillment structures affect emission-reduction efforts and pricing strategies in a two-tier supply chain consisting of a manufacturer and a new retailer. Three practical sales formats—package self-pickup, nearby delivery, and hybrid—are modeled using Stackelberg game frameworks that incorporate key factors such as inconvenience cost, logistics cost, processing fees, and emission-reduction coefficients. Results show that the manufacturer’s emission-reduction decisions and both parties’ pricing strategies are highly sensitive to cost conditions and consumer preferences. Specifically, higher inconvenience and abatement costs consistently reduce profitability and emission efforts; the hybrid model exhibits threshold-dependent advantages over single-mode strategies in terms of carbon efficiency and economic returns; and consumer green preference and distance sensitivity jointly shape optimal channel configurations. Robustness analysis confirms the model’s stability under varying parameter conditions. These insights provide theoretical and practical guidance for firms seeking to develop adaptive, low-carbon fulfillment strategies that align with sustainability goals and market demands. Full article
(This article belongs to the Special Issue Sustainable Information Management and E-Commerce)
Show Figures

Figure 1

22 pages, 3066 KB  
Article
Optimal Strategies in Green Supply Chains When Considering Consumers’ Green Preferences and Government Subsidies
by Lei Wang, Tao Xu and Tingqiang Chen
Mathematics 2025, 13(13), 2209; https://doi.org/10.3390/math13132209 - 7 Jul 2025
Viewed by 295
Abstract
Green and low-carbon development of supply chains represents a practical approach to addressing climate change and enhancing corporate competitiveness. From the perspective of the relationship between policy subsidies and channel power structures, this paper constructs Stackelberg game models under four different scenarios to [...] Read more.
Green and low-carbon development of supply chains represents a practical approach to addressing climate change and enhancing corporate competitiveness. From the perspective of the relationship between policy subsidies and channel power structures, this paper constructs Stackelberg game models under four different scenarios to conduct theoretical analyses of the optimal strategies, supported by numerical simulations. The research findings reveal the following. (1) Under the product subsidy policy, the enhancement of consumers’ green preference will lead to a green premium, and in the case of the technology subsidy policy, consumers’ green preference will inhibit wholesale prices and retail prices. However, there is a threshold in the manufacturer-led case, and a “green premium” is also claimed when this threshold is exceeded. (2) The effects of the product subsidy policy and the green technology level subsidy policy on prices are opposite, where an increase in the product subsidy will increase the wholesale price and retail price, while an increase in the green technology level subsidy will reduce the wholesale price. The technology subsidy policy has a more significant effect on the promotion of green technology. (3) The power of supply chain channels will directly affect corporate profits, and the leader of the supply chain often has higher profits. Compared with product subsidies, technology subsidies can inhibit the channel power of retailers. Full article
Show Figures

Figure 1

13 pages, 4107 KB  
Article
Game Analysis Between Manufacturer and Retailer Under Carbon Tax Policy
by Jun Yu, Shihui Yang and Zongxian Feng
Sustainability 2025, 17(13), 6183; https://doi.org/10.3390/su17136183 - 5 Jul 2025
Viewed by 326
Abstract
Considering consumers’ low-carbon preferences, this article analyzes a manufacturer’s price and carbon abatement strategies, as well as a retailer’s price and promotion strategies, in a centralized game, where the manufacturer and the retailer jointly make decisions, and a decentralized game, where the two [...] Read more.
Considering consumers’ low-carbon preferences, this article analyzes a manufacturer’s price and carbon abatement strategies, as well as a retailer’s price and promotion strategies, in a centralized game, where the manufacturer and the retailer jointly make decisions, and a decentralized game, where the two parties each make decisions simultaneously. This study discusses the impact of the carbon abatement cost coefficient, promotion cost coefficient, sensitivity coefficient of consumer demand to carbon abatement rate or promotion rate, or carbon tax rate on the manufacturer’s carbon abatement rate, commodity’s retail price, and retailer’s promotion rate. This article also discusses the impact of any one of the main parameters on supply chain profit. Through comparisons of the above two games, this article concludes that the former is better than the latter for firms, consumers, and the environment. This article also concludes that a reduction in the carbon abatement cost coefficient, a rise in the sensitivity coefficient of consumer demand to the carbon abatement rate, or a rise in the carbon tax rate increases the manufacturer’s optimal carbon abatement rate. A relatively high carbon abatement rate means relatively low CO2 emissions, which are environmentally friendly and conducive to sustainable development at the ecological level. The foregoing conclusions provide governments with references for making carbon tax policies and also offer firms references for making decisions. Full article
(This article belongs to the Special Issue Sustainable Operations, Logistics and Supply Chain Management)
Show Figures

Figure 1

37 pages, 888 KB  
Review
A Review of the Effects of Nanomaterials on the Properties of Concrete
by Qi Yang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Buildings 2025, 15(13), 2363; https://doi.org/10.3390/buildings15132363 - 5 Jul 2025
Viewed by 847
Abstract
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on [...] Read more.
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on concrete performance. It provides a detailed explanation of the characteristics of three common nanomaterials: nano-silica, nano-calcium carbonate, and carbon nanotubes. This study analyzes how these materials improve the microstructure, accelerate hydration reactions, and enhance interfacial transition zones, thereby enhancing the mechanical properties, durability, and workability of concrete. For conventional engineering projects, nano-calcium carbonate is the preferred choice owing to its low cost and its capacity to improve workability and early-age strength. For high-strength and durable structures, nano-silica is selected due to its high specific surface area (ranging from 100 to 800 m2/g) and its superior compactness and impermeability. In the context of intelligent buildings, carbon nanotubes are the most suitable option because of their exceptional thermal conductivity and electrical conductivity (with axial thermal conductivity reaching 2000–6000 W/m*K and electrical conductivity ranging from 103 to 106 S/cm). However, it should be noted that carbon nanotubes are the most expensive among the three materials. Additionally, this study discusses the issues and challenges currently faced by the application of nanomaterials in concrete and looks ahead to future research directions, aiming to provide a reference for further research and engineering applications of nanomaterials in the field of concrete. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Building Materials)
Show Figures

Figure 1

Back to TopTop