Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = magnetic biosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3004 KB  
Article
Integrated Sample to Detection of Carbapenem-Resistant Bacteria Extracted from Water Samples Using a Portable Gold Nanoparticle-Based Biosensor
by Kaily Kao and Evangelyn C. Alocilja
Sensors 2025, 25(17), 5293; https://doi.org/10.3390/s25175293 - 26 Aug 2025
Viewed by 557
Abstract
Antimicrobial resistance (AMR) is a significant global threat and is driven by the overuse of antibiotics in both clinical and agricultural settings. This issue is further complicated by the lack of rapid surveillance tools to detect resistant bacteria in clinical, environmental, and food [...] Read more.
Antimicrobial resistance (AMR) is a significant global threat and is driven by the overuse of antibiotics in both clinical and agricultural settings. This issue is further complicated by the lack of rapid surveillance tools to detect resistant bacteria in clinical, environmental, and food systems. Of particular concern is the rise in resistance to carbapenems, a critical class of beta-lactam antibiotics. Rapid detection methods are necessary for prevention and surveillance effort. This study utilized a gold nanoparticle-based plasmonic biosensor to detect three CR genes: blaKPC-3, blaNDM-1, and blaOXA-1. Optical signals were analyzed using both a spectrophotometer and a smartphone app that quantified visual color changes using RGB values. This app, combined with a simple boiling method for DNA extraction and a portable thermal cycler, was used to evaluate the biosensor’s potential for POC use. Advantages of the portable bacterial detection device include real time monitoring for immediate decision-making in critical situations, field and on-site testing in resource-limited settings without needing to transport samples to a centralized lab, minimal training required, automatic data analysis, storage and sharing, and reduced operational cost. Bacteria were inoculated into sterile water, river water, and turkey rinse water samples to determine the biosensor’s success in detecting target genes from sample matrices. Magnetic nanoparticles were used to capture and concentrate bacteria to avoid time-consuming cultivation and separation steps. The biosensor successfully detected the target CR genes in all tested samples using three gene-specific DNA probes. Target genes were detected with a limit of detection of 2.5 ng/L or less, corresponding to ~103 CFU/mL of bacteria. Full article
(This article belongs to the Special Issue Optical Biosensors and Applications)
Show Figures

Figure 1

22 pages, 4664 KB  
Article
Numerical Study of a Novel Kagome-Inspired Photonic Crystal Fiber-Based Surface Plasmon Resonance Biosensor for Detection of Blood Components and Analytical Targets
by Ayushman Ramola, Amit Kumar Shakya, Ali Droby and Arik Bergman
Biosensors 2025, 15(8), 539; https://doi.org/10.3390/bios15080539 - 15 Aug 2025
Viewed by 377
Abstract
This numerical study introduces a surface plasmon resonance (SPR)-based biosensor utilizing a kagome lattice-inspired hollow core photonic crystal fiber (PCF) for the highly sensitive detection of various blood biomarkers and analytical components. The sensor is designed to detect key blood biomarkers such as [...] Read more.
This numerical study introduces a surface plasmon resonance (SPR)-based biosensor utilizing a kagome lattice-inspired hollow core photonic crystal fiber (PCF) for the highly sensitive detection of various blood biomarkers and analytical components. The sensor is designed to detect key blood biomarkers such as water, glucose, plasma, and hemoglobin (Hb), as well as analytical targets including krypton, sylgard, ethanol, polyacrylamide (PA), and bovine serum albumin (BSA), by monitoring shifts in the resonance wavelength (RW). A dual-polarization approach is employed by analyzing both transverse magnetic (TM) and transverse electric (TE) modes. The proposed sensor demonstrates exceptional performance, achieving maximum wavelength sensitivities (Sw) of 18,900 nm RIU−1 for TM pol. and 16,800 nm RIU−1 for TE pol. Corresponding peak amplitude sensitivities (SA) of 71,224 RIU−1 for TM pol. and 58,112 RIU−1 for TE pol. were also observed. The peak sensor resolution (SR) for both modes is on the order of 10−6 RIU, underscoring its high precision. Owing to its enhanced sensitivity, compact design, and robust dual-polarization capability, the proposed biosensor holds strong promise for point-of-care diagnostics and real-time blood component analysis. Full article
(This article belongs to the Special Issue Surface Plasmon Resonance-Based Biosensors and Their Applications)
Show Figures

