Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (487)

Search Parameters:
Keywords = m6A methyltransferase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7925 KB  
Article
DNA Hypermethylation at the Invasive Front of Oral Squamous Cell Carcinoma Confers Poorly Differentiated Characteristics and Promotes Migration of Cancer Cells
by Li-Po Wang, Chien-Ya Li, Yu-Hsueh Wu, Meng-Yen Chen, Yi-Ping Hsieh, Tze-Ta Huang, Tse-Ming Hong and Yuh-Ling Chen
Diagnostics 2025, 15(19), 2477; https://doi.org/10.3390/diagnostics15192477 - 27 Sep 2025
Abstract
Background/Objectives: Oral squamous cell carcinoma (OSCC) is a common and aggressive oral cancer with high recurrence and mortality rates, largely due to late diagnosis and metastasis. Epigenetic regulation, particularly aberrant DNA methylation, plays a critical role in cancer progression. Altered methylation patterns disrupt [...] Read more.
Background/Objectives: Oral squamous cell carcinoma (OSCC) is a common and aggressive oral cancer with high recurrence and mortality rates, largely due to late diagnosis and metastasis. Epigenetic regulation, particularly aberrant DNA methylation, plays a critical role in cancer progression. Altered methylation patterns disrupt cancer-related gene regulation. Our previous study found that oral cancer patients exhibit increased synthesis of S-adenosyl-L-methionine, a key methyl donor for cytosine methylation. Therefore, the aim of this study was to explore the relationship between global DNA methylation and OSCC progression and to evaluate the impact of DNA methylation heterogeneity on oral cancer cells. Methods: Immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to examine 5-methylcytosine (5-mC) expression in OSCC clinical specimens and oral cancer cells. The DNA methyltransferase inhibitor 5-Aza-dC was used to assess the effects of DNA methylation on cell function and gene expression. RNA sequencing was used to identify key differentially expressed genes affected by 5-Aza-dC treatment. Cell migration was assessed using a wound closure assay. Protein and gene expression were analyzed using Western blotting and quantitative PCR. Results: An inverse relationship was found between 5-mC levels and cancer differentiation—poorly differentiated OSCC exhibited higher 5-mC levels. Additionally, higher 5-mC staining was observed at the invasion front of oral cancer tissues. In OSCC cells, 5-mC content correlated with migration ability. Furthermore, conditioned medium from cancer-associated fibroblasts enhanced both methylation levels and migration of OSCC cells. Treatment with 5-Aza-dC significantly increased epithelial differentiation, reduced epithelial-to-mesenchymal transition and cell adhesion-related genes, and inhibited OSCC cell migration. Conclusions: The findings highlight the critical role of DNA hypermethylation in OSCC progression, particularly in regulating differentiation, migration, and EMT. The interplay between the tumor microenvironment and epigenetic modifications underscores the complexity of OSCC biology and opens avenues for innovative therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Oral Pathology of Basic and Clinical Cancer Research)
Show Figures

Figure 1

19 pages, 3718 KB  
Article
Unscheduled m6A Deposition in RNA via m6ATP Incorporation by DNA Polymerases
by Fei Qu, Jeanpierre Fuente, Prem Chapagain and Yuan Liu
Int. J. Mol. Sci. 2025, 26(19), 9263; https://doi.org/10.3390/ijms26199263 - 23 Sep 2025
Viewed by 122
Abstract
N6-methyladenosine (m6A) is the most abundant modification of mRNA and plays a crucial role in mediating cellular functions, and it is associated with cancer and neurodegenerative diseases. Studies have shown that m6A is predominantly deposited on its [...] Read more.
N6-methyladenosine (m6A) is the most abundant modification of mRNA and plays a crucial role in mediating cellular functions, and it is associated with cancer and neurodegenerative diseases. Studies have shown that m6A is predominantly deposited on its consensus motif by the m6A writer proteins RNA methyltransferase METLL3/METLL14. However, it was found that nonconventional m6A deposition by other alternative pathways may also exist and can modulate epitranscriptomic regulation in cells. Thus, understanding the molecular mechanisms underlying nonconventional m6A deposition outside the canonical motifs will provide novel insights into the full scope of the functional impact of m6A. In this study, we discovered that m6ATP was efficiently incorporated by the repairing DNA polymerases pol β and pol η through RNA gap-filling synthesis on an RNA-DNA hybrid. Steady-state kinetics results showed that m6ATP was incorporated into RNA by the DNA polymerases with a comparable efficiency to ATP. AlphaFold3-assisted molecular dynamics simulations further elucidated the structural basis for the DNA polymerases to incorporate m6ATP into the RNA substrates by showing that the enzymes employed the unique base-stacking mechanism to govern the distance between the 3′-OH group of the 3′-terminus nucleotide of the primer and the 5′-α-phosphate of m6ATP to perform their catalysis. Furthermore, we detected a significant amount of m6ATP in human cells. We showed that the m6ATP level was associated with that of the oxidative stress biomarker 8-oxoGTP in cells, suggesting that unscheduled m6A deposition on RNA can be mediated by m6ATP incorporation that is associated with cellular oxidative stress. Our study sheds light on the unscheduled m6A deposition as a potential alternative mechanism for altering epitranscriptomic modifications. Full article
Show Figures

