Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (979)

Search Parameters:
Keywords = measurement of dielectric properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7981 KB  
Article
A Flexible and Compact UWB MIMO Antenna with Dual-Band-Notched Double U-Shaped Slot on Mylar® Polyester Film
by Vanvisa Chutchavong, Wanchalerm Chanwattanapong, Norakamon Wongsin, Paitoon Rakluea, Maleeya Tangjitjetsada, Chawalit Rakluea, Chatree Mahatthanajatuphat and Prayoot Akkaraekthalin
Electronics 2025, 14(17), 3363; https://doi.org/10.3390/electronics14173363 - 24 Aug 2025
Viewed by 919
Abstract
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article [...] Read more.
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article discusses the development of small, high-performance MIMO UWB antennas with mutual suppression capabilities to fully use the benefits of both technologies. Additionally, the suggested antenna features a straightforward design and dual-band-notched characteristics. The antenna structure includes two radiating elements measuring 85 × 45 mm2. These elements use a rectangular patch provided by a coplanar waveguide (CPW). Double U-shaped slots are incorporated into the rectangular patch to introduce dual-band-notched properties, which help mitigate interference from WiMAX and WLAN communication systems. The antenna is fabricated on a Mylar® polyester film substrate of 0.3 mm in thickness, with a dielectric constant of 3.2. According to the measurement results, the suggested antenna functions efficiently across the frequency spectrum of 2.29 to 20 GHz, with excellent impedance matching throughout the bandwidth. Furthermore, it provides dual-band-notched coverage at 3.08–3.8 GHz for WiMAX and 4.98–5.89 GHz for WLAN. The antenna exhibits impressive performance, including favorable radiation attributes, consistent gain, and little mutual coupling (less than −20 dB). Additionally, the envelope correlation coefficient (ECC) is extremely low (ECC < 0.01) across the working bandwidth, which indicates excellent UWB MIMO performance. This paper offers an appropriate design methodology for future flexible and compact UWB MIMO systems that can serve as interference-resilient antennas for next-generation wireless applications. Full article
(This article belongs to the Collection MIMO Antennas)
Show Figures

Figure 1

13 pages, 2256 KB  
Article
The Influence of the Ar/N2 Ratio During Reactive Magnetron Sputtering of TiN Electrodes on the Resistive Switching Behavior of MIM Devices
by Piotr Jeżak, Aleksandra Seweryn, Marcin Klepka and Robert Mroczyński
Materials 2025, 18(17), 3940; https://doi.org/10.3390/ma18173940 - 22 Aug 2025
Viewed by 474
Abstract
Resistive switching (RS) phenomena are nowadays one of the most studied topics in the area of microelectronics. It can be observed in Metal–Insulator–Metal (MIM) structures that are the basis of resistive switching random-access memories (RRAMs). In the case of commercial use of RRAMs, [...] Read more.
Resistive switching (RS) phenomena are nowadays one of the most studied topics in the area of microelectronics. It can be observed in Metal–Insulator–Metal (MIM) structures that are the basis of resistive switching random-access memories (RRAMs). In the case of commercial use of RRAMs, it is beneficial that the applied materials would have to be compatible with Complementary Metal-Oxide-Semiconductor (CMOS) technology. Fabricating methods of these materials can determine their stoichiometry and structural composition, which can have a detrimental impact on the electrical performance of manufactured devices. In this study, we present the influence of the Ar/N2 ratio during reactive magnetron sputtering of titanium nitride (TiN) electrodes on the resistive switching behavior of MIM devices. We used silicon oxide (SiOx) as a dielectric layer, which was characterized by the same properties in all fabricated MIM structures. The composition of TiN thin layers was controlled by tuning the Ar/N2 ratio during the deposition process. The fabricated conductive materials were characterized in terms of chemical and structural properties employing X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis. Structural characterization revealed that increasing the Ar content during the reactive sputtering process affects the crystallite size of the deposited TiN layer. The resulting crystallite sizes ranged from 8 Å to 757.4 Å. The I-V measurements of fabricated devices revealed that tuning the Ar/N2 ratio during the deposition of TiN electrodes affects the RS behavior. Our work shows the importance of controlling the stoichiometry and structural parameters of electrodes on resistive switching phenomena. Full article
Show Figures