Graphical abstract

15 pages, 2864 KB  
Article
Rapid Detection of Staphylococcus aureus in Milk Samples by DNA Nanodendrimer-Based Fluorescent Biosensor
by Mukaddas Mijit, Dongxia Pan, Hui Wang, Chaoqun Sun and Liang Yang
Biosensors 2025, 15(8), 527; https://doi.org/10.3390/bios15080527 - 12 Aug 2025
Viewed by 425
Abstract
Staphylococcus aureus is the primary pathogen responsible for mastitis in dairy cows and foodborne illnesses, posing a significant threat to public health and food safety. Here, we developed an enhanced sensor based on solid-phase separation using gold-magnetic nanoparticles (Au@Fe3O4) [...] Read more.
Staphylococcus aureus is the primary pathogen responsible for mastitis in dairy cows and foodborne illnesses, posing a significant threat to public health and food safety. Here, we developed an enhanced sensor based on solid-phase separation using gold-magnetic nanoparticles (Au@Fe3O4) and signal amplification via dendritic DNA nanostructures. The substrate chain was specifically immobilized using thiol–gold coordination, and a three-dimensional dendritic structure was constructed through sequential hybridization of DNAzymes, L chains, and Y chains, resulting in a 2.8-fold increase in initial fluorescence intensity. Upon specific cleavage of the substrate chain at the rA site by S. aureus DNA, the complex dissociates, resulting in fluorescence intensity decay. The fluorescence intensity is negatively correlated with the concentration of Staphylococcus aureus. After optimization, the biosensor maintains a detection limit of 1 CFU/mL within 3 min, with a linear range extended to 1–107 CFU/mL (R2 = 0.998) and recovery rates of 85.6–102.1%, significantly enhancing resistance to matrix interference. This provides an innovative solution for rapid on-site detection of foodborne pathogens. Full article
(This article belongs to the Special Issue The Application of Biomaterials in Electronics and Biosensors)
Show Figures

Figure 1

17 pages, 1719 KB  
Article
A DNA Adsorption-Based Biosensor for Rapid Detection of Ratoon Stunting Disease in Sugarcane
by Moutoshi Chakraborty, Shamsul Arafin Bhuiyan, Simon Strachan, Muhammad J. A. Shiddiky, Nam-Trung Nguyen, Narshone Soda and Rebecca Ford
Biosensors 2025, 15(8), 518; https://doi.org/10.3390/bios15080518 - 8 Aug 2025
Viewed by 866
Abstract
Early and accurate detection of plant diseases is critical for ensuring global food security and agricultural resilience. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli (Lxx), is among the most economically significant diseases of sugarcane worldwide. Its [...] Read more.
Early and accurate detection of plant diseases is critical for ensuring global food security and agricultural resilience. Ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli (Lxx), is among the most economically significant diseases of sugarcane worldwide. Its cryptic nature—characterized by an absence of visible symptoms—renders timely diagnosis particularly difficult, contributing to substantial undetected yield losses across major sugar-producing regions. Here, we report the development of a potential-induced electrochemical (EC) nanobiosensor platform for the rapid, low-cost, and field-deployable detection of Lxx DNA directly from crude sugarcane sap. This method eliminates the need for conventional nucleic acid extraction and thermal cycling by integrating the following: (i) a boiling lysis-based DNA release from xylem sap; (ii) sequence-specific magnetic bead-based purification of Lxx DNA using immobilized capture probes; and (iii) label-free electrochemical detection using a potential-driven DNA adsorption sensing platform. The biosensor shows exceptional analytical performance, achieving a detection limit of 10 cells/µL with a broad dynamic range spanning from 105 to 1 copy/µL (r = 0.99) and high reproducibility (SD < 5%, n = 3). Field validation using genetically diverse sugarcane cultivars from an inoculated trial demonstrated a strong correlation between biosensor signals and known disease resistance ratings. Quantitative results from the EC biosensor also showed a robust correlation with qPCR data (r = 0.84, n = 10, p < 0.001), confirming diagnostic accuracy. This first-in-class EC nanobiosensor for RSD represents a major technological advance over existing methods by offering a cost-effective, equipment-free, and scalable solution suitable for on-site deployment by non-specialist users. Beyond sugarcane, the modular nature of this detection platform opens up opportunities for multiplexed detection of plant pathogens, making it a transformative tool for early disease surveillance, precision agriculture, and biosecurity monitoring. This work lays the foundation for the development of a universal point-of-care platform for managing plant and crop diseases, supporting sustainable agriculture and global food resilience in the face of climate and pathogen threats. Full article
(This article belongs to the Special Issue Nanomaterial-Based Biosensors for Point-of-Care Testing)
Show Figures

