Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (240)

Search Parameters:
Keywords = melatonin actions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9357 KiB  
Article
A Zinc Oxide Interconnected Hydroxypropyl-Beta-Cyclodextrin/rGO Nanocomposite as an Electrocatalyst for Melatonin Detection: An Ultra-Sensitive Electrochemical Sensor
by Kuo-Yuan Hwa, Aravindan Santhan, Chun-Wei Ou and Cheng-Han Wang
Sensors 2025, 25(11), 3266; https://doi.org/10.3390/s25113266 - 22 May 2025
Viewed by 254
Abstract
Nanocomposite hydroxypropyl-beta-cyclodextrin functionalized reduced graphene oxide sheets (HpβCD@rGOs) with zinc oxide flaky structures (ZnOFs) were synthesized. The ZnOFs/HpβCD@rGOs were first characterized to examine their physicochemical characteristics. The ZnOFs exhibited a highly crystalline structure intertwined with HpβCD@rGO sheets. The electrocatalyst experienced excellent electrochemical oxidation [...] Read more.
Nanocomposite hydroxypropyl-beta-cyclodextrin functionalized reduced graphene oxide sheets (HpβCD@rGOs) with zinc oxide flaky structures (ZnOFs) were synthesized. The ZnOFs/HpβCD@rGOs were first characterized to examine their physicochemical characteristics. The ZnOFs exhibited a highly crystalline structure intertwined with HpβCD@rGO sheets. The electrocatalyst experienced excellent electrochemical oxidation current responses toward melatonin (MTN). The interaction between the catalyst and MTN improves electrochemical activity through a synergistic action, which can be measured by a glassy carbon electrode (GCE) modified with ZnOFs/HpβCD@rGOs. This modified electrode with the increased reactive sites and a large electrochemically active surface area allows the rapid oxidation reaction of MTN. The oxidation of MTN was detected and measured with a linearity range around 0.014–0.149 and 1.149–643.341 (µM), with a low detection limit (LOD) of around 0.0105 µM or 10.5 nM. The sensitivity was around 6.19 μA μM−1 cm−2. The constructed electrode demonstrated a notable level of selectivity to MTN when the interfering (biological) chemicals with a similar structure to MTN were introduced. The real samples were tested in order to examine whether the ZnOFs/HpβCD@rGOs/GCE can be developed for the biomedical monitoring of compounds. The results suggest that ZnOFs/HpβCD@rGOs/GCE can detect MTN in in vitro human samples. Furthermore, the cost-effectiveness, enhanced electrochemical capabilities, and easy fabrication of the electrode make the ZnOFs/HpβCD@rGOs composite a feasible solution for the future industrial development of monitoring tools as sensors. Full article
(This article belongs to the Special Issue Recent Advances in Nanomaterial-Based Electrochemical Sensors)
Show Figures

Graphical abstract

25 pages, 2516 KiB  
Systematic Review
The Pharmacokinetics, Dosage, Preparation Forms, and Efficacy of Orally Administered Melatonin for Non-Organic Sleep Disorders in Autism Spectrum Disorder During Childhood and Adolescence: A Systematic Review
by Ekkehart Paditz, Bertold Renner, Rainer Koch, Barbara M. Schneider, Angelika A. Schlarb and Osman S. Ipsiroglu
Children 2025, 12(5), 648; https://doi.org/10.3390/children12050648 - 16 May 2025
Viewed by 378
Abstract
Background: To date, it remains unclear which oral doses and preparation forms of melatonin should be recommended for children and adolescents with non-organic sleep disorders and autism spectrum disorder (ASD). We reviewed the current state of knowledge on this topic based on randomised [...] Read more.
Background: To date, it remains unclear which oral doses and preparation forms of melatonin should be recommended for children and adolescents with non-organic sleep disorders and autism spectrum disorder (ASD). We reviewed the current state of knowledge on this topic based on randomised placebo-controlled trials (RCTs) and diagnosis-related blood melatonin concentrations available in this age group. Method: Two investigators independently searched PubMed, PsycINFO, MEDLINE, and Cochrane CENTRAL on 1 March 2025 for the keywords “melatonin”, “autism”, and “randomised” in titles and abstracts in all languages, including an evaluation of the references of the reviews, systematic reviews, and meta-analyses published up to that date, some of which were based on searches in numerous databases. Based on this, additional in-depth searches were carried out in PubMed for pharmacokinetic, physiological, and pathophysiological data on melatonin in children and adolescents, with a