Graphical abstract

25 pages, 7378 KB  
Article
Additive Manufacturing of Biobased Material Used in Electrical Insulation: Comparative Studies on Various Printing Technologies
by Robert Sekula, Alexander Leis, Anne Wassong, Annsophie Preuss, Hermann Hanning, Jan Kemnitzer, Marco Wimmer, Maciej Kuniewski and Pawel Mikrut
Polymers 2025, 17(16), 2248; https://doi.org/10.3390/polym17162248 - 20 Aug 2025
Viewed by 502
Abstract
In the power industry, various electrically insulating materials are used to ensure proper mechanical, thermal, and dielectric performance over decades of equipment operation. In power transformers, cellulose is the predominant material in manufacturing various insulation components. Most of these products are manufactured by [...] Read more.
In the power industry, various electrically insulating materials are used to ensure proper mechanical, thermal, and dielectric performance over decades of equipment operation. In power transformers, cellulose is the predominant material in manufacturing various insulation components. Most of these products are manufactured by wet-molding technology. However, this process is long, labor-intensive, and highly energy-demanding. Under the frame of an EU-funded grant, a new kind of insulation material and manufacturing process were developed. Fully bio-based material (produced in the form of pellets) can be processed using additive manufacturing, allowing for much shorter manufacturing times for insulation products, with considerably less scrap and energy consumption (due to the elimination of the drying stage). The focus of the project was extrusion additive manufacturing technology, but at a later stage, a biomaterial powder was developed, making it possible to print with other technologies. In the paper, comparative studies on various additive manufacturing techniques of newly developed biopolymers have been presented, including extrusion, High Speed Sintering (HSS), and Selective Laser Sintering (SLS). The applicability of such material in power transformers required extensive testing of various properties. These results are discussed in the paper and include: oil compatibility, volume resistivity measurements, permittivity and dissipation factor measurements, determination of partial discharge inception voltage, partial discharges measurement, and breakdown voltage measurements. Although mechanical properties remain below industrial targets, the pioneering results provide a promising route for unique directions toward more sustainable manufacturing of high-voltage cellulose insulation and ideas for improving the material properties during the printing process. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Additive Manufacturing)
Show Figures

Figure 1

21 pages, 4127 KB  
Article
Riboflavin as a Dual-Function Additive for Enhancing Biodegradation in Piezoelectric PLA/BT Composites
by Natalia Puszczykowska, Piotr Rytlewski, Agnieszka Mirkowska, Paweł Cyprys, Piotr Augustyn and Kacper Fiedurek
Materials 2025, 18(16), 3860; https://doi.org/10.3390/ma18163860 - 18 Aug 2025
Viewed by 422
Abstract
Poly(lactic acid)/barium titanate (PLA/BT) composites exhibit piezoelectric properties desirable for bone tissue engineering, but their low biodegradability limits implant resorption. In this study, riboflavin (RF) is introduced as a dual-function additive that enhances biodegradation in PLA/BT composites. Its addition led to significantly increased [...] Read more.
Poly(lactic acid)/barium titanate (PLA/BT) composites exhibit piezoelectric properties desirable for bone tissue engineering, but their low biodegradability limits implant resorption. In this study, riboflavin (RF) is introduced as a dual-function additive that enhances biodegradation in PLA/BT composites. Its addition led to significantly increased microbial colonization and a five-fold higher mass loss compared to unmodified samples. These observations are consistent with the known polarity of RF and its role as a cofactor in microbial metabolism. The PLA/BT/RF composites are subjected to full characterization, including thermogravimetric analysis (TG), differential scanning calorimetry (DSC), tensile testing, dynamic mechanical analysis (DMA), dielectric permittivity measurements, and determination of piezoelectric coefficient d33. Compared to PLA/BT, RF-containing composites exhibit significantly accelerated biodegradation, with mass loss reaching up to 16% after 28 days, while maintaining functional piezoelectricity (d33 ≈ 3.9 pC/N). Scanning electron microscopy (SEM) performed after biodegradation reveals intensified microbial colonization and surface deterioration in the RF-modified samples. The data confirm that riboflavin serves as an effective modifier, enabling controlled biodegradation without compromising electromechanical performance. These results support the use of PLA-based piezoelectric composites for resorbable biomedical implants. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