Figure 1

14 pages, 623 KB  
Review
m6A RNA Methylation in Psychiatric Disorders: An Emerging Epitranscriptomic Axis
by Ambrose Loc Ngo, Linda Nguyen, Niki Gharavi Alkhansari and Huiping Zhang
Epigenomes 2025, 9(3), 36; https://doi.org/10.3390/epigenomes9030036 - 19 Sep 2025
Viewed by 274
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification in eukaryotic messenger RNA (mRNA) and plays a vital role in post-transcriptional gene regulation. In recent years, m6A has emerged as a pivotal epitranscriptomic signal involved in neural development, [...] Read more.
N6-methyladenosine (m6A) is the most prevalent internal modification in eukaryotic messenger RNA (mRNA) and plays a vital role in post-transcriptional gene regulation. In recent years, m6A has emerged as a pivotal epitranscriptomic signal involved in neural development, synaptic remodeling, and the molecular pathophysiology of neuropsychiatric disorders. In this review, we summarize the mechanisms underlying the deposition, removal, and recognition of m6A by dedicated methyltransferases, demethylases, and RNA-binding proteins. We further explore how these dynamic modifications influence neuronal differentiation and memory formation. Recent studies have linked aberrant m6A regulation to psychiatric conditions such as depression, anxiety, schizophrenia, and bipolar disorder. Additionally, we discuss how pharmacological or genetic modulation of m6A pathways may promote adaptive neural plasticity and enhance cognitive and emotional resilience. Despite these promising findings, significant challenges remain in achieving spatial and temporal specificity while minimizing off-target effects in the brain. Therefore, we advocate for more in-depth investigations into m6A function within developmentally defined neural circuits to better understand its enduring role in maintaining neural homeostasis. Full article
(This article belongs to the Special Issue Features Papers in Epigenomes 2025)
Show Figures

Figure 1

21 pages, 987 KB  
Review
m6A mRNA Methylation in Hematopoiesis: The Importance of Writing, Erasing, and Reading
by Antonia-Gerasimina Vasilopoulou, Eleni Kalafati, Ekati Drakopoulou and Nicholas P. Anagnou
Cells 2025, 14(17), 1388; https://doi.org/10.3390/cells14171388 - 5 Sep 2025
Viewed by 727
Abstract
Over recent years, epitranscriptomic research has provided a new layer of gene regulation during hematopoietic development and aberrant hematopoiesis. Among the 170 identified RNA chemical marks, N6-methyladenosine (m6A) is the most abundant in eukaryotic cells and plays a critical [...] Read more.
Over recent years, epitranscriptomic research has provided a new layer of gene regulation during hematopoietic development and aberrant hematopoiesis. Among the 170 identified RNA chemical marks, N6-methyladenosine (m6A) is the most abundant in eukaryotic cells and plays a critical role in various biological processes. This dynamic modification is regulated by a series of methyltransferases, demethylases, and m6A binding proteins, known as writers, erasers, and readers, respectively. Emerging evidence suggests that m6A modification and its regulators are involved in every aspect of normal hematopoietic development, from the emergence of hematopoietic stem cells to the generation of mature blood cells. Also, it has been established that abnormal expression of m6A regulators is implicated in the initiation of blood diseases. In this review, we summarize the latest findings regarding the role of m6A in erythropoiesis and highlight its implications in the pathophysiology of hemoglobin disorders. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