Figure 1

13 pages, 1944 KB  
Article
A Sliding Microfluidic Chip-Integrated Colorimetric Biosensor Using MnO2 Nanoflowers for Rapid Salmonella Detection
by Yidan Niu, Juntao Jiang, Xin Zhi, Jiahui An and Yuhe Wang
Micromachines 2025, 16(8), 904; https://doi.org/10.3390/mi16080904 - 31 Jul 2025
Viewed by 405
Abstract
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the [...] Read more.
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the target bacteria were specifically captured by antibody-functionalized magnetic nanoparticles in the microfluidic chip, forming magnetic bead–bacteria complexes. Then, through motor-assisted sliding of the chip, manganese dioxide (MnO2) nanoflowers conjugated with secondary antibodies were introduced to bind the captured bacteria, generating a dual-antibody sandwich structure. Finally, a second sliding step brought the complexes into contact with a chromogenic substrate, where the MnO2 nanoflowers catalyzed a colorimetric reaction, and the resulting signal was used to quantify the Salmonella concentration. Under optimized conditions, the biosensor achieved a detection limit of 10 CFU/mL within 20 min. In spiked pork samples, the average recovery rate of Salmonella ranged from 94.9% to 125.4%, with a coefficient of variation between 4.0% and 6.8%. By integrating mixing, separation, washing, catalysis, and detection into a single chip, this microfluidic biosensor offers a user-friendly, time-efficient, and highly sensitive platform, showing great potential for the on-site detection of foodborne pathogens. Full article
(This article belongs to the Section B1: Biosensors)
Show Figures

Figure 1

41 pages, 3816 KB  
Review
Updates on the Advantages and Disadvantages of Microscopic and Spectroscopic Characterization of Magnetotactic Bacteria for Biosensor Applications
by Natalia Lorela Paul, Catalin Ovidiu Popa and Rodica Elena Ionescu
Biosensors 2025, 15(8), 472; https://doi.org/10.3390/bios15080472 - 22 Jul 2025
Viewed by 645
Abstract
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential [...] Read more.
Magnetotactic bacteria (MTB), a unique group of Gram-negative prokaryotes, have the remarkable ability to biomineralize magnetic nanoparticles (MNPs) intracellularly, making them promising candidates for various biomedical applications such as biosensors, drug delivery, imaging contrast agents, and cancer-targeted therapies. To fully exploit the potential of MTB, a precise understanding of the structural, surface, and functional properties of these biologically produced nanoparticles is required. Given these concerns, this review provides a focused synthesis of the most widely used microscopic and spectroscopic methods applied in the characterization of MTB and their associated MNPs, covering the latest research from January 2022 to May 2025. Specifically, various optical microscopy techniques (e.g., transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM)) and spectroscopic approaches (e.g., localized surface plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS)) relevant to ultrasensitive MTB biosensor development are herein discussed and compared in term of their advantages and disadvantages. Overall, the novelty of this work lies in its clarity and structure, aiming to consolidate and simplify access to the most current and effective characterization techniques. Furthermore, several gaps in the characterization methods of MTB were identified, and new directions of methods that can be integrated into the study, analysis, and characterization of these bacteria are suggested in exhaustive manner. Finally, to the authors’ knowledge, this is the first comprehensive overview of characterization techniques that could serve as a practical resource for both younger and more experienced researchers seeking to optimize the use of MTB in the development of advanced biosensing systems and other biomedical tools. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