13 pages, 5641 KB  
Article
Effect of Gas Content on Surface Charge Accumulation of Epoxy Insulator in C4F7N/CO2/O2 Mixture Under AC Voltage
by Chuanyun Zhu, Xiaohui Duan, Shuangying Li, Zhen Zhang, Jian Guan, Yuepeng Xin and Yu Gao
Energies 2025, 18(16), 4390; https://doi.org/10.3390/en18164390 - 18 Aug 2025
Viewed by 269
Abstract
Perfluoroisobutyronitrile (C4F7N) has emerged as a promising SF6 alternative due to its superior dielectric properties and acceptable environmental impact. However, the gas–solid interfacial charge accumulation behavior in such gas mixtures requires in-depth and systematic investigation. This study investigated [...] Read more.
Perfluoroisobutyronitrile (C4F7N) has emerged as a promising SF6 alternative due to its superior dielectric properties and acceptable environmental impact. However, the gas–solid interfacial charge accumulation behavior in such gas mixtures requires in-depth and systematic investigation. This study investigated the surface charge accumulation behavior on scaled disc insulators in C4F7N/CO2/O2 mixtures under AC voltage. By constructing a high-precision surface charge measurement platform, the influence mechanisms of varying gas composition ratios of C4F7N (2–14%) with fixed O2 content and O2 (2–14%) with fixed C4F7N content on charge accumulation were analyzed. The results demonstrated that increasing C4F7N content significantly suppresses surface charge accumulation. When the C4F7N concentration rises from 2% to 14%, the maximum positive/negative charge densities decrease by 46.58% and 22.22% in the absence of metal particles. The suppression effect is more pronounced with the metal particle present, where the reductions in positive/negative charge densities reach 61.90% and 23.71% under the same conditions. In contrast, variations in O2 content exhibit a weaker impact on charge accumulation, showing no consistent regulatory effect within the 2–14% range. By comparing charge distribution patterns under different gas compositions, it is revealed that C4F7N suppresses gas ionization primarily by enhancing electronegativity, while O2 exhibits negligible influence on charge transport. This study provides critical experimental evidence for optimizing gas ratios and insulation design in AC GIS equipment. Full article
Show Figures

Figure 1

15 pages, 3792 KB  
Article
Polarization Characteristics of a Metasurface with a Single via and a Single Lumped Resistor for Harvesting RF Energy
by Erik Madyo Putro, Satoshi Yagitani, Tomohiko Imachi and Mitsunori Ozaki
Appl. Sci. 2025, 15(15), 8561; https://doi.org/10.3390/app15158561 - 1 Aug 2025
Viewed by 294
Abstract
A square patch metasurface is designed, simulated, fabricated, and experimentally tested to investigate polarization characteristics quantitatively. The metasurface consists of one layer unit cell in the form of a square patch with one via and a lumped resistor, which is used for harvesting [...] Read more.
A square patch metasurface is designed, simulated, fabricated, and experimentally tested to investigate polarization characteristics quantitatively. The metasurface consists of one layer unit cell in the form of a square patch with one via and a lumped resistor, which is used for harvesting RF (radio frequency) energy. FR4 dielectric is used as a substrate supported by a metal ground plane. Polarization-dependent properties with specific surface current patterns and voltage dip are obtained when simulating under normal incidence of a plane wave. This characteristic results from changes in surface current conditions when the polarization angle is varied. A voltage dip appears at a specific polarization angle when the surface current pattern is symmetrical. This condition occurs when the position of the lumped resistor from the center of the patch is perpendicular to the linearly polarized incident electric field. A couple of 10 × 10 arrays with different resistor positions are fabricated and tested. The experimental results are in good agreement with the simulated results. The proposed design demonstrates a symmetric unit cell structure with one via and a resistor that exhibits polarization-dependent behavior for linear polarization. An asymmetric patch design is explored through both simulation and measurement to mitigate polarization dependence by suppressing the dip behavior, albeit at the expense of reduced absorption efficiency. This study provides a complete polarization analysis for both symmetric and asymmetric patch metasurfaces with a single via and a single lumped resistor, and introduces a predictive relation between the position of the resistor relative to the center of the patch and the resulting voltage dip behavior. Full article
(This article belongs to the Special Issue Electromagnetic Waves: Applications and Challenges)
Show Figures