13 pages, 679 KB  
Review
Current Insights into Obesity and m6A Modification
by Chen Meng and Di Yang
Biomedicines 2025, 13(9), 2164; https://doi.org/10.3390/biomedicines13092164 - 5 Sep 2025
Viewed by 521
Abstract
Obesity has emerged as a global health challenge, closely associated with multiple metabolic diseases, such as cardiovascular diseases, type 2 diabetes, and non-alcoholic fatty liver disease. The traditional “calories-in minus calories-out” paradigm is no longer sufficient to explain the heterogeneity of obesity; consequently, [...] Read more.
Obesity has emerged as a global health challenge, closely associated with multiple metabolic diseases, such as cardiovascular diseases, type 2 diabetes, and non-alcoholic fatty liver disease. The traditional “calories-in minus calories-out” paradigm is no longer sufficient to explain the heterogeneity of obesity; consequently, a growing body of research has turned its focus to epigenetic regulation—particularly chemical modifications at the RNA level. N6-methyladenosine (m6A) modification is one of the most abundant epigenetic modifications on RNA, which dynamically regulates the methylation reaction in specific sequences on mRNA through methyltransferases (writers), demethylases (erasers), and binding proteins (readers). Accumulating evidence in recent years has revealed that m6A modification plays a pivotal role in the pathogenesis and progression of obesity, particularly through its regulation of key biological processes, such as adipocyte differentiation, lipid metabolism, and energy homeostasis. Given its critical involvement in metabolic dysregulation, targeting m6A-related mechanisms may offer novel therapeutic avenues for obesity management. This review systematically summarizes the current understanding of m6A modification in obesity, elucidates its underlying molecular mechanisms, and evaluates its potential as a therapeutic target. By integrating recent advances in the field, we aim to provide new perspectives for the development of innovative strategies in obesity treatment. Full article
(This article belongs to the Special Issue Epigenetics and Metabolic Disorders)
Show Figures

Figure 1

21 pages, 6957 KB  
Article
Integrated Multi-Omics Analysis Reveals the Role of Resveratrol in Regulating the Intestinal Function of Megalobrama amblycephala via m6A Methylation
by Zhengyan Gu, Qiaoqiao Mu, Linjie Qian, Yan Lin, Wenqiang Jiang, Siyue Lu, Linghong Miao and Xianping Ge
Int. J. Mol. Sci. 2025, 26(17), 8587; https://doi.org/10.3390/ijms26178587 - 3 Sep 2025
Viewed by 639
Abstract
Resveratrol (RES), a natural polyphenol with lipid metabolism-regulating properties, also demonstrates remarkable efficacy in strengthening intestinal barrier integrity. In order to elucidate the mechanism by which RES ameliorates intestinal damage and lipid metabolism disturbances in Megalobrama amblycephala under a high-fat (HF) diet, a [...] Read more.
Resveratrol (RES), a natural polyphenol with lipid metabolism-regulating properties, also demonstrates remarkable efficacy in strengthening intestinal barrier integrity. In order to elucidate the mechanism by which RES ameliorates intestinal damage and lipid metabolism disturbances in Megalobrama amblycephala under a high-fat (HF) diet, a conventional diet (CON), an HF diet (HF), or an HF diet supplemented with 0.6, 3, or 6 g/kg RES (HF + 0.06%, 0.3%, or 0.6% RES) was fed to fish. After 8 weeks, RES supplementation in the HF diet significantly improved the growth performance and alleviated hepatic lipid deposition. Microbiota profiling revealed RES improved intestinal barrier function by reducing α-diversity, Actinobacteria and Bosea abundances, and enriching Firmicutes abundance. RES also maintained the integrity of the intestinal physical barrier and inhibited the inflammatory response. MeRIP-seq analysis indicated that RES modulated intestinal mRNA m6A methylation by upregulating methyltransferase-like 3 (mettl3) and downregulating fat mass and obesity-associated gene (fto) and Alk B homolog 5 (alkbh5). Combined RNA-seq and MeRIP-seq data revealed that RES alleviated endoplasmic reticulum stress (ERS) by upregulating the m6A methylation and gene level of heat shock protein 70 (hsp70). Correlation analyses identified significant associations between intestinal microbiota composition and ERS, tight junction, and inflammation. In summary, RES ameliorates lipid dysregulation via a synergistic mechanism involving intestinal microbiota, m6A modification, ERS, barrier function, and inflammatory response. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

