Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = marker-assisted selection MAS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2514 KB  
Article
QTL Mapping for Leaf Rust Resistance in a Common Wheat Recombinant Inbred Line Population of Doumai/Shi4185
by Yamei Wang, Wenjing Li, Rui Wang, Nannan Zhao, Xinye Zhang, Shu Zhu and Jindong Liu
Plants 2025, 14(19), 3113; https://doi.org/10.3390/plants14193113 - 9 Oct 2025
Viewed by 155
Abstract
Leaf rust, a devastating fungal disease caused by Puccinia triticina (Pt), severely impacts wheat quality and yield. Identifying genetic loci for wheat leaf rust resistance, developing molecular markers, and breeding resistant varieties is the most environmentally friendly and economical strategy for disease control. [...] Read more.
Leaf rust, a devastating fungal disease caused by Puccinia triticina (Pt), severely impacts wheat quality and yield. Identifying genetic loci for wheat leaf rust resistance, developing molecular markers, and breeding resistant varieties is the most environmentally friendly and economical strategy for disease control. This study utilized a recombinant inbred line (RIL) population of Doumai and Shi4185, combined with the wheat 90 K single nucleotide polymorphisms (SNPs) chip data and maximum disease severity (MDS) of leaf rust from four environments, to identify adult plant resistance (APR) loci through linkage mapping. Additionally, kompetitive allele-specific PCR (KASP) markers suitable for breeding were developed, and genetic effects were validated in a natural population. In this study, 5 quantitative trait loci (QTL) on chromosomes 1B (2), 2A and 7B (2) were identified through inclusive composite interval mapping, and named as QLr.lfnu-1BL1, QLr.lfnu-1BL2, QLr.lfnu-2AL, QLr.lfnu-7BL1 and QLr.lfnu-7BL2, respectively, explaining 4.54–8.91% of the phenotypic variances. The resistance alleles of QLr.lfnu-1BL1 and QLr.lfnu-1BL2 originated from Doumai, while the resistance alleles of QLr.lfnu-2AL, QLr.lfnu-7BL1 and QLr.lfnu-7BL2 came from Shi4185. Among these, QLr.lfnu-1BL2, QLr.lfnu-7BL1 and QLr.lfnu-7BL2 overlapped with previously reported loci, whereas QLr.lfnu-1BL1 and QLr.lfnu-2AL are likely to be novel. Two KASP markers, QLr.lfnu-2AL and QLr.lfnu-7BL, were significantly associated with leaf rust resistance in a diverse panel of 150 wheat varieties mainly from China. Totally, 34 potential candidate genes encoded the NLR proteins, receptor-like kinases, signaling kinases and transcription factors were selected as candidate genes for the resistance loci. These findings will provide stable QTL, available breeding KASP markers and candidate genes, and will accelerate the progresses of wheat leaf rust resistance improvement through marker-assisted selection breeding. Full article
Show Figures