Figure 1

19 pages, 3671 KB  
Article
Sustainable Benzoxazine Copolymers with Enhanced Thermal Stability, Flame Resistance, and Dielectric Tunability
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(15), 2092; https://doi.org/10.3390/polym17152092 - 30 Jul 2025
Viewed by 499
Abstract
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both [...] Read more.
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both were synthesized using a simple Mannich-type reaction and verified through FT-IR and 1H-NMR spectroscopy. By blending these monomers in different ratios, copolymers with adjustable thermal, dielectric, and surface characteristics were produced. Thermal analysis showed that the materials had broad processing windows and cured effectively, while thermogravimetric testing confirmed excellent heat resistance—especially in AF-rich blends, which left behind more char. The structural changes obtained during curing process were monitored using FT-IR, and XPS verified the presence of key elements like carbon, oxygen, nitrogen, and silicon. SEM imaging revealed that AB-based materials had smoother surfaces, while AF-based ones were rougher; the copolymers fell in between. Dielectric testing showed that increasing AF content raised both permittivity and loss, and contact angle measurements confirmed that surfaces ranged from water-repellent (AB) to water-attracting (AF). Overall, these biopolymers (AB/AF copolymers) synthesized from arbutin combine environmental sustainability with customizability, making them strong candidates for use in electronics, protective coatings, and flame-resistant composite materials. Full article
Show Figures

Figure 1

21 pages, 2189 KB  
Article
Surface Modification, Characterization, and Cytotoxicity of Ti-6Al-4V Alloy Enriched by EDM Process
by Bárbara A. B. dos Santos, Elaine C. S. Corrêa, Wellington Lopes, Liszt Y. C. Madruga, Ketul C. Popat, Roberta M. Sabino and Hermes de Souza Costa
Appl. Sci. 2025, 15(15), 8443; https://doi.org/10.3390/app15158443 - 30 Jul 2025
Viewed by 547
Abstract
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. [...] Read more.
This study investigates the surface modification of Ti-6Al-4V alloy through the electrical discharge machining (EDM) process to improve its suitability for orthopedic and dental implant applications. The analysis focused on evaluating the morphological, wettability, roughness, hardness, and biocompatibility properties of the modified surfaces. Samples were subjected to different dielectric fluids and polarities during EDM. Subsequently, optical microscopy, roughness measurements, Vickers microhardness, contact angle tests, and in vitro cytotoxicity assays were performed. The results demonstrated that EDM processing led to the formation of distinct layers on the sample surfaces, with surface roughness increasing under negative polarity by up to ~304% in Ra and 305% in Rz. Additionally, wettability measurements indicated that the modified surfaces presented a lower water contact angle, which suggests enhanced hydrophilicity. Moreover, the modified samples showed a significant increase in Vickers microhardness, with the highest value reaching 1520 HV in the recast layer, indicating improvements in the mechanical properties. According to ISO 10993-5, all treated samples were classified as non-cytotoxic, presenting RGR values above 75%, similar to the untreated Ti-6Al-4V alloy. Therefore, it is concluded that surface modification through the EDM process has the potential to enhance the properties and safety of biomedical implants made with this alloy. Full article
(This article belongs to the Special Issue Titanium and Its Compounds: Properties and Innovative Applications)
Show Figures

Figure 1

14 pages, 6801 KB  
Article
Effect of Zr Doping on BNT–5BT Lead-Free Ceramics: Substitutional and Excess Incorporation Analysis
by Mauro Difeo, Miriam Castro and Leandro Ramajo
Micro 2025, 5(3), 35; https://doi.org/10.3390/micro5030035 - 28 Jul 2025
Viewed by 230
Abstract
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of [...] Read more.
This study evaluates the effect of zirconium (Zr) incorporation on the structural, microstructural, and functional properties of lead-free ceramics based on the 0.95(Bi0.5Na0.5)TiO3–0.05BaTiO3 (BNT–5BT) system. Two distinct doping strategies were investigated: (i) the substitutional incorporation of Zr4+ at the Ti4+ site (BNT–5BT–xZrsub), and (ii) the addition of ZrO2 in excess (BNT–5BT–xZrexc). The samples were synthesized via conventional solid-state reaction and characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM/EDS), and electrical measurements, including dielectric, ferroelectric, and piezoelectric responses. Both doping routes were found to influence phase stability and electromechanical performance. Substitutional doping notably reduced the coercive field while preserving high remanent polarization, resulting in an enhanced piezoelectric coefficient (d33). These results highlight the potential of Zr-modified BNT–5BT ceramics for lead-free energy harvesting applications. Full article
Show Figures