15 pages, 1488 KB  
Article
Deficiency of N1-Adenine Methyltransferase Aggravates RNA and Protein Aggregation
by Marion Alriquet, Roberto Arsiè, Giulia Calloni, Gian G. Tartaglia and R. Martin Vabulas
Cells 2025, 14(17), 1370; https://doi.org/10.3390/cells14171370 - 2 Sep 2025
Viewed by 736
Abstract
RNA modifications regulate diverse aspects of transcripts’ function and stability. Among these, N1-methyladenine (m1A) is a reversible mark primarily installed by the TRMT6/TRMT61A methyltransferase on tRNA, though it is also found on other RNA types. m1A has been implicated [...] Read more.
RNA modifications regulate diverse aspects of transcripts’ function and stability. Among these, N1-methyladenine (m1A) is a reversible mark primarily installed by the TRMT6/TRMT61A methyltransferase on tRNA, though it is also found on other RNA types. m1A has been implicated in protecting mRNAs during acute protein misfolding stress. However, the role of m1A under chronic proteotoxic conditions, such as intracellular amyloid aggregation, remains poorly understood. To address this gap, we examined the effects of reduced N1-adenine methylation in human cells undergoing amyloidogenesis. Suppression of the methyltransferase TRMT61A or overexpression of the m1A-specific demethylase ALKBH3 enhanced amyloid aggregation. A deficiency of N1-adenine methylation also impaired the expression of a reporter mRNA-encoded protein, highlighting the protective role of m1A in safeguarding transcript functionality. Proteomic analysis of amyloid aggregates from TRMT61A-deficient cells revealed increased co-aggregation of bystander proteins, particularly those with known RNA-binding activity. At the same time, the aggregates from methylation-deficient cells contained elevated levels of mRNAs. Collectively, our findings support a role for m1A in preventing RNA entanglement within aggregates and limiting RNA-mediated propagation of protein co-aggregation. Full article
Show Figures

Figure 1

27 pages, 415 KB  
Review
Radiotherapy in Glioblastoma Multiforme: Evolution, Limitations, and Molecularly Guided Future
by Castalia Fernández, Raquel Ciérvide, Ana Díaz, Isabel Garrido and Felipe Couñago
Biomedicines 2025, 13(9), 2136; https://doi.org/10.3390/biomedicines13092136 - 1 Sep 2025
Viewed by 1185
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor in adults, has a poor prognosis due to rapid recurrence and treatment resistance. This review examines the evolution of radiotherapy (RT) for GBM management, from whole-brain RT to modern techniques like intensity-modulated RT (IMRT) [...] Read more.
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor in adults, has a poor prognosis due to rapid recurrence and treatment resistance. This review examines the evolution of radiotherapy (RT) for GBM management, from whole-brain RT to modern techniques like intensity-modulated RT (IMRT) and volumetric modulated arc therapy (VMAT), guided by 2023 European Society for Radiotherapy and Oncology (ESTRO)-European Association of Neuro-Oncology (EANO) and 2025 American Society for Radiation Oncology (ASTRO) recommendations. The standard Stupp protocol (60 Gy/30 fractions with temozolomide [TMZ]) improves overall survival (OS) to 14.6 months, with greater benefits in O6-methylguanine-DNA methyltransferase (MGMT)-methylated tumors (21.7 months). Tumor Treating Fields (TTFields) extend median overall survival (mOS) to 31.6 months in MGMT-methylated patients and 20.9 months overall in supratentorial GBM (EF-14 trial). However, 80–90% of recurrences occur within 2 cm of the irradiated field due to tumor infiltration and radioresistance driven by epidermal growth factor receptor (EGFR) amplification, phosphatase and tensin homolog (PTEN) mutations, cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletions, tumor hypoxia, and tumor stem cells. Pseudoprogression, distinguished using Response Assessment in Neuro-Oncology (RANO) criteria and positron emission tomography (PET), complicates response evaluation. Targeted therapies (e.g., bevacizumab; PARP inhibitors) and immunotherapies (e.g., pembrolizumab; oncolytic viruses), alongside advanced imaging (multiparametric magnetic resonance imaging [MRI], amino acid PET), support personalized RT. Ongoing trials evaluating reirradiation, hypofractionation, stereotactic radiosurgery, neoadjuvant therapies, proton therapy (PT), boron neutron capture therapy (BNCT), and AI-driven planning aim to enhance efficacy for GBM IDH-wildtype, but phase III trials are needed to improve survival and quality of life. Full article
(This article belongs to the Special Issue Glioblastoma: From Pathophysiology to Novel Therapeutic Approaches)
36 pages, 6438 KB  
Review
Structural and Functional Studies on Key Epigenetic Regulators in Asthma
by Muhammad Fakhar, Mehreen Gul and Wenjin Li
Biomolecules 2025, 15(9), 1255; https://doi.org/10.3390/biom15091255 - 29 Aug 2025
Viewed by 583
Abstract
Asthma is a chronic inflammatory airway disease influenced by both genetic and environmental factors. Recent insights have underscored the pivotal role of epigenetic regulation in the pathogenesis and heterogeneity of asthma. This review focuses on key epigenetically important regulators categorized as writers, erasers, [...] Read more.
Asthma is a chronic inflammatory airway disease influenced by both genetic and environmental factors. Recent insights have underscored the pivotal role of epigenetic regulation in the pathogenesis and heterogeneity of asthma. This review focuses on key epigenetically important regulators categorized as writers, erasers, and readers that govern DNA methylation, histone modifications, and RNA modifications. These proteins modulate gene expression without altering the underlying DNA sequence, thereby influencing immune responses, airway remodeling, and disease severity. We highlight the structural and functional dynamics of histone acetyltransferases (e.g., p300/CBP), histone deacetylases (e.g., SIRT family), DNA methyltransferases (DNMT1, DNMT3A), demethylases (TET1), and methyl-CpG-binding proteins (MBD2) in shaping chromatin accessibility and transcriptional activity. Additionally, the m6A RNA modification machinery including METTL3, METTL14, FTO, YTHDF1/2, IGF2BP2, and WTAP is explored for its emerging significance in regulating post-transcriptional gene expression during asthma progression. Structural characterizations of these proteins reveal conserved catalytic domains and interaction motifs, mirroring their respective families such as SIRTs, p300/CBP, DNMT1/3A, and YTHDF1/2 critical to their epigenetic functions, offering mechanistic insight into their roles in airway inflammation and immune modulation. By elucidating these pathways, this review provides a framework for the development of epigenetic biomarkers and targeted therapies. Future directions emphasize phenotype-specific epigenomic profiling and structure-guided drug design to enable precision medicine approaches in asthma management. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