Figure 1

16 pages, 3432 KB  
Article
Genetic Architecture and Meta-QTL Identification of Yield Traits in Maize (Zea mays L.)
by Xin Li, Xiaoqiang Zhao, Siqi Sun, Meiyue He, Jing Wang, Xinxin Xiang and Yining Niu
Plants 2025, 14(19), 3067; https://doi.org/10.3390/plants14193067 - 4 Oct 2025
Viewed by 324
Abstract
Yield components are the most important breeding objectives, directly determining maize high-yield breeding. It is well known that these traits are controlled by a large number of quantitative trait loci (QTL). Therefore, deeply understanding the genetic basis of yield components and identifying key [...] Read more.
Yield components are the most important breeding objectives, directly determining maize high-yield breeding. It is well known that these traits are controlled by a large number of quantitative trait loci (QTL). Therefore, deeply understanding the genetic basis of yield components and identifying key regulatory candidate genes can lay the foundation for maize marker-assisted selection (MAS) breeding. In this study, our aim was to identify the key genomic regions that regulate maize yield component formation through bioinformatic methods. Herein, 554 original QTLs related to 11 yield components, including ear length (EL), hundred-kernel weight (HKW), ear weight (EW), cob weight (CW), ear diameter (ED), cob diameter (CD), kernel row number (KRN), kernel number per row (KNR), kernel length (KL), grain weight per plant (GW), and kernel width (KW) in maize, were collected from the MaizeGDB, national center for biotechnology information (NCBI), and China national knowledge infrastructure (CNKI) databases. The consensus map was then constructed with a total length of 7154.30 cM. Approximately 80.32% of original QTLs were successfully projected on the consensus map, and they were unevenly distributed on the 10 chromosomes (Chr.). Moreover, 44 meta-QTLs (MQTLs) were identified by the meta-analysis. Among them, 39 MQTLs controlled two or more yield components, except for the MQTL4 in Chr. 1, which was associated with HKW; MQTL11 in Chr. 2, which was responsible for EL; MQTL19 in Chr. 3, which was related to KRN; MQTL26 in Chr. 5, which was involved in HKW; and MQTL36 in Chr. 7, which regulated EL. These findings were consistent with the Pearson correlation results, indicating that these traits exhibited co-linked heredity phenomena. Meanwhile, 159 candidate genes were found in all of the above MQTLs intervals, of which, 29 genes encoded E3 ubiquitin protein ligase, which was related with kernel size and weight. Other genes were involved in multiple metabolic processes, including plant hormones signaling transduction, plant growth and development, sucrose–starch synthesis and metabolism, and reproductive growth. Overall, the results will provide reliable genetic resources for high-yield molecular breeding in maize. Full article
Show Figures

Figure 1

19 pages, 2407 KB  
Article
Meta-QTL Analysis and Identification of Candidate Genes Associated with Stalk Lodging in Maize (Zea mays L.)
by Haiyue Fang, Chunxiao Zhang, Wenli Qu, Xiaohui Zhou, Jing Dong, Xueyan Liu, Xiaohui Li and Fengxue Jin
Curr. Issues Mol. Biol. 2025, 47(10), 792; https://doi.org/10.3390/cimb47100792 - 23 Sep 2025
Viewed by 392
Abstract
Stalk lodging constitutes a primary constraint on achieving consistently high yields in maize. Genetic improvement of lodging resistance requires the identification of stable quantitative trait loci (QTL) to facilitate the application of genomics-assisted breeding for improving selection efficiency in breeding programs. In this [...] Read more.
Stalk lodging constitutes a primary constraint on achieving consistently high yields in maize. Genetic improvement of lodging resistance requires the identification of stable quantitative trait loci (QTL) to facilitate the application of genomics-assisted breeding for improving selection efficiency in breeding programs. In this study, we performed a meta-analysis to identify consensus loci and functionally characterized candidate genes associated with stalk lodging-related traits. Through meta-analysis integrating 889 reported lodging-related QTLs using the IBM2 2008 Neighbors high-density genetic map, we identified 67 meta-QTLs (MQTLs), of which 32 were determined as core MQTLs. Among them, 67% were validated by co-localized marker–trait associations from genome-wide association studies (GWAS). Comparative genomics further revealed 40 evolutionarily conserved orthologs via protein alignment with rice lodging genes, while screening of core MQTL regions detected 802 candidate genes with KEGG enrichment implicating galactose degradation II in cell wall reinforcement, supported by transcriptomic evidence of their roles in lignin biosynthesis pathways modulating mechanical strength. In conclusion, the MQTL identified and validated in our study have significant scope in marker-assisted selection (MAS) breeding and map-based cloning programs for improving maize stalk lodging. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 1957 KB  
Article
Identification of Resistance Loci and Functional Markers for Rhizoctonia solani Root Rot in Soybean via GWAS
by Yuhe Wang, Xiangkun Meng, Jinfeng Han, Zhongqiu Fu, Junrong Xu, Hongjin Zhu, Haiyan Li, Yuhang Zhan, Weili Teng, Yongguang Li and Xue Zhao
Agronomy 2025, 15(9), 2144; https://doi.org/10.3390/agronomy15092144 - 6 Sep 2025
Viewed by 705
Abstract
Rhizoctonia solani root rot (RSRR) is a major disease that significantly reduces soybean yields, causing substantial economic losses to global soybean production. To elucidate the genetic basis of RSRR resistance, 310 soybean germplasm accessions were evaluated using the disease severity index (DSI) following [...] Read more.
Rhizoctonia solani root rot (RSRR) is a major disease that significantly reduces soybean yields, causing substantial economic losses to global soybean production. To elucidate the genetic basis of RSRR resistance, 310 soybean germplasm accessions were evaluated using the disease severity index (DSI) following inoculation with R. solani. Among these accessions, 46.13% were susceptible, and only 2.26% exhibited high resistance. Utilizing resequencing data consisting of 738,561 Single Nucleotide Polymorphism (SNP) loci, a genome-wide association study (GWAS) was performed by integrating both general linear model (GLM) and mixed linear model (MLM) approaches, resulting in the identification of 21 SNPs significantly associated with resistance on chromosomes 3, 13, 15, 16, 17, and 18, and six candidate genes. RT-qPCR expression analysis revealed that four genes, including Glyma.03G166300, Glyma.03G168100, Glyma.13G212700, and Glyma.13G212300, were significantly upregulated in resistant genotypes after inoculation. Furthermore, Cleaved Amplified Polymorphic Sequences (CAPS) and Kompetitive Allele Specific PCR (KASP) molecular markers were successfully developed based on the RSRR-associated SNPs S3_38086892, S3_38247290, and S13_32595026, providing effective tools for marker-assisted selection (MAS). The findings strengthen our genetic knowledge concerning RSRR resistance and contribute to the molecular breeding of resistant soybean cultivars. Full article
Show Figures