Figure 1

17 pages, 3311 KB  
Article
A Holistic Integration of Machine Learning for Selecting Optimum Ratio of Nanoparticles in Epoxy-Based Nanocomposite Insulators
by Abubakar Siddique, Muhammad Usama Shahid, Laraib Akram, Waseem Aslam and Kholod D. Alsufiani
Processes 2025, 13(8), 2330; https://doi.org/10.3390/pr13082330 - 22 Jul 2025
Viewed by 1110
Abstract
Epoxy-based nanocomposites have drawn much interest in high-voltage insulation applications due to their improved dielectric properties. The determination of the optimal nanoparticle (NP) concentration required to achieve a significant enhancement in nanocomposite dielectric properties remains a subject of ongoing research. Previous work has [...] Read more.
Epoxy-based nanocomposites have drawn much interest in high-voltage insulation applications due to their improved dielectric properties. The determination of the optimal nanoparticle (NP) concentration required to achieve a significant enhancement in nanocomposite dielectric properties remains a subject of ongoing research. Previous work has employed iterative experimental methodologies, often characterized by the hit-and-trial method, in attempts to find the optimal nanoparticle concentration. However, these efforts have yielded suboptimal or inconsistent results. Moreover, experimental procedures for optimizing the nanoparticle concentration require significant time and cost. This research study proposed the predictive capabilities of machine learning (ML) for the selection of the nanoparticle concentration in epoxy-based nanocomposite insulators. The authors employed a novel systematic approach in this research work, comprising dataset preparation, ML model implementation, and experimental validation. A real-time dataset with varying concentrations of NPs (TiO2, SiO2, Al2O3) was developed in the High Voltage Lab, KFUEIT, Pakistan. Several advanced machine learning models are trained on this dataset. Support Vector Regression (SVR) exhibits the highest prediction accuracy, with an R2 score of 0.97. SVR predicted a breakdown voltage (BDV) of 46.26 kV, with a (w/w %) concentration of 5% TiO2, 1.17631% SiO2, and 3.95755% Al2O3. To validate the SVR prediction, a hardware prototype with predicted NP concentration is developed and tested. The experimentally measured BDV of the predicted nanocomposite sample, registering 44.72 kV, authenticates the predictive accuracy of machine learning. This work demonstrates the efficacy of machine learning as a viable and efficient alternative to traditional experimental methods for optimizing nanoparticle concentrations using a predictive approach in epoxy-based nanocomposites for high-voltage insulation applications. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 7300 KB  
Article
Strain and Layer Modulations of Optical Absorbance and Complex Photoconductivity of Two-Dimensional InSe: A Study Based on GW0+BSE Calculations
by Chuanghua Yang, Yuan Jiang, Wendeng Huang and Feng Pan
Crystals 2025, 15(7), 666; https://doi.org/10.3390/cryst15070666 - 21 Jul 2025
Viewed by 359
Abstract
Since the definitions of the two-dimensional (2D) optical absorption coefficient and photoconductivity are independent of the thickness of 2D materials, they are more suitable than the dielectric function to describe the optical properties of 2D materials. Based on the many-body GW method and [...] Read more.
Since the definitions of the two-dimensional (2D) optical absorption coefficient and photoconductivity are independent of the thickness of 2D materials, they are more suitable than the dielectric function to describe the optical properties of 2D materials. Based on the many-body GW method and the Bethe–Salpeter equation, we calculated the quasiparticle electronic structure, optical absorbance, and complex photoconductivity of 2D InSe from a single layer (1L) to three layers (3L). The calculation results show that the energy difference between the direct and indirect band gaps in 1L, 2L, and 3L InSe is so small that strain can readily tune its electronic structure. The 2D optical absorbance results calculated taking into account exciton effects show that light absorption increases rapidly near the band gap. Strain modulation of 1L InSe shows that it transforms from an indirect bandgap semiconductor to a direct bandgap semiconductor in the biaxial compressive strain range of −1.66 to −3.60%. The biaxial compressive strain causes a slight blueshift in the energy positions of the first and second absorption peaks in monolayer InSe while inducing a measurable redshift in the energy positions of the third and fourth absorption peaks. Full article
Show Figures