27 pages, 2468 KB  
Article
Targeted Fluoxetine Delivery Using Folic Acid-Modified PLGA Nanoparticles for Selective Uptake by Glioblastoma Cells
by Maria João Ramalho, Carina Nóbrega, Stéphanie Andrade, Jorge Lima, Joana Angélica Loureiro and Maria Carmo Pereira
Pharmaceutics 2025, 17(9), 1116; https://doi.org/10.3390/pharmaceutics17091116 - 27 Aug 2025
Cited by 1 | Viewed by 744
Abstract
Background/Objectives: The conventional treatment of glioblastoma (GBM) with alkylating agents is not curative. The protein O6-methylguanine DNA methyltransferase (MGMT) is a significant limitation, being able to repair drug-induced DNA damage. Thus, exploring non-alkylating agents already approved by the FDA is imperative. The [...] Read more.
Background/Objectives: The conventional treatment of glioblastoma (GBM) with alkylating agents is not curative. The protein O6-methylguanine DNA methyltransferase (MGMT) is a significant limitation, being able to repair drug-induced DNA damage. Thus, exploring non-alkylating agents already approved by the FDA is imperative. The antidepressant fluoxetine (FL) has been explored due to its anti-cancer properties. However, its first-pass effect and its non-targeted distribution to brain tissue are major limitations of FL’s administration, which is conventionally orally administered. Thus, the primary objective of this work was the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) tailored with folic acid (FA) for FL delivery to GBM cells. Methods: A Central Composite Design (CCD) was applied to optimize the NPs. Results: The developed FA-functionalized PLGA NPs exhibited physicochemical properties suitable for brain-targeted delivery. The final formulation presented an average diameter of 167 ± 8 nm, a polydispersity index (PdI) of 0.23 ± 0.07, and a zeta potential of −22.2 ± 0.3 mV. The encapsulation efficiency (EE) and loading capacity (LC) values were 44.4 ± 3.8% and 3.1 ± 0.3%, respectively. In vitro studies demonstrated that the NPs are stable in storage and simulated physiological conditions and can maintain a controlled and slow-release profile of FL for 17 days. In vitro cell uptake experiments demonstrated that conjugation with FA enhances the NPs’ internalization in GBM cells overexpressing folate receptors through endocytosis mediated by this receptor. Furthermore, in vitro cytotoxicity experiments demonstrated that the FL encapsulation in the developed NPs maintains drug efficacy, as well as it was able to increase cell sensitivity to treatment with an alkylating agent. Conclusions: These results suggest that the developed NPs are effective nanocarriers, either as a standalone therapy or as a chemosensitizer in combination with the standard GBM treatment. Full article
(This article belongs to the Special Issue Nano-Based Technology for Glioblastoma)
Show Figures