Figure 1

15 pages, 5652 KB  
Article
Uncovering the Genetic Basis of Grain Yield-Related Traits in Common Vetch (Vicia sativa L.) Through Genome-Wide Association Mapping
by Hui Jin, Jumei Zhang, Yordan Dimtrov, Xue Yang, Ruonan Du, Yu’e Wu, Danna Chang, Rui Zhang and Haibin Zhao
Agronomy 2025, 15(9), 2128; https://doi.org/10.3390/agronomy15092128 - 5 Sep 2025
Viewed by 465
Abstract
Common vetch (Vicia sativa L.) is a globally green manure and forage crop, cultivated extensively worldwide. Its seeds serve as an important concentrated feed. Due to the late release of the reference genome, few studies were conducted to analyze the genetic mechanisms [...] Read more.
Common vetch (Vicia sativa L.) is a globally green manure and forage crop, cultivated extensively worldwide. Its seeds serve as an important concentrated feed. Due to the late release of the reference genome, few studies were conducted to analyze the genetic mechanisms of grain yield, which hindered the progress of common vetch breeding. Marker-assisted selection (MAS) is the best and most effective way to accelerate the genetic improvement of grain yield-related traits in common vetch. In this study, we performed a genome-wide association study (GWAS) using the high-density single nucleotide polymorphism (SNP) data obtained through re-sequencing to better understand the genetic basis of grain yield-related traits. In total, six grain yield-related traits were evaluated in 172 accessions mainly sourced from China and Russia, across four environments, including branches per plant (NB), pod length (PL), number of pods per plant (NP), number of grains per pod (NG), hundred-grain weight (HGW), and grain yield (GY). Population structure analysis of the 172 accessions revealed four distinct subpopulations, exhibiting strong geographical correlation. In total, 38 loci have been identified as significantly associated with six grain yield-related traits, accounting for 13.3–31.7% of the phenotypic variances. Among them, qGY1.1 and qNG1.1, qNG2.2 and qPL2.1, qNG3.2 and qGY3.2, qNG4.1 and qPL4.1, qGY4.1 and qHGW4.1, qNG6.1 and qPL6.1, and qNB6.2 and qGY6.2 exhibit overlapping regions, suggesting that these regions are pleiotropic and should be prioritized for further research and breeding. In total, 12 candidate genes encoding auxin response factor, F-box repeat protein, gibberellin receptor, serine/threonine-protein kinase-like protein, and cellulose synthase-like protein were identified. Furthermore, we successfully developed and verified a kompetitive allele-specific PCR (KASP) marker (Kasp-NB6.2) for the number of branches. These findings provide molecular insights into grain yield-related traits in common vetch and offer valuable loci and molecular tools for MAS breeding. Full article
(This article belongs to the Special Issue Genetics and Breeding of Field Crops in the 21st Century)
Show Figures