Figure 1

26 pages, 2441 KB  
Article
Structure–Property Relationship in Isotactic Polypropylene Under Contrasting Processing Conditions
by Edin Suljovrujic, Dejan Milicevic, Katarina Djordjevic, Zorana Rogic Miladinovic, Georgi Stamboliev and Slobodanka Galovic
Polymers 2025, 17(14), 1889; https://doi.org/10.3390/polym17141889 - 8 Jul 2025
Viewed by 1042
Abstract
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by [...] Read more.
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by the crystallization behavior of the polymer under specific conditions. The most important industrial PP remains the isotactic one, and it has been studied extensively for its polymorphic characteristics and crystallization behavior for over half a century. Due to its regular chain structure, isotactic polypropylene (iPP) belongs to the group of polymers with a high tendency for crystallization. The rapid quenching of molten iPP fails to produce a completely amorphous polymer but leads to an intermediate crystalline order. On the other hand, slow cooling yields a material with high crystalline content. The processing conditions that occur in practice and industry are between these two extremes and, in some cases, are even very close. Therefore, the study of limits in processability and the impact of extreme preparation conditions on morphology, structure, thermal, and mechanical properties fills a gap in the current understanding of how the processing conditions of iPP can be used to design the desired properties for specific applications and is in the focus of this research. The first set of samples (Q samples) was obtained by rapid quenching, while the second was prepared by very slow cooling from the melt to room temperature (SC samples). Testing of samples was performed by optical microscopy (OM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic dielectric spectroscopy (DDS), and mechanical measurements. Characterization revealed that slowly cooled samples exhibited a significantly higher degree of crystallinity and larger crystallites (χ ≥ 55% and L(110) ≈ 20 nm), compared to quenched samples (χ < 30%, L(110) ≤ 3 nm). Mechanical testing showed a drastic contrast: quenched samples exhibited elongation at break > 500%, while slowly cooled samples broke below 15%, reflecting their brittle behavior. For the first time, DDS is applied to investigate molecular mobility differences between processing-dependent structural forms, specifically the mesomorphic (smectic) and α-monoclinic forms. In slowly cooled samples, α relaxation exhibited both enhanced intensity and an upward temperature shift, indicating stronger structural constraints due to a much higher crystalline phase content and significantly larger crystallite size, respectively. These findings provide novel insights into the structure–property–processing relationship, which is crucial for industrial applications. Full article
(This article belongs to the Special Issue Thermal and Elastic Properties of Polymer Materials)
Show Figures

Figure 1

18 pages, 2148 KB  
Article
Structural and Dielectric Impedance Studies of Mixed Ionic–Electronic Conduction in SrLaFe1−xMnxTiO6 (x = 0, 0.33, 0.67, and 1.0) Double Perovskites
by Abdelrahman A. Elbadawi, Elsammani A. Shokralla, Mohamed A. Siddig, Obaidallah A. Algethami, Abdullah Ahmed Alghamdi and Hassan H. E. Idris
Ceramics 2025, 8(3), 87; https://doi.org/10.3390/ceramics8030087 - 7 Jul 2025
Viewed by 422
Abstract
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor [...] Read more.
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor solid-state reaction in air at 1250 °C. The purity phase and crystal structures of perovskite compounds were determined by means of the standard Rietveld refinement method using the FullProf suite. The best fitting results showed that SrLaFeTiO6−δ was orthorhombic with space group Pnma, and both SrLaFe0.67Mn0.33TiO6−δ and SrLaFe0.33Mn0.67TiO6−δ were cubic structures with space group Fm3m, while SrLaMnTiO6−δ was tetragonal with a I/4m space group. The charge density maps obtained for these structures indicated that the compounds show an ionic and mixed ionic–electronic conduction. The dielectric impedance measurements were carried out in the range of 20 Hz to 1 MHz, and the analysis showed that there is more than one relaxation mechanism of Debye type. Doping with Mn was found to reduce the dielectric impedance of the samples, and the major contribution to the dielectric impedance was established to change from a capacitive for SrLaFeTiO6−δ to a resistive for SrLaMnTiO6−δ. The fall in values of electrical resistance may be related to the possible occurrence of the double exchange (DEX) mechanism among the Mn ions, provided there is oxygen deficiency in the samples. DC-resistivity measurements revealed that SrLaFeTiO6−δ was an insulator while SrLaMnTiO6−δ was showing a semiconductor–metallic transition at ~250 K, which is in support of the DEX interaction. The dielectric impedance of SrLaFe0.67Mn0.33TiO6−δ was found to be similar to that of (La,Sr)(Co,Fe)O3-δ, the mixed ionic–electronic conductor (MIEC) model. The occurrence of a mixed ionic–electronic state in these compounds may qualify them to be used in free lead solar cells and energy storage technology. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