Graphical abstract

16 pages, 2809 KB  
Article
Direct and In-Utero Exposure to Quaternary Ammonium Disinfectants Alters Sperm Parameters and mRNA Expression of Epigenetic Enzymes in the Testes of Male CD-1 Mice
by Vanessa E. Melin and Terry C. Hrubec
Toxics 2025, 13(9), 709; https://doi.org/10.3390/toxics13090709 - 23 Aug 2025
Viewed by 475
Abstract
Quaternary ammonium compounds (QACs) are a class of chemicals used for their antimicrobial, surfactant, and antistatic properties. QACs are present in many consumer products, and people are regularly exposed to them. We have previously shown reproductive toxicity in mice exposed to the disinfectants [...] Read more.
Quaternary ammonium compounds (QACs) are a class of chemicals used for their antimicrobial, surfactant, and antistatic properties. QACs are present in many consumer products, and people are regularly exposed to them. We have previously shown reproductive toxicity in mice exposed to the disinfectants alkyl dimethyl benzyl ammonium chloride (ADBAC) and dodecyl dimethyl ammonium chloride (DDAC). To assess the long-term reproductive impacts, a generational reproductive study was conducted. Sperm parameters were determined by CASA and epigenetic enzyme mRNA expression was determined by pathway-focused RT-PCR. Mice ambiently exposed to ADBAC+DDAC exhibited decreases in reproductive indices that persisted through the F1 generation. Male mice (F0) dosed with 120 mg/kg/day of ADBAC+DDAC exhibited decreased sperm concentration and motility that persisted through the F1 generation. Changes in the mRNA expression of chromatin-modifying enzymes in the testes were seen. Two histone acetyltransferases (Hat1 and Kat2b) were upregulated, and one lysine-specific demethylase (Kdm6b) was downregulated in the F0 generation. The DNA methyltransferase Dnmt1 was downregulated in F1 males. These changes in chromatin-modifying enzymes are known to decrease fertility and could be a mechanism for ADBAC+DDAC reproductive toxicity. In all experiments, the F2 generation was similar to the controls, showing multi-generational but not trans-generational epigenetic inheritance. Full article
(This article belongs to the Special Issue Reproductive and Developmental Toxicity of Environmental Factors)
Show Figures

Figure 1

41 pages, 1765 KB  
Review
Probiotics and the Gut–Brain Axis: Emerging Therapeutic Strategies for Epilepsy and Depression Comorbidity
by Mustafa M. Shokr, Reem M. Eladawy, Yasmena O. Azar and Seham M. Al Raish
Foods 2025, 14(17), 2926; https://doi.org/10.3390/foods14172926 - 22 Aug 2025
Viewed by 1263
Abstract
The bidirectional relationship between epilepsy and depression illustrates shared neurobiological mechanisms of neuroinflammation, hypothalamic–pituitary–adrenal axis dysregulation, and glutamatergic dysfunction. Depression is present in 20–55% of people with epilepsy, far greater than in the general population, while depression doubles epilepsy risk 2.5-fold, indicating shared [...] Read more.
The bidirectional relationship between epilepsy and depression illustrates shared neurobiological mechanisms of neuroinflammation, hypothalamic–pituitary–adrenal axis dysregulation, and glutamatergic dysfunction. Depression is present in 20–55% of people with epilepsy, far greater than in the general population, while depression doubles epilepsy risk 2.5-fold, indicating shared pathophysiology. Neuroinflammatory mediators (interleukin-6, tumor necrosis factor alpha, high-mobility group box 1) establish a vicious cycle: seizures exacerbate inflammation and mood disruption, and stress lowers seizure thresholds. Hippocampal damage and cortisol toxicity also link these disorders, with early life stress imprinting lifelong risk via epigenetic alteration. Genetic studies identify pleiotropic genes (brain-derived neurotrophic factor) that regulate synaptic plasticity, serotonin activity, and immune responses. New treatments target shared pathways: ketamine and AMPAkines normalize glutamate tone; mGluR5 antagonists attenuate hyperexcitability and inflammation; DNA methyltransferase inhibitors reverse aberrant DNA methylation; and probiotics manipulate the gut–brain axis by boosting neuroprotective metabolites like butyrate. Despite challenges—transient effects, precision dosing, and blood–brain barrier penetration—these advances constitute a paradigm shift toward mechanistic repair rather than symptom management. The way forward includes clustered regularly interspaced short palindromic repeats (CRISPR)-based epigenome editing, biomarker-led therapies, and combination approaches (e.g., ketamine and probiotics). Such comorbidity needs to be managed holistically through integrated neuropsychiatry care, offering hope to patients with treatment-refractory symptoms. Full article
Show Figures

Figure 1

15 pages, 987 KB  
Review
PRDM2—The Key Research Targets for the Development of Diseases in Various Systems
by Shiqi Deng, Hui Li, Chenyu Zhu, Lingli Zhang and Jun Zou
Biomolecules 2025, 15(8), 1170; https://doi.org/10.3390/biom15081170 - 15 Aug 2025
Viewed by 560
Abstract
PR/SET domain 2 (PRDM2)/RIZ is a member of the histone/protein methyltransferases (PRDMs) superfamily. Discovered to have the ability to bind retinoblastoma in the mid-1990s, PRDM2 was assumed to play a role in neuronal development. Like other family members characterized by a conserved N-terminal [...] Read more.
PR/SET domain 2 (PRDM2)/RIZ is a member of the histone/protein methyltransferases (PRDMs) superfamily. Discovered to have the ability to bind retinoblastoma in the mid-1990s, PRDM2 was assumed to play a role in neuronal development. Like other family members characterized by a conserved N-terminal PR structural domain and a classical C2H2 zinc-finger array at the C-terminus, PRDM2 encodes two major protein types, the RIZ1 and RIZ2 isoforms. The two subtypes differ in the presence or absence of the PR domain: the RIZ1 subtype has the PR domain, whereas the RIZ2 subtype lacks it. The PR domain exhibits varying conservation levels across species and shares structural and functional similarities with the catalytic SET domain, defining histone methyltransferases. Functioning as an SET domain, the PR domain possesses protein-binding interfaces and acts as a lysine methyltransferase. The variable number of classic C2H2 zinc fingers at the C-terminus may mediate protein–protein, protein–RNA, or protein–DNA interactions. An imbalance in the RIZ1/RIZ2 mechanism may be an essential cause of malignant tumors, where PR-positive isoforms are usually lost or downregulated. Conversely, PR-negative isoforms are always present at higher levels in cancer cells. RIZ1 isoforms are also important targets for estradiol interaction with hormone receptors. PRDM2 can regulate gene transcription and expression combined with transcription factors and plays a role in the development of several systemic diseases through mRNA expression deletion, code-shift mutation, chromosomal deletion, and missense mutation occurrence. Thus, PRDM2 is a key indicator for disease diagnosis, but it lacks systematic summaries to serve as a reference for study. Therefore, this paper describes the structure and biological function of PRDM2 from the perspective of its role in various systemic diseases. It also organizes and categorizes its latest research progress to provide a systematic theoretical basis for a more in-depth investigation of the molecular mechanism of PRDM2’s involvement in disease progression and clinical practice. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