Figure 1

15 pages, 1378 KB  
Review
Integrating Traditional Breeding and Modern Biotechnology for Advanced Forest Tree Improvement
by Zhongzheng Ma, Jingru Ren, Qianqian Liu, Jingjing Li, Haoqin Zhao, Dativa Gosbert Tibesigwa, Sophia Hydarry Matola, Tabeer Gulfam, Jingli Yang and Fude Wang
Int. J. Mol. Sci. 2025, 26(17), 8591; https://doi.org/10.3390/ijms26178591 - 4 Sep 2025
Viewed by 818
Abstract
In the context of global climate change and efforts toward “carbon peak and carbon neutrality,” forest resource protection and restoration have become fundamental to ecological civilization. The genetic improvement of trees, as the primary component of forest ecosystems, holds strategic importance for ecological [...] Read more.
In the context of global climate change and efforts toward “carbon peak and carbon neutrality,” forest resource protection and restoration have become fundamental to ecological civilization. The genetic improvement of trees, as the primary component of forest ecosystems, holds strategic importance for ecological security, resource supply, and carbon neutrality. Traditional tree breeding techniques, including selective and hybrid breeding, have established robust technical systems through extensive practice. However, these methods face limitations such as extended cycles, reduced efficiency, and constrained genetic gains in meeting contemporary requirements. Modern biotechnologies, including genomic selection (GS), gene editing (CRISPR/Cas9), and marker-assisted selection (MAS), substantially enhance the precision and efficiency of genetic improvement. Nevertheless, exclusive reliance on either traditional or modern methods proves insufficient for addressing complex environmental adaptation and rapid breeding requirements. Consequently, the integration of traditional breeding with modern biotechnology to develop intelligent, sustainable, and efficient breeding strategies has emerged as a central focus in tree genetics and breeding. An integrated “step-by-step” approach warrants promotion, supported by a multi-source data sharing platform, an optimized core germplasm repository, and a “climate-soil-genotype” matching model to facilitate the region-specific deployment of improved varieties. Full article
Show Figures

Figure 1

28 pages, 764 KB  
Review
The Role of Puroindoline, Gpc-B1, Starch Synthase Genes, and Gluten Proteins in Regulating End-Use Quality in Wheat
by Mantshiuwa C. Lephuthing, Thobeka Philile Khumalo-Mthembu and Toi John Tsilo
Int. J. Mol. Sci. 2025, 26(17), 8565; https://doi.org/10.3390/ijms26178565 - 3 Sep 2025
Viewed by 738
Abstract
End-use quality is a crucial aspect of wheat quality, influencing the type and quality of the produced food products. It is mostly determined by the content and characteristics of the protein as well as the starch in the grain. Being a staple food, [...] Read more.
End-use quality is a crucial aspect of wheat quality, influencing the type and quality of the produced food products. It is mostly determined by the content and characteristics of the protein as well as the starch in the grain. Being a staple food, wheat provides more than 30% of the total calories and proteins in human diets globally. Wheat grain consists of a protein network, called gluten, which provides wheat doughs with their unique viscoelastic properties. The genetic improvement of end-use quality traits is indispensable to meet the requirements of grain markets, millers, and bakers. Thus, modern approaches such as proteomics and genomics are important to precisely identify alleles, genes, as well as their functions in improving end-use quality. End-use quality is mainly regulated by grain protein content, grain hardness and starch synthase genes, as well as gluten proteins, which can be exploited to improve the quality of wheat for the production of desired wheat cultivars. The aim of this review is to highlight the progress, challenges, and opportunities in breeding for end-use quality in wheat. The paper outlines the following key aspects: (1) challenges associated with breeding for end-use quality and (2) opportunities such as genomic selection, marker-assisted selection (MAS), and genetic variation in landraces and wild relatives for end-use quality improvement and the genes regulating end-use quality. Lastly, the paper discusses the prospects for future quality improvement in wheat. The review provides a comprehensive insight into the effects of genes on regulating end-use quality and serves as baseline information for wheat breeders to guide the development and deployment of wheat cultivars for future quality improvement. Full article
(This article belongs to the Special Issue Molecular and Genetic Advances in Plant Breeding)
Show Figures

Figure 1

12 pages, 1498 KB  
Article
A Genome-Wide Association Study of Sugarcane Smut Resistance
by Xinglong Chen, Xuhui Li, Enping Cai, Xiaomin Feng, Junteng Fang, Jiayun Wu and Nannan Zhang
Agronomy 2025, 15(9), 2111; https://doi.org/10.3390/agronomy15092111 - 2 Sep 2025
Viewed by 541
Abstract
Sugarcane smut, caused by Sporisorium scitamineum, is a globally prevalent disease that severely impacts sugarcane yield and quality. The most cost-effective and sustainable approach to disease control is breeding for smut-resistant varieties. In this study, we conducted a genome-wide association study (GWAS) [...] Read more.
Sugarcane smut, caused by Sporisorium scitamineum, is a globally prevalent disease that severely impacts sugarcane yield and quality. The most cost-effective and sustainable approach to disease control is breeding for smut-resistant varieties. In this study, we conducted a genome-wide association study (GWAS) using a panel of core sugarcane parents and their derived lines to elucidate the genetic basis of smut resistance across seven different environments. We identified 68 new loci significantly associated with smut resistance across all the chromosomes. Based on functional annotations and genomic positions, 164 candidate genes were identified, many of which are related to enzymatic systems, resistance genes, transcription factors, and other pathways implicated in smut defense. Using resistance ratings and associated SNPs, we further selected ten elite parents and derivatives as potential donors for marker-assisted selection (MAS). This study provides a valuable reservoir of genetic resources for improving smut resistance in sugarcane. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

10 pages, 547 KB  
Article
Genetic Variants in the ATF6 Gene and Their Relationship with Milk-Quality Traits in Yaks
by Xiaoming Ma, Xian Guo, Yongfu La, Xiaoyun Wu, Min Chu, Pengjia Bao, Ping Yan and Chunnian Liang
Animals 2025, 15(17), 2524; https://doi.org/10.3390/ani15172524 - 27 Aug 2025
Viewed by 432
Abstract
Yaks (Bos grunniens) are a predominant livestock species on the Tibetan Plateau, known for their adaptability to the cold and dry climate typical of this region. This study investigates the association of two SNPs within the ATF6 gene (Chr3:9812652G>T (CM016692.1) and [...] Read more.
Yaks (Bos grunniens) are a predominant livestock species on the Tibetan Plateau, known for their adaptability to the cold and dry climate typical of this region. This study investigates the association of two SNPs within the ATF6 gene (Chr3:9812652G>T (CM016692.1) and Chr3:9900243C>T (CM016692.1)) with key milk-quality traits in yaks. Due to the low frequency of TT homozygotes (<5%), analysis focused on major genotypes: GG vs. GT and CC vs. CT. Results from the general linear models revealed that the g.3_9812652G>T variant was significantly associated with increased levels of casein, protein, acidity, and solid-not-fat (SNF) in GT individuals (p < 0.01). No significant differences were observed for lactose, urea, citric acid, or fat. For g.3_9900243C>T, CT individuals showed higher casein, protein, SNF, and citric acid levels compared to CC (p < 0.05). These results suggest both SNPs are linked to key milk traits, especially protein, casein, and SNF. The g.3_9812652G>T variant had a stronger and more consistent effect, indicating it may play a larger role in milk composition regulation. Overall, ATF6 is a promising candidate gene for marker-assisted selection (MAS) to improve milk quality in yaks. Further studies in larger and more diverse populations are needed to confirm these findings and explore the gene’s functional role. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2075 KB  
Article
Molecular Marker-Assisted Breeding of High-Quality and Salt-Tolerant Hybrid Japonica Rice Combination Shenyanyou 1
by Fuan Niu, Anpeng Zhang, Can Cheng, Huangwei Chu, Jun Fang, Jihua Zhou, Bin Sun, Yuting Dai, Jianming Zhang, Zhizun Feng and Liming Cao
Agronomy 2025, 15(8), 2006; https://doi.org/10.3390/agronomy15082006 - 21 Aug 2025
Viewed by 1101
Abstract
The development of a new salt–alkaline-tolerant hybrid japonica rice is crucial for enhancing japonica rice supply and ensuring national food security. Utilizing molecular marker-assisted selection (MAS) technology combining Kompetitive Allele-Specific PCR (KASP) markers and a gene breeding chip, the salt-tolerant gene SKC1 was [...] Read more.
The development of a new salt–alkaline-tolerant hybrid japonica rice is crucial for enhancing japonica rice supply and ensuring national food security. Utilizing molecular marker-assisted selection (MAS) technology combining Kompetitive Allele-Specific PCR (KASP) markers and a gene breeding chip, the salt-tolerant gene SKC1 was introgressed into a rice genotype Fan 14. This led to the development of Shenyanhui 1, a new high-quality, strongly heterotic, and salt-tolerant japonica restorer line. Subsequently, the high-quality, salt-tolerant japonica three-line hybrid rice variety Shenyanyou 1 was developed by crossing the BT-type japonica cytoplasmic male sterile (CMS) line Shen 21A with the restorer line Shenyanhui 1. Shenyanyou 1 carries the major salt tolerance gene SKC1, exhibiting excellent salt tolerance with seedling stage salt tolerance reaching level 5. Under precise salt tolerance evaluation throughout its growth cycle, Shenyanyou 1 achieved a yield of 3640.5 kg/hm2, representing an extremely significant increase of 20.7% over the control variety Yandao 21. Shenyanyou 1 exhibits superior grain quality, meeting the Grade 3 high-quality rice standards issued by the Ministry of Agriculture. Shenyanyou 1 has good comprehensive resistance, aggregating rice blast resistance genes such as Pi2, Pita, Pizt and LHCB5, bacterial blight resistance genes Xa26/Xa3, stripe blast resistance gene STV11, semi-dwarf gene Sdt97, nitrogen-efficient utilization gene NRT1.1B, the light repair activity enhancement gene qUVR-10, the cold resistance gene qLTG3-1, and the iron tolerance gene OsFRO1. It has good resistance to biotic and abiotic stresses. This paper details the breeding process, key agronomic traits, salt tolerance, yield performance, and grain quality characteristics of Shenyanyou 1. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

19 pages, 1551 KB  
Article
Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds
by Xueyang Wang, Min Zhang, Fuxin Li, Xiulin Liu, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren, Hongmei Qiu and Bixian Zhang
Agronomy 2025, 15(8), 1889; https://doi.org/10.3390/agronomy15081889 - 5 Aug 2025
Cited by 2 | Viewed by 737
Abstract
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean [...] Read more.
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (≤10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (−1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait. Full article
Show Figures

Figure 1

12 pages, 1076 KB  
Article
Rapid Identification of the SNP Mutation in the ABCD4 Gene and Its Association with Multi-Vertebrae Phenotypes in Ujimqin Sheep Using TaqMan-MGB Technology
by Yue Zhang, Min Zhang, Hong Su, Jun Liu, Feifei Zhao, Yifan Zhao, Xiunan Li, Yanyan Yang, Guifang Cao and Yong Zhang
Animals 2025, 15(15), 2284; https://doi.org/10.3390/ani15152284 - 5 Aug 2025
Viewed by 424
Abstract
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, [...] Read more.
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, Chr7:89393414, C > T) identified through a genome-wide association study (GWAS), a TaqMan-MGB (minor groove binder) genotyping system was developed. the objective was to establish a high-throughput and efficient molecular marker-assisted selection (MAS) tool. Specific primers and dual fluorescent probes were designed to optimize the reaction system. Standard plasmids were adopted to validate genotyping accuracy. A total of 152 Ujimqin sheep were subjected to TaqMan-MGB genotyping, digital radiography (DR) imaging, and Sanger sequencing. the results showed complete concordance between TaqMan-MGB and Sanger sequencing, with an overall agreement rate of 83.6% with DR imaging. For individuals with T/T genotypes (127/139), the detection accuracy reached 91.4%. This method demonstrated high specificity, simplicity, and cost-efficiency, significantly reducing the time and financial burden associated with traditional imaging-based approaches. the findings indicate that the TaqMan-MGB technique can accurately identify the T/T genotype at the SNP site and its strong association with the multi-vertebrae phenotypes, offering an effective and reliable tool for molecular breeding of Ujimqin sheep. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

40 pages, 2174 KB  
Review
Bridging Genes and Sensory Characteristics in Legumes: Multi-Omics for Sensory Trait Improvement
by Niharika Sharma, Soumi Paul Mukhopadhyay, Dhanyakumar Onkarappa, Kalenahalli Yogendra and Vishal Ratanpaul
Agronomy 2025, 15(8), 1849; https://doi.org/10.3390/agronomy15081849 - 31 Jul 2025
Cited by 1 | Viewed by 1731
Abstract
Legumes are vital sources of protein, dietary fibre and nutrients, making them crucial for global food security and sustainable agriculture. However, their widespread acceptance and consumption are often limited by undesirable sensory characteristics, such as “a beany flavour”, bitterness or variable textures. Addressing [...] Read more.
Legumes are vital sources of protein, dietary fibre and nutrients, making them crucial for global food security and sustainable agriculture. However, their widespread acceptance and consumption are often limited by undesirable sensory characteristics, such as “a beany flavour”, bitterness or variable textures. Addressing these challenges requires a comprehensive understanding of the complex molecular mechanisms governing appearance, aroma, taste, flavour, texture and palatability in legumes, aiming to enhance their sensory appeal. This review highlights the transformative power of multi-omics approaches in dissecting these intricate biological pathways and facilitating the targeted enhancement of legume sensory qualities. By integrating data from genomics, transcriptomics, proteomics and metabolomics, the genetic and biochemical networks that directly dictate sensory perception can be comprehensively unveiled. The insights gained from these integrated multi-omics studies are proving instrumental in developing strategies for sensory enhancement. They enable the identification of key biomarkers for desirable traits, facilitating more efficient marker-assisted selection (MAS) and genomic selection (GS) in breeding programs. Furthermore, a molecular understanding of sensory pathways opens avenues for precise gene editing (e.g., using CRISPR-Cas9) to modify specific genes, reduce off-flavour compounds or optimise texture. Beyond genetic improvements, multi-omics data also inform the optimisation of post-harvest handling and processing methods (e.g., germination and fermentation) to enhance desirable sensory profiles and mitigate undesirable ones. This holistic approach, spanning from the genetic blueprint to the final sensory experience, will accelerate the development of new legume cultivars and products with enhanced palatability, thereby fostering increased consumption and ultimately contributing to healthier diets and more resilient food systems worldwide. Full article
Show Figures

Figure 1

16 pages, 938 KB  
Review
Enhancing Oil Content in Oilseed Crops: Genetic Insights, Molecular Mechanisms, and Breeding Approaches
by Guizhen Gao, Lu Zhang, Panpan Tong, Guixin Yan and Xiaoming Wu
Int. J. Mol. Sci. 2025, 26(15), 7390; https://doi.org/10.3390/ijms26157390 - 31 Jul 2025
Cited by 1 | Viewed by 1164
Abstract
Vegetable oils are essential for human nutrition and industrial applications. With growing global demand, increasing oil content in oilseed crops has become a top priority. This review synthesizes recent progress in understanding the genetic, environmental, and molecular mechanisms regulating oil content, and presents [...] Read more.
Vegetable oils are essential for human nutrition and industrial applications. With growing global demand, increasing oil content in oilseed crops has become a top priority. This review synthesizes recent progress in understanding the genetic, environmental, and molecular mechanisms regulating oil content, and presents biotechnological strategies to enhance oil accumulation in major oilseed crops. Oil biosynthesis is governed by intricate genetic–environmental interactions. Environmental factors and agronomic practices significantly impact oil accumulation dynamics. Quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) have identified key loci and candidate genes involved in lipid biosynthesis pathways. Transcription factors and epigenetic regulators further fine-tune oil accumulation. Biotechnological approaches, including marker-assisted selection (MAS) and CRISPR/Cas9-mediated genome editing, have successfully generated high-oil-content variants. Future research should integrate multi-omics data, leverage AI-based predictive breeding, and apply precision genome editing to optimize oil yield while maintaining seed quality. This review provides critical references for the genetic improvement and breeding of high- and ultra-high-oil-content varieties in oilseed crops. Full article
(This article belongs to the Special Issue Rapeseed: Genetic Breeding, Key Trait Mining and Genome)
Show Figures

Figure 1

17 pages, 2673 KB  
Article
Genome-Wide Association Analysis and Molecular Marker Development for Resistance to Fusarium equiseti in Soybean
by Yuhe Wang, Xiangkun Meng, Jinfeng Han, Yuming Yang, Hongjin Zhu, Yongguang Li, Yuhang Zhan, Weili Teng, Haiyan Li and Xue Zhao
Agronomy 2025, 15(8), 1769; https://doi.org/10.3390/agronomy15081769 - 23 Jul 2025
Viewed by 617
Abstract
Fusarium root rot, caused by Fusarium equiseti, poses a significant threat to soybean production. This study aimed to explore the genetic basis of resistance to Fusarium equiseti root rot (FERR) by evaluating the resistance phenotype of 346 soybean germplasms and conducting a genome-wide [...] Read more.
Fusarium root rot, caused by Fusarium equiseti, poses a significant threat to soybean production. This study aimed to explore the genetic basis of resistance to Fusarium equiseti root rot (FERR) by evaluating the resistance phenotype of 346 soybean germplasms and conducting a genome-wide association study (GWAS) using 698,949 SNP markers obtained from soybean germplasm resequencing data. GWAS analysis identified 101 SNPs significantly associated with FERR resistance, distributed across nine chromosomes, with the highest number of SNPs on chromosomes 13 and 20. Further gene-based association and allele variation analyses identified candidate genes whose mutations are closely related to FERR resistance. To accelerate soybean FERR resistance breeding screening, we developed CAPS markers S13_14464319-CAPS1 and S15_9215524-CAPS2, targeting these SNP sites, and KASP markers based on the S15_9205620-G/A, providing an effective tool for marker-assisted selection (MAS). This study offers a valuable theoretical foundation and molecular marker resources for the functional validation of FERR resistance genes and soybean disease resistance breeding. Full article
Show Figures

Figure 1

Back to TopTop