30 pages, 4213 KB  
Review
The Effect of Adsorption Phenomena on the Transport in Complex Electrolytes
by Ioulia Chikina, Michel Beaughon, Pierre Burckel, Emmanuelle Dubois, Ivan T. Lucas, Sawako Nakamae, Ozlem Sel, Hubert Perrot, Régine Perzynski, Thomas J. Salez, Blanca E. Torres-Bautista and Andrey Varlamov
Colloids Interfaces 2025, 9(4), 44; https://doi.org/10.3390/colloids9040044 - 7 Jul 2025
Viewed by 341
Abstract
Over the last decade, numerous impedance studies of the conductivity of suspensions containing colloidal (dielectric, semiconducting or metallic) particles have often led to the conclusion that the well-known Maxwell theory is insufficient to quantitatively explain the properties of these systems. We review some [...] Read more.
Over the last decade, numerous impedance studies of the conductivity of suspensions containing colloidal (dielectric, semiconducting or metallic) particles have often led to the conclusion that the well-known Maxwell theory is insufficient to quantitatively explain the properties of these systems. We review some of the most characteristic results and show how the applicability of the Maxwell’s theory can be restored taking into account the adsorption phenomena occurring during AC impedance measurements in nanoparticle suspensions. The latter can drastically change the capacitance of the metal-electrolyte cell boundaries from the standard value, making it strongly dependent on the nanoparticle concentration. This factor significantly affects conductivity measurements through RC circuit characteristics. We present an analysis of available impedance measurement data of the dependence of conductivity on the nanoparticle concentration in this new paradigm. In order to emphasize the novelty and the acute sensitivity of ac-diagnosis to the presence of adsorption phenomena at the metal-electrolyte interface, direct adsorption determinations at such interfaces by using two modern experimental techniques are also presented. The main result of this work is the restoration of Maxwell’s theory, attributing the observed discrepancies to variations in cell conductance. Full article
(This article belongs to the Special Issue Feature Reviews in Colloids and Interfaces)
Show Figures

Figure 1

11 pages, 2553 KB  
Article
Effect of Ni2+ Doping on the Crystal Structure and Properties of LiAl5O8 Low-Permittivity Microwave Dielectric Ceramics
by Xuekai Lan, Huatao Tang, Bairui Chen and Bin Tian
Ceramics 2025, 8(3), 85; https://doi.org/10.3390/ceramics8030085 - 4 Jul 2025
Viewed by 288
Abstract
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized [...] Read more.
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized via a solid-state reaction method to investigate the effects of Ni2+ substitution on crystal structure, microstructure, and dielectric properties. X-ray diffraction and Rietveld refinement reveal a phase transition from the P4332 to the Fd3m spinel structure at x ≈ 0.3, accompanied by a systematic increase in the lattice parameter (7.909–7.975 Å), attributed to the larger ionic radius of Ni2+ compared to Al3+. SEM analysis confirms dense microstructures with relative densities exceeding 95% and grain size increases from less than 1 μm at x = 0.1 to approximately 2 μm at x = 0.5. Dielectric measurements show a decrease in permittivity (εr) from 8.24 to 7.77 and in quality factor (Q × f) from 34,605 GHz to 20,529 GHz with increasing Ni content, while the temperature coefficient of the resonant frequency (τf) shifts negatively from −44.8 to −69.1 ppm/°C. Impedance spectroscopy indicates increased conduction losses and reduced activation energy with higher Ni2+ concentrations. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop