Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = medium/low-voltage DC distribution systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4237 KB  
Article
Solid-State Circuit Breaker Topology Design Methodology for Smart DC Distribution Grids with Millisecond-Level Self-Healing Capability
by Baoquan Wei, Haoxiang Xiao, Hong Liu, Dongyu Li, Fangming Deng, Benren Pan and Zewen Li
Energies 2025, 18(14), 3613; https://doi.org/10.3390/en18143613 - 9 Jul 2025
Viewed by 414
Abstract
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing [...] Read more.
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing an adaptive current-limiting branch topology, the proposed solution reduces the risk of system oscillations induced by current-limiting inductors during normal operation and minimizes steady-state losses in the breaker. Upon fault occurrence, the current-limiting inductor is automatically activated to effectively suppress the transient current rise rate. An energy dissipation circuit (EDC) featuring a resistor as the primary energy absorber and an auxiliary varistor (MOV) for voltage clamping, alongside a snubber circuit, provides an independent path for inductor energy release after faults. This design significantly alleviates the impact of MOV capacity constraints on the fault isolation process compared to traditional schemes where the MOV is the primary energy sink. The proposed topology employs a symmetrical bridge structure compatible with both pole-to-pole and pole-to-ground fault scenarios. Parameter optimization ensures the IGBT voltage withstand capability and energy dissipation efficiency. Simulation and experimental results demonstrate that this scheme achieves fault isolation within 0.1 ms, reduces the maximum fault current-to-rated current ratio to 5.8, and exhibits significantly shorter isolation times compared to conventional approaches. This provides an effective solution for segment switches and tie switches in millisecond-level self-healing systems for both low-voltage (LVDC, e.g., 750 V/1500 V DC) and medium-voltage (MVDC, e.g., 10–35 kV DC) smart DC distribution grids, particularly in applications demanding ultra-fast fault isolation such as data centers, electric vehicle (EV) fast-charging parks, and shipboard power systems. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

28 pages, 6345 KB  
Article
Multimodal Switching Control Strategy for Wide Voltage Range Operation of Three-Phase Dual Active Bridge Converters
by Chenhao Zhao, Chuang Huang, Shaoxu Jiang and Rui Wang
Processes 2025, 13(6), 1921; https://doi.org/10.3390/pr13061921 - 17 Jun 2025
Viewed by 385
Abstract
In recent years, to achieve “dual carbon” goals, increasing the penetration of renewable energy has become a critical approach in China’s power sector. Power electronic converters play a key role in integrating renewable energy into the power system. Among them, the Dual Active [...] Read more.
In recent years, to achieve “dual carbon” goals, increasing the penetration of renewable energy has become a critical approach in China’s power sector. Power electronic converters play a key role in integrating renewable energy into the power system. Among them, the Dual Active Bridge (DAB) DC-DC converter has gained widespread attention due to its merits, such as galvanic isolation, bidirectional power transfer, and soft switching. It has been extensively applied in microgrids, distributed generation, and electric vehicles. However, with the large-scale integration of stochastic renewable sources and uncertain loads into the grid, DAB converters are required to operate over a wider voltage regulation range and under more complex operating conditions. Conventional control strategies often fail to meet these demands due to their limited soft-switching range, restricted optimization capability, and slow dynamic response. To address these issues, this paper proposes a multi-mode switching optimized control strategy for the three-port DAB (3p-DAB) converter. The proposed method aims to broaden the soft-switching range and optimize the operation space, enabling high-power transfer capability while reducing switching and conduction losses. First, to address the issue of the narrow soft-switching range at medium and low power levels, a single-cycle interleaved phase-shift control mode is proposed. Under this control, the three-phase Dual Active Bridge can achieve zero-voltage switching and optimize the minimum current stress, thereby improving the operating efficiency of the converter. Then, in the face of the actual demand for wide voltage regulation of the converter, a standardized global unified minimum current stress optimization scheme based on the virtual phase-shift ratio is proposed. This scheme establishes a unified control structure and a standardized control table, reducing the complexity of the control structure design and the gain expression. Finally, both simulation and experimental results validate the effectiveness and superiority of the proposed multi-mode optimized control strategy. Full article
Show Figures

Figure 1

24 pages, 2174 KB  
Article
Diode Rectifier-Based Low-Cost Delivery System for Marine Medium Frequency Wind Power Generation
by Tao Xia, Yangtao Zhou, Qifu Zhang, Haitao Liu and Lei Huang
J. Mar. Sci. Eng. 2025, 13(6), 1062; https://doi.org/10.3390/jmse13061062 - 28 May 2025
Viewed by 429
Abstract
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible [...] Read more.
Offshore wind power has a broad development prospect, but with the development of offshore wind farms to the deep sea, the traditional high-voltage AC transmission has been difficult to adapt to the offshore wind power transmission distance and transmission capacity needs. A flexible DC transmission system applying modular multilevel converter is a common scheme for offshore wind power, which has been put into use in actual projects, but it is still facing the problems of high cost of offshore converter station platforms and high loss of collector systems. In order to improve the economy and reliability of the medium- and long-distance offshore wind power delivery systems, this paper proposes a diode rectifier-based medium-frequency AC pooling soft-direct low-cost delivery system for medium- and long-distance offshore wind power. Firstly, the mid-frequency equivalent model of the diode converter is established, and the influence of topology and frequency enhancement on the parameters of the main circuit equipment is analysed; then, the distribution parameters and transmission capacity of the mid-frequency cable are calculated based on the finite element modelling of the marine cable, and the transmission losses of the mid-frequency AC pooling system are then calculated, including the collector losses, converter valve losses, and transformer losses, etc. Finally, an economic analysis is carried out based on a specific example, comparing with the Jiangsu Rudong offshore wind power transmission project, in order to verify the economy of the medium-frequency AC flexible and direct transmission system of the medium- and long-distance offshore wind power using diode rectifier technology. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

17 pages, 2821 KB  
Article
Power Feasible Region Modeling and Voltage Support Control for V2G Charging Station Under Grid Fault Conditions
by Jinxin Ouyang, Ang Li, Yanbo Diao and Fei Huang
Sustainability 2025, 17(8), 3713; https://doi.org/10.3390/su17083713 - 19 Apr 2025
Cited by 1 | Viewed by 382
Abstract
The charging station (CS) is generally directly off-grid under a grid fault, which has become a key technical bottleneck that restricts the sustainable development of new energy transportation systems. During a grid fault, the CS under the vehicle-to-grid (V2G) mode experiences a reduction [...] Read more.
The charging station (CS) is generally directly off-grid under a grid fault, which has become a key technical bottleneck that restricts the sustainable development of new energy transportation systems. During a grid fault, the CS under the vehicle-to-grid (V2G) mode experiences a reduction in active power due to the current limitation of the voltage source converter (VSC), which may cause the DC voltage to exceed its limitations under unbalanced power. The effect of the active and reactive power of CS in low- and medium-voltage distribution networks on supporting the PCC voltage under the limitation of DC voltage and VSC current has not been analyzed, and a control method for PCC voltage support for CS has not been established. Therefore, a power boundary that avoids the DC overvoltage and AC overcurrent of the CS is defined. A power feasible region for the CS considering fault duration is established. The characteristic that the power feasible region shrinks with the increase in duration is found, and a calculation method for the critical clearing time of a fault to avoid DC overvoltage is proposed. The relationship between PCC voltage and power injected by the CS is analyzed. The property that the control point of maximum voltage support lies at the boundary of the power feasible region is revealed. A control method of PCC voltage support that considers the limitation of DC voltage and VSC current for the CS is proposed. Simulation verification shows that the support capability of CS for PCC voltage during a fault is significantly enhanced by the proposed method while securing the DC voltage. Full article
(This article belongs to the Topic Advanced Electric Vehicle Technology, 2nd Volume)
Show Figures

Figure 1

20 pages, 6660 KB  
Article
Topological Scheme and Analysis of Operation Characteristics for Medium-Voltage DC Wind Turbine Photovoltaic Powered Off-Grid Hydrogen Production System
by Jie Zhang, Fei Xiao, Fan Ma, Xiaoliang Hao and Runlong Xiao
Energies 2025, 18(3), 579; https://doi.org/10.3390/en18030579 - 25 Jan 2025
Viewed by 1029
Abstract
Renewable energy has high volatility in the traditional off-grid AC hydrogen (H2) production system, which leads to low reliability of the system operation. To address this issue, this paper designs the topology scheme of wind-photovoltaic generation powered off-grid H2 production [...] Read more.
Renewable energy has high volatility in the traditional off-grid AC hydrogen (H2) production system, which leads to low reliability of the system operation. To address this issue, this paper designs the topology scheme of wind-photovoltaic generation powered off-grid H2 production system. Firstly, a DC off-grid system topology scheme with the wind turbine (WT) and photovoltaic (PV) is connected to the medium voltage DC bus by two-stage conversion is proposed. The power fluctuation of WT and PV generation systems and the power-adjustable characteristics of electrolyzers are taken into consideration. Meanwhile, the scheme of distributed access of energy storage (ES) to the WT side and PV side to provide the voltage support for the system is proposed. Secondly, the operating characteristics of DC microgrids and AC microgrids under abnormal operating conditions, such as the fault of the source side, the fault of the load side, and communication interruption, are analyzed in this paper. Finally, the electromagnetic transient simulation model of the DC off-grid H2 production system and the traditional AC off-grid H2 production system is established. The effectiveness of the proposed topology scheme is verified by simulation of typical operating conditions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 3358 KB  
Article
A Method for Power Flow Calculation in AC/DC Hybrid Distribution Networks Considering the Electric Energy Routers Based on an Alternating Iterative Approach
by Jie Zhao, Jinqiu Dou, Yunzhao Wu, Huaimin Xia, Qing Duan, Xuzhu Dong and Yiyang Zhang
Electronics 2024, 13(17), 3384; https://doi.org/10.3390/electronics13173384 - 26 Aug 2024
Cited by 2 | Viewed by 1447
Abstract
With the advancement of new power system construction, distribution networks are gradually transforming from being a simple energy receiver and distributor to being an integrated power network that integrates sources, networks, loads, and energy storage with interactive and flexible coupling with the upper-level [...] Read more.
With the advancement of new power system construction, distribution networks are gradually transforming from being a simple energy receiver and distributor to being an integrated power network that integrates sources, networks, loads, and energy storage with interactive and flexible coupling with the upper-level power grid. However, traditional distribution networks lack active control and distribution capabilities, failing to meet the demands of network transformation and upgrading. To address this issue, this paper proposes a method for solving AC/DC power flow calculation considering an electric energy router (EER) based on an alternating iterative method. Initially, the model for the multi-port EER and three types of power flow models for the AC distribution network, DC distribution network, and EER are constructed. By leveraging the properties of the EER and the hybrid power flow calculation model, a method is proposed for calculating the power flow in the AC/DC hybrid distribution network considering the EER. Finally, by solving the power flow in a medium- and low-voltage AC/DC distribution system, the adaptability of the proposed method is compared. The results demonstrate that the AC/DC hybrid distribution network power flow calculation method established in this paper, which incorporates the EER, possesses high accuracy and adaptability, with an error margin of less than 0.05%. Full article
(This article belongs to the Special Issue Compatibility, Power Electronics and Power Engineering)
Show Figures

Figure 1

20 pages, 11011 KB  
Article
Design and Implementation of Single-Phase Grid-Connected Low-Voltage Battery Inverter for Residential Applications
by Akekachai Pannawan, Tanakorn Kaewchum, Chayakarn Saeseiw, Piyadanai Pachanapan, Marko Hinkkanen and Sakda Somkun
Electronics 2024, 13(6), 1014; https://doi.org/10.3390/electronics13061014 - 7 Mar 2024
Cited by 5 | Viewed by 3492
Abstract
Integrating residential energy storage and solar photovoltaic power generation into low-voltage distribution networks is a pathway to energy self-sufficiency. This paper elaborates on designing and implementing a 3 kW single-phase grid-connected battery inverter to integrate a 51.2-V lithium iron phosphate battery pack with [...] Read more.
Integrating residential energy storage and solar photovoltaic power generation into low-voltage distribution networks is a pathway to energy self-sufficiency. This paper elaborates on designing and implementing a 3 kW single-phase grid-connected battery inverter to integrate a 51.2-V lithium iron phosphate battery pack with a 220 V 50 Hz grid. The prototyped inverter consists of an LCL-filtered voltage source converter (VSC) and a dual active bridge (DAB) DC-DC converter, both operated at a switching frequency of 20 kHz. The VSC adopted a fast DC bus voltage control strategy with a unified current harmonic mitigation. Meanwhile, the DAB DC-DC converter employed a proportional-integral regulator to control the average battery current with a dynamic DC offset mitigation of the medium-frequency transformer’s currents embedded in the single-phase shift modulation scheme. The control schemes of the two converters were implemented on a 32-bit TMS320F280049C microcontroller in the same interrupt service routine. This work presents a synchronization technique between the switching signal generation of the two converters and the sampling of analog signals for the control system. The prototyped inverter had an efficiency better than 90% and a total harmonic distortion in the grid current smaller than 1.5% at the battery power of ±1.5 kW. Full article
(This article belongs to the Special Issue Systems and Technologies for Smart Homes and Smart Grids)
Show Figures

Figure 1

13 pages, 6369 KB  
Article
A DCM-Based Non-Isolated Step-Down DC Transformer
by Minseung Kim, Donghee Choi and Soo Hyoung Lee
Energies 2024, 17(4), 940; https://doi.org/10.3390/en17040940 - 17 Feb 2024
Viewed by 1323
Abstract
DC transformers have emerged as essential devices for medium voltage DC (MVDC)-low voltage DC (LVDC) distribution systems. However, conventional step-down single-level converters have limits on the voltage level of the MVDC-LVDC distribution system. This paper proposes a non-isolated step-down (NISD) DC transformer based [...] Read more.
DC transformers have emerged as essential devices for medium voltage DC (MVDC)-low voltage DC (LVDC) distribution systems. However, conventional step-down single-level converters have limits on the voltage level of the MVDC-LVDC distribution system. This paper proposes a non-isolated step-down (NISD) DC transformer based on discontinuous conduction mode (DCM). The proposed structure can withstand high voltage levels by sharing voltages between energy storage modules dividing voltage levels. The proposed NISD DC transformer determines operational modes based on energy storage modules and performs the voltage conversion process. The effectiveness of the proposed NISD DC transformer is verified based on a case study using a power system computer-aided design and electromagnetic transient simulation engine including DC (PSCAD/EMTDC™). Full article
(This article belongs to the Special Issue Advanced Power Electronics Technology)
Show Figures

Figure 1

28 pages, 3827 KB  
Article
Development and Analysis of Optimization Algorithm for Demand-Side Management Considering Optimal Generation Scheduling and Power Flow in Grid-Connected AC/DC Microgrid
by Abdulwasa Bakr Barnawi
Sustainability 2023, 15(21), 15671; https://doi.org/10.3390/su152115671 - 6 Nov 2023
Cited by 3 | Viewed by 2832
Abstract
The world energy sector is experiencing many challenges, such as maintaining a demand–supply balance with continuous increases in demand, reliability issues, and environmental concerns. Distributed energy resources (DERs) that use renewable energy sources (RESs) have become more prevalent due to environmental challenges and [...] Read more.
The world energy sector is experiencing many challenges, such as maintaining a demand–supply balance with continuous increases in demand, reliability issues, and environmental concerns. Distributed energy resources (DERs) that use renewable energy sources (RESs) have become more prevalent due to environmental challenges and the depletion of fossil fuel reserves. An increased penetration of RESs in a microgrid system facilitates the establishment of a local independent system. However, these systems, due to the uncertainties of RESs, still encounter major issues, like increased operating costs or operating constraint violations, optimal power management, etc. To solve these issues, this paper proposes a stochastic programming model to minimize the total operating cost and emissions and improve the operational reliability with the help of a generalized normal distribution optimization (GNDO). A day-ahead demand response is scheduled, aiming to shift loads to enhance RES utilization efficiency. Demand-side management (DSM) with RESs is utilized, and battery energy storage systems in low-voltage and medium-voltage microgrids are shown. Mathematical formulations of each element in the microgrids were performed. Optimal and consumer-friendly solutions were found for all the cases. Environmental concerns based on the amount of harmful emissions were also analyzed. The importance of demand response is demonstrated vividly. The aim is to optimize energy consumption and achieve optimum cost of operation via DSM, considering several security constraints. A comparative analysis of operating costs, emission values, and the voltage deviation was carried out to prove and justify their potential to solve the optimal scheduling and power flow problem in AC/DC microgrids. Full article
Show Figures

Figure 1

19 pages, 2749 KB  
Perspective
DC Transformers in DC Distribution Systems
by Yangfan Chen and Yu Zhang
Energies 2023, 16(7), 3031; https://doi.org/10.3390/en16073031 - 26 Mar 2023
Cited by 5 | Viewed by 3409
Abstract
With the rapid development of power electronics technology and its successful application, many demonstration projects of medium/low-voltage DC (M-LVDC) distribution systems have been constructed. The DC transformer (DCT) is the key equipment in the M-LVDC distribution system for interconnecting the MVDC and LVDC [...] Read more.
With the rapid development of power electronics technology and its successful application, many demonstration projects of medium/low-voltage DC (M-LVDC) distribution systems have been constructed. The DC transformer (DCT) is the key equipment in the M-LVDC distribution system for interconnecting the MVDC and LVDC buses. In this paper, the characteristics of DCTs are summarized. The existing topologies of DCTs are analyzed, and the relevant control strategies are researched, including steady-state control, transient control, and cascaded control. The engineering application examples of DCTs are introduced by interpreting the medium and low-voltage DC distribution system demonstration project in Wujiang City, Suzhou. Finally, the challenges faced by the DCT are given, and the future development trend is predicted. This perspective provides a constructive basis for DCTs and an important reference for M-LVDC distribution systems. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

27 pages, 9804 KB  
Article
Soft-Switching Smart Transformer Design and Application for Photovoltaic Integrated Smart City Power Distribution
by Burak Esenboğa and Tuğçe Demirdelen
Sustainability 2023, 15(1), 32; https://doi.org/10.3390/su15010032 - 20 Dec 2022
Cited by 6 | Viewed by 3393
Abstract
Smart city power distributions have become promising technologies to meet the demand for energy in developed countries. However, increase in smart grids causes several power quality problems on the smart grid, in particular, current and voltage harmonic distortions, sudden voltage sag and swells, [...] Read more.
Smart city power distributions have become promising technologies to meet the demand for energy in developed countries. However, increase in smart grids causes several power quality problems on the smart grid, in particular, current and voltage harmonic distortions, sudden voltage sag and swells, fault current, and isolation deterioration. Smart transformers are potential solutions to improve the power quality on the electric grid. They present energy efficiency, ensure grid reliability and power flow control, voltage regulation, bidirectional power flow, fault current limiting, harmonic blocking, and galvanic isolation. Therefore, this paper offers an optimal selection of a three-stage (AC-DC-DC-AC) smart transformer model and power control strategy for solar PV power plant integrated smart grids. The topology of the rectifier, isolated bidirectional converter, and inverter has soft-switching features. This enables low conduction loss, low electromagnetic interference (EMI), high efficiency, achievable zero-voltage switching for converters, and zero-current switching for electrical auxiliary systems. Operation strategies of the proposed ST, PWM control, voltage, and current control between converters, including a medium-voltage (MV) high-frequency transformer to realize a 10 kVA, 450 Vdc to 220 Vdc, or 220 Vac ST, are presented. Significantly, the ST prototype achieves 96.7% conversion efficiency thanks to its control strategy, even under unstable power generation conditions from the solar PV plant. Experimental results obtained on the 344 Vac 10.4 A load current validates the dv/dt rate 6.8 kV/us. The dynamic and experimental results of the proposed bidirectional smart transformer demonstrate the success in preventing power quality problems for photovoltaic integrated smart city power distribution. Full article
Show Figures

Figure 1

16 pages, 5510 KB  
Article
Full Simulation Modeling of All-Electric Ship with Medium Voltage DC Power System
by Hyun-Keun Ku, Chang-Hwan Park and Jang-Mok Kim
Energies 2022, 15(12), 4184; https://doi.org/10.3390/en15124184 - 7 Jun 2022
Cited by 9 | Viewed by 3332
Abstract
This paper proposes the full simulation model for the electrical analysis of all-electric ship (AES) based on a medium voltage DC power system. The AES has become popular both in the commercial and the military areas due to a low emission, a high [...] Read more.
This paper proposes the full simulation model for the electrical analysis of all-electric ship (AES) based on a medium voltage DC power system. The AES has become popular both in the commercial and the military areas due to a low emission, a high fuel consumption efficiency, and a wide applicability. In spite of many advantages, it is complex and difficult to construct the whole system with many mechanical and electrical components onboard. Full electrical analysis is essentially required to simplify the design of the AES, a control and optimization of a ship electric system. The proposed full simulation model of the AES includes the mechanical and the electrical elements by using the MATLAB/Simulink. The mechanical elements are comprised of a steam turbine and a hydrodynamic model of a ship which is adopted by an average value model that is based on the characteristic equation of the mechanical system. The electrical elements are developed by full detailed models which consist of generators, a propulsion motor, a battery, and a power electronics system. In order to design the distribution of the ship, the presented simulation model combined the mechanical and the electrical systems. The consistency of the developed individual models and the integrated AES was verified through the results of the presence or absence of the energy storage system for the speed acceleration and deceleration, loss of prime mover, and full propulsion load rejection. Full article
Show Figures

Figure 1

24 pages, 7586 KB  
Article
Optimization of the Configuration and Operating States of Hybrid AC/DC Low Voltage Microgrid Using a Clonal Selection Algorithm with a Modified Hypermutation Operator
by Łukasz Rokicki
Energies 2021, 14(19), 6351; https://doi.org/10.3390/en14196351 - 5 Oct 2021
Cited by 5 | Viewed by 2002
Abstract
The issue of optimization of the configuration and operating states in low voltage microgrids is important both from the point of view of the proper operation of the microgrid and its impact on the medium voltage distribution network to which such microgrid is [...] Read more.
The issue of optimization of the configuration and operating states in low voltage microgrids is important both from the point of view of the proper operation of the microgrid and its impact on the medium voltage distribution network to which such microgrid is connected. Suboptimal microgrid configuration may cause problems in networks managed by distribution system operators, as well as for electricity consumers and owners of microsources and energy storage systems connected to the microgrid. Structures particularly sensitive to incorrect determination of the operating states of individual devices are hybrid microgrids that combine an alternating current and direct current networks with the use of a bidirectional power electronic converter. An analysis of available literature shows that evolutionary and swarm optimization algorithms are the most frequently chosen for the optimization of power systems. The research presented in this article concerns the assessment of the possibilities of using artificial immune systems, operating on the basis of the CLONALG algorithm, as tools enabling the effective optimization of low voltage hybrid microgrids. In his research, the author developed a model of a hybrid low voltage microgrid, formulated three optimization tasks, and implemented an algorithm for solving the formulated tasks based on an artificial immune system using the CLONALG algorithm. The conducted research consisted of performing a 24 h simulation of microgrid operation for each of the formulated optimization tasks (divided into 10 min independent optimization periods). A novelty in the conducted research was the modification of the hypermutation operator, which is the key mechanism for the functioning of the CLONALG algorithm. In order to verify the changes introduced in the CLONALG algorithm and to assess the effectiveness of the artificial immune system in solving optimization tasks, optimization was also carried out with the use of an evolutionary algorithm, commonly used in solving such tasks. Based on the analysis of the obtained results of optimization calculations, it can be concluded that the artificial immune system proposed in this article, operating on the basis of the CLONALG algorithm with a modified hypermutation operator, in most of the analyzed cases obtained better results than the evolutionary algorithm. In several cases, both algorithms obtained identical results, which also proves that the CLONALG algorithm can be considered as an effective tool for optimizing modern power structures, such as low voltage microgrids, including hybrid AC/DC microgrids. Full article
(This article belongs to the Special Issue Intelligent Forecasting and Optimization in Electrical Power Systems)
Show Figures

Figure 1

27 pages, 2517 KB  
Review
State of the Art of Low and Medium Voltage Direct Current (DC) Microgrids
by Maria Fotopoulou, Dimitrios Rakopoulos, Dimitrios Trigkas, Fotis Stergiopoulos, Orestis Blanas and Spyros Voutetakis
Energies 2021, 14(18), 5595; https://doi.org/10.3390/en14185595 - 7 Sep 2021
Cited by 64 | Viewed by 7769
Abstract
Direct current (DC) microgrids (MG) constitute a research field that has gained great attention over the past few years, challenging the well-established dominance of their alternating current (AC) counterparts in Low Voltage (LV) (up to 1.5 kV) as well as Medium Voltage (MV) [...] Read more.
Direct current (DC) microgrids (MG) constitute a research field that has gained great attention over the past few years, challenging the well-established dominance of their alternating current (AC) counterparts in Low Voltage (LV) (up to 1.5 kV) as well as Medium Voltage (MV) applications (up to 50 kV). The main reasons behind this change are: (i) the ascending amalgamation of Renewable Energy Sources (RES) and Battery Energy Storage Systems (BESS), which predominantly supply DC power to the energy mix that meets electrical power demand and (ii) the ascending use of electronic loads and other DC-powered devices by the end-users. In this sense, DC distribution provides a more efficient interface between the majority of Distributed Energy Resources (DER) and part of the total load of a MG. The early adopters of DC MGs include mostly buildings with high RES production, ships, data centers, electric vehicle (EV) charging stations and traction systems. However, the lack of expertise and the insufficient standards’ framework inhibit their wider spread. This review paper presents the state of the art of LV and MV DC MGs in terms of advantages/disadvantages over their AC counterparts, their interface with the AC main grid, topologies, control, applications, ancillary services and standardization issues. Overall, the aim of this review is to highlight the possibilities provided by DC MG architectures as well as the necessity for a solid/inclusive regulatory framework, which is their main weakness. Full article
(This article belongs to the Special Issue Direct Current (DC) Distribution Grids and Microgrids)
Show Figures

Figure 1

17 pages, 8143 KB  
Article
Current Control Strategies for a Star Connected Cascaded H-Bridge Converter Operating as MV-AC to MV-DC Stage of a Solid State Transformer
by Sebastian Stynski, Marta Grzegorczyk, Cezary Sobol and Radek Kot
Energies 2021, 14(15), 4607; https://doi.org/10.3390/en14154607 - 29 Jul 2021
Cited by 4 | Viewed by 2945
Abstract
Nowadays, the increasing number of nonlinear loads and renewable energy resources pose new challenges for the standard electrical grid. Conventional solutions cannot handle most of them. The weakest component in the whole system is a conventional distribution (converting medium to low AC voltage) [...] Read more.
Nowadays, the increasing number of nonlinear loads and renewable energy resources pose new challenges for the standard electrical grid. Conventional solutions cannot handle most of them. The weakest component in the whole system is a conventional distribution (converting medium to low AC voltage) transformer. It should not operate with unbalanced, heavily distorted voltage and cannot control power flow or compensate current harmonics. One of the promising solutions to replace the conventional transformer and thus minimize power flow and grid distortions is a power electronics device called a solid state transformer (SST). Depending on the SST topology, it can have different functionalities, and, with the proper control algorithm, it is able to compensate any power imbalances in both low voltage (LV) and medium voltage (MV) grid sides. In the case of a three energy conversion stage SST, the LV and the MV stages can be treated separately. This paper focuses on the MV-AC to the MV-DC stage only based on a star-connected cascaded H-bridge converter. In this paper, a simple control solution for such a converter enabling different current control strategies to distribute power among the phases in an MV grid in the case of voltage imbalances is proposed. Simulation and experimental results proved good performance and verified the validity of the proposed control algorithm. Full article
(This article belongs to the Special Issue Control and Topologies of Grid Connected Converters)
Show Figures

Figure 1

Back to TopTop