21 pages, 3040 KB  
Article
Ultrasmall Superparamagnetic Magnetite Nanoparticles as Glutamate-Responsive Magnetic Resonance Sensors
by Hannah Mettee, Aaron Asparin, Zulaikha Ali, Shi He, Xianzhi Li, Joshua Hall, Alexis Kim, Shuo Wu, Morgan J. Hawker, Masaki Uchida and He Wei
Sensors 2025, 25(14), 4326; https://doi.org/10.3390/s25144326 - 10 Jul 2025
Cited by 1 | Viewed by 706
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system, plays a pivotal role in synaptic signaling, learning, and memory. Abnormal glutamate levels are implicated in various neurological disorders, including epilepsy, Alzheimer’s disease, and ischemic stroke. Despite the utility of magnetic resonance imaging [...] Read more.
Glutamate, the primary excitatory neurotransmitter in the central nervous system, plays a pivotal role in synaptic signaling, learning, and memory. Abnormal glutamate levels are implicated in various neurological disorders, including epilepsy, Alzheimer’s disease, and ischemic stroke. Despite the utility of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in diagnosing such conditions, the development of effective glutamate-sensitive contrast agents remains a challenge. In this study, we present ultrasmall, citric acid-coated superparamagnetic iron oxide nanoparticles (CA-SPIONs) as highly selective and sensitive MRS probes for glutamate detection. These 5 nm magnetite CA-SPIONs exhibit a stable dispersion in physiological buffers and undergo aggregation in the presence of glutamate, significantly enhancing the T2 MRS contrast power. At physiological glutamate levels, the CA-SPIONs yielded a pronounced signal change ratio of nearly 60%, while showing a negligible response to other neurotransmitters such as GABA and dopamine. Computational simulations confirmed the mechanism of glutamate-mediated aggregation and its impact on transversal relaxation rates and relaxivities. The sensitivity and selectivity of CA-SPIONs underscore their potential as eco-friendly, iron-based alternatives for future neurological sensing applications targeting glutamatergic dysfunction. Full article
(This article belongs to the Special Issue Nanomaterial-Based Devices and Biosensors for Diagnostic Applications)
Show Figures

Figure 1

17 pages, 2003 KB  
Review
Recent Advances in the Electrochemical Biosensing of DNA Methylation
by Sanu K. Anand and Robert Ziółkowski
Int. J. Mol. Sci. 2025, 26(13), 6505; https://doi.org/10.3390/ijms26136505 - 6 Jul 2025
Viewed by 568
Abstract
DNA methylation, as a critical epigenetic modification, plays a central role in gene regulation and has emerged as a powerful biomarker for early disease diagnostics, particularly in cancer. Owing to the limitations of traditional bisulfite sequencing—such as high cost, complexity, and chemical degradation—electrochemical [...] Read more.
DNA methylation, as a critical epigenetic modification, plays a central role in gene regulation and has emerged as a powerful biomarker for early disease diagnostics, particularly in cancer. Owing to the limitations of traditional bisulfite sequencing—such as high cost, complexity, and chemical degradation—electrochemical biosensors have gained substantial attention as promising alternatives. This review summarizes recent advancements in electrochemical platforms for bisulfite-free detection of DNA methylation, encompassing direct oxidation strategies, enzyme-assisted recognition (e.g., restriction endonucleases and methyltransferases), immunoaffinity-based methods, and a variety of signal amplification techniques such as rolling circle amplification and catalytic hairpin assembly. Additional approaches, including strand displacement, magnetic enrichment, and adsorption-based detection, are also discussed. These systems demonstrate exceptional sensitivity, often down to the attomolar or femtomolar level, as well as high selectivity, reproducibility, and suitability for real biological matrices. The integration of nanomaterials and redox-active probes further enhances analytical performance. Importantly, many of these biosensing platforms have been validated using clinical samples, reinforcing their translational relevance. The review concludes by outlining current challenges and future directions, emphasizing the potential of electrochemical biosensors as scalable, cost-effective, and minimally invasive tools for real-time epigenetic monitoring and early-stage disease diagnostics. Full article
(This article belongs to the Special Issue Application of Electrochemical Materials in Molecular Biology)
Show Figures

Figure 1

11 pages, 1375 KB  
Article
Dual Signal Enhancement by Magnetic Separation and Split Aptamer for Ultrasensitive T-2 Toxin Detection
by Ziyi Yan, Ping Zhu, Chaoyi Zhou, Dezhao Kong and Hua Ye
Molecules 2025, 30(13), 2853; https://doi.org/10.3390/molecules30132853 - 4 Jul 2025
Viewed by 438
Abstract
T-2 toxin, a type A trichothecene mycotoxin produced by Fusarium species, is widely present in cereals and their processed products, posing a significant contaminant in food safety. To address the food safety challenges caused by this toxin, we established a dual signal enhancement [...] Read more.
T-2 toxin, a type A trichothecene mycotoxin produced by Fusarium species, is widely present in cereals and their processed products, posing a significant contaminant in food safety. To address the food safety challenges caused by this toxin, we established a dual signal enhancement by magnetic separation and split aptamer for ultrasensitive T-2 toxin detection. In this method, the introduction of magnetic graphene oxide (MGO) enhanced signal and increased sensitivity by reducing background interference. The shortened split aptamer reduces non-specific binding to MGO via decreased steric hindrance, thereby facilitating rapid target-induced dissociation and signal generation. A FAM fluorophore-labeled split aptamer probe FAM-SpA1-1 was quenched by MGO. While the fluorescence intensity remained nearly unchanged when the unlabeled split aptamer probe SpA1-2 was introduced alone, a significant fluorescence recovery was observed upon simultaneous addition of SpA1-2 and T-2 toxin. This recovery resulted from the cooperative binding of SpA1-1 and SpA1-2 to T-2 toxin, which distanced the FAM-SpA1-1 probe from MGO. Therefore, the proposed biosensor demonstrated excellent stability, reproducibility, and specificity, with a linear response range of 10–500 pM and a limit of detection (LOD) of 0.83 pM. Satisfactory recovery rates were achieved in spiked wheat (86.0–114.2%) and beer (112.0–129.6%) samples, highlighting the biosensor’s potential for practical applications in real-sample detection. This study establishes the T-2 toxin split aptamer and demonstrates a novel dual-signal enhancement paradigm that pushes the sensitivity frontier of aptamer-based mycotoxin sensors. Full article
Show Figures

Figure 1

23 pages, 903 KB  
Review
OCT in Oncology and Precision Medicine: From Nanoparticles to Advanced Technologies and AI
by Sanam Daneshpour Moghadam, Bogdan Maris, Ali Mokhtari, Claudia Daffara and Paolo Fiorini
Bioengineering 2025, 12(6), 650; https://doi.org/10.3390/bioengineering12060650 - 13 Jun 2025
Cited by 1 | Viewed by 919
Abstract
Optical Coherence Tomography (OCT) is a relatively new medical imaging device that provides high-resolution and real-time visualization of biological tissues. Initially designed for ophthalmology, OCT is now being applied in other types of pathologies, like cancer diagnosis. This review highlights its impact on [...] Read more.
Optical Coherence Tomography (OCT) is a relatively new medical imaging device that provides high-resolution and real-time visualization of biological tissues. Initially designed for ophthalmology, OCT is now being applied in other types of pathologies, like cancer diagnosis. This review highlights its impact on disease diagnosis, biopsy guidance, and treatment monitoring. Despite its advantages, OCT has limitations, particularly in tissue penetration and differentiating between malignant and benign lesions. To overcome these challenges, the integration of nanoparticles has emerged as a transformative approach, which significantly enhances contrast and tumor vascularization at the molecular level. Gold and superparamagnetic iron oxide nanoparticles, for instance, have demonstrated great potential in increasing OCT’s diagnostic accuracy through enhanced optical scattering and targeted biomarker detection. Beyond these innovations, integrating OCT with multimodal imaging methods, including magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound, offers a more comprehensive approach to disease assessment, particularly in oncology. Additionally, advances in artificial intelligence (AI) and biosensors have further expanded OCT’s capabilities, enabling real-time tumor characterization and optimizing surgical precision. However, despite these advancements, clinical adoption still faces several hurdles. Issues related to nanoparticle biocompatibility, regulatory approvals, and standardization need to be addressed. Moving forward, research should focus on refining nanoparticle technology, improving AI-driven image analysis, and ensuring broader accessibility to OCT-guided diagnostics. By tackling these challenges, OCT could become an essential tool in precision medicine, facilitating early disease detection, real-time monitoring, and personalized treatment for improved patient outcomes. Full article
Show Figures

Figure 1

10 pages, 1763 KB  
Communication
Multi-Mode Coupling Enabled Broadband Coverage for Terahertz Biosensing Applications
by Dongyu Hu, Mengya Pan, Yanpeng Shi and Yifei Zhang
Biosensors 2025, 15(6), 368; https://doi.org/10.3390/bios15060368 - 7 Jun 2025
Viewed by 633
Abstract
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection [...] Read more.
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection require complex large-angle illumination. Here, we propose a symmetry-engineered, all-dielectric metasurface that leverages multipolar interference coupling to overcome this limitation. By introducing angular perturbation, the metasurface transforms the original magnetic dipole (MD)-dominated QBIC resonance into hybridized, multipolar modes. It arises from the interference coupling between MD, toroidal dipole (TD), and magnetic quadrupole (MQ). This mechanism induces dual counter-directional, frequency-shifted, resonance branches within angular variations below 16°, achieving simultaneous 0.42 THz broadband coverage and high Q of 499. Furthermore, a derived analytical model based on Maxwell equations and mode coupling theory rigorously validates the linear relationship between frequency splitting interval and incident angle with the Relative Root Mean Square Error (RRMSE) of 1.4% and the coefficient of determination (R2) of 0.99. This work establishes a paradigm for miniaturized THz biosensors, advancing applications in practical molecular diagnostics and multi-analyte screening. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

34 pages, 2957 KB  
Review
Functionalized Carbon Nanotubes: Emerging Nanomaterials for Enhanced Cancer Diagnosis and Imaging
by Anish Prasad Lohani, Mohamed Elosta, Mahmoud Maksoud and Nimer Murshid
Molecules 2025, 30(11), 2364; https://doi.org/10.3390/molecules30112364 - 29 May 2025
Cited by 1 | Viewed by 1374
Abstract
Cancer remains a leading global cause of mortality, highlighting the critical need for effective early diagnosis. Despite advancements in treatment, early detection and imaging continue to pose significant challenges. Functionalized carbon nanotubes (CNTs) have emerged as promising nanomaterials due to their unique structural [...] Read more.
Cancer remains a leading global cause of mortality, highlighting the critical need for effective early diagnosis. Despite advancements in treatment, early detection and imaging continue to pose significant challenges. Functionalized carbon nanotubes (CNTs) have emerged as promising nanomaterials due to their unique structural properties and versatile functionalization strategies. This review explores the role of both covalent (e.g., fluorination, hydrogenation, cycloadditions, aryldiazonium salt reduction, organometallic ion attachment, carboxylation, amidation, esterification, and metallic nanoparticle attachments) and non-covalent functionalization methods (e.g., surfactant coating, polymer wrapping, biomolecule attachment, and polymer encapsulation) in enhancing CNT biocompatibility and diagnostic efficiency. Functionalized CNTs are extensively applied in cancer detection through highly sensitive biosensors, including electrochemical, optical, and field-effect transistor-based systems, capable of detecting various cancer biomarkers with exceptional sensitivity. Additionally, they offer significant advantages in cancer imaging modalities such as fluorescence imaging, magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound imaging, improving contrast, resolution, and specificity. This review also discusses the challenges and future directions in the development of CNT-based diagnostic platforms, emphasizing the need for continued research to advance their clinical translation and integration into routine cancer diagnostics. Full article
Show Figures

Figure 1

18 pages, 5700 KB  
Article
A Highly Sensitive Giant Magnetoresistive (GMR) Biosensor Based on the Magnetic Flux Concentrator Effect
by Hao Sun, Jiao Li, Changhui Zhao, Chunming Ren, Tian Tian, Chong Lei and Xuecheng Sun
Micromachines 2025, 16(5), 559; https://doi.org/10.3390/mi16050559 - 3 May 2025
Viewed by 2588
Abstract
Magnetic biosensors have wide applications in biological target detection due to their advantages such as low background noise, convenient detection, and low requirements for sample pretreatment. However, existing magnetic biosensors still have the drawback of low sensitivity compared to optical and electrochemical biosensors. [...] Read more.
Magnetic biosensors have wide applications in biological target detection due to their advantages such as low background noise, convenient detection, and low requirements for sample pretreatment. However, existing magnetic biosensors still have the drawback of low sensitivity compared to optical and electrochemical biosensors. This paper presents the novel design of a high-sensitivity magnetic biosensor by utilizing the magnetic field line convergence effect, which was applied to bacterial detection. The results indicate that it can achieve a detection limitation of 10 CFU/mL, demonstrating that it can be implemented in high-sensitivity biological target detection. Full article
(This article belongs to the Section B1: Biosensors)
Show Figures

Figure 1

12 pages, 5945 KB  
Article
Sea Urchin-like Magnetic Microbeads-Based Electrochemical Biosensor for Highly Sensitive Detection of Metabolites
by Bin Chen, Xiaosu Yuan, Enze Tian, Yunjie Tan, Le Li and Ru Huang
Biosensors 2025, 15(4), 225; https://doi.org/10.3390/bios15040225 - 2 Apr 2025
Viewed by 504
Abstract
Analyzing metabolite levels in bodily fluids is essential for disease diagnosis and surveillance. Electrochemical biosensors are ideal for monitoring metabolite levels due to their high sensitivity, rapid response, and low cost. The magnetic microbeads-based electrode functionalization method further promotes the automation development of [...] Read more.
Analyzing metabolite levels in bodily fluids is essential for disease diagnosis and surveillance. Electrochemical biosensors are ideal for monitoring metabolite levels due to their high sensitivity, rapid response, and low cost. The magnetic microbeads-based electrode functionalization method further promotes the automation development of electrochemical biosensors by eliminating the tedious electrode polishing process. In this study, we presented sea urchin-like magnetic microbeads (SMMBs) and constructed an SMMB-based electrochemical biosensor. The specific morphology of SMMBs provides a larger specific surface area and abundant enzyme binding sites, thereby expanding the active reaction interface on the electrode and improving the sensitivity of the biosensor. Experiment results demonstrated that the SMMB-based electrochemical biosensor achieves μM level detection sensitivity for glucose. Furthermore, by replacing the anchored oxidase on SMMBs, the biosensor can be extended to detect other metabolites, such as cholesterol. In summary, the SMMBs provide a new path to handily construct electrochemical biosensors and hold a great potential for metabolite detection and further development. Full article
Show Figures

Figure 1

22 pages, 5808 KB  
Article
Surface Acoustic Wave Sensor for Selective Multi-Parameter Measurements in Cardiac Magnetic Field Detection
by Hongbo Zhao, Chunxiao Jiao, Qi Wang, Chao Gao and Jing Sun
Appl. Sci. 2025, 15(7), 3583; https://doi.org/10.3390/app15073583 - 25 Mar 2025
Cited by 1 | Viewed by 2725
Abstract
Measuring parameters like heart temperature, heart rate, and cardiac magnetic field aids in analyzing cardiac health and disease. A multi-parameter sensor tailored to the heart can significantly enhance convenience in medical diagnosis and treatment. This work introduces a multi-parameter sensor based on Surface [...] Read more.
Measuring parameters like heart temperature, heart rate, and cardiac magnetic field aids in analyzing cardiac health and disease. A multi-parameter sensor tailored to the heart can significantly enhance convenience in medical diagnosis and treatment. This work introduces a multi-parameter sensor based on Surface Acoustic Wave Sensors (SAWSs) and magnetostrictive materials, designed to selectively measure various cardiac parameters. SAWSs are characterized by their compact dimensions, which facilitate integration into various medical devices. The wireless and passive characteristics of the sensors enable flexibility in the detection process. This sensor can detect various common physical quantities like weak magnetic fields by the control variable method, ensuring a high degree of accuracy. The working mode of SAWSs is investigated in this study, and the relationship curve concerning various influencing factors is established. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

Back to TopTop