10 pages, 1523 KB  
Case Report
Two Years of Growth Hormone Therapy in a Child with Severe Short Stature Due to Overlap Syndrome with a Novel SETD5 Gene Mutation: Case Report and Review of the Literature
by Giovanni Luppino, Malgorzata Wasniewska, Giorgia Pepe, Letteria Anna Morabito, Silvana Briuglia, Antonino Moschella, Francesca Franchina, Cecilia Lugarà, Tommaso Aversa and Domenico Corica
Genes 2025, 16(8), 859; https://doi.org/10.3390/genes16080859 - 23 Jul 2025
Viewed by 775
Abstract
Background: SET domain-containing 5 (SETD5) is a member of the protein lysine-methyltransferase family. SETD5 gene mutations cause disorders of the epigenetic machinery which determinate phenotypic overlap characterized by several abnormalities. SEDT5 gene variants have been described in patients with KBG and Cornelia de [...] Read more.
Background: SET domain-containing 5 (SETD5) is a member of the protein lysine-methyltransferase family. SETD5 gene mutations cause disorders of the epigenetic machinery which determinate phenotypic overlap characterized by several abnormalities. SEDT5 gene variants have been described in patients with KBG and Cornelia de Lange (CdL) syndromes. Case description: A female patient with severe short stature and intellectual disability had been followed since she was 9 years old. Several causes of short stature were ruled out. At the age of 12 years, her height was 114 cm (−5.22 SDS), weight 19 kg (−5.88 SDS), BMI 14.6 kg/m2 (−2.26 SDS), and was Tanner stage 1. The target height for the proband was 151.65 cm (−1.80 SDS). The bone age (BA) was delayed by 3 years compared to chronological age. The growth rate was persistently deficient (<<2 SDS). Physical examination revealed dysmorphic features. Genetic analysis documented a de novo SETD5 gene mutation (c.890_891delTT), responsible for phenotypes in the context of an overlap syndrome between the phenotype of MDR23, CdL and KBG syndromes. Recombinant growth hormone therapy (rhGH) was started at the age of 12 years. After both one year (+3.16 SDS) and two years (+2.9 SDS), the growth rate significantly increased compared with the pre-therapy period. Conclusion: This is the first case of a patient with overlap syndrome due to SETD5 mutation treated with rhGH. The review of the scientific literature highlighted the clinical and molecular features of SETD5 gene mutation and the use of rhGH therapy in patients suffering from CdL and KBG syndromes. Full article
Show Figures

Figure 1

20 pages, 4213 KB  
Article
Dietary Protein-Induced Changes in Archaeal Compositional Dynamics, Methanogenic Pathways, and Antimicrobial Resistance Profiles in Lactating Sheep
by Maida Mushtaq, Xiaojun Ni, Muhammad Khan, Xiaoqi Zhao, Hongyuan Yang, Baiji Danzeng, Sikandar Ali, Muhammad Hammad Zafar and Guobo Quan
Microorganisms 2025, 13(7), 1560; https://doi.org/10.3390/microorganisms13071560 - 2 Jul 2025
Viewed by 373
Abstract
Dietary protein levels greatly influence gut microbial ecosystems; however, their effects on gut archaea and associated functions in ruminants require further elucidation. This study evaluated the impact of varying dietary protein levels on gut archaeal composition, antimicrobial resistance (AMR) genes, virulence factors, and [...] Read more.
Dietary protein levels greatly influence gut microbial ecosystems; however, their effects on gut archaea and associated functions in ruminants require further elucidation. This study evaluated the impact of varying dietary protein levels on gut archaeal composition, antimicrobial resistance (AMR) genes, virulence factors, and functional capacities in sheep. Eighteen ewes (Yunnan semi-fine wool breed, uniparous, 2 years old, and averaging 50 ± 2 kg body weight) were randomly assigned to diets containing an 8.5 (low; H_1), 10.3 (medium; H_m), or 13.9% (high; H_h) crude protein level from the 35th day of pregnancy to the 90th day postpartum. The total duration of the experiment was approximately 202 days. A total of nine fecal samples (three from each group) were analyzed via 16S rRNA and metagenomics sequencing. Higher archaeal alpha diversity and richness were observed in the H_m and H_h groups compared to the H_l group (p < 0.05). A Beta diversity analysis revealed the archaeal community’s distinct clustering mode based on protein levels. The methanogenic genera Methanobrevibacter and Methanocorpusculum were dominant across the three groups, and their abundance was influenced by protein intake. A functional prediction analysis indicated moderate changes in amino acid and carbohydrate metabolism, which are particularly associated with methane production, an important source of greenhouse gases. AMR genes (e.g., tetA (60), patA, vat, and Erm methyltransferase) and virulence factors (Bacillibactin, LPS) were significantly enriched when animals were fed high-protein diets. Our results demonstrated that dietary protein levels significantly influence gut archaeal composition, AMR gene enrichment, and related functional pathways. Medium-protein diets promoted greater archaeal diversity, whereas high-protein diets favored resistance gene proliferation and enhanced methanogenic activity. Optimizing dietary protein intake may enhance gut health, mitigate antimicrobial resistance risk, and reduce methane emissions, thereby supporting livestock sustainability and environmental protection. Full article
(This article belongs to the Special Issue Gut Microbiota of Food Animal)
Show Figures

Graphical abstract

Back to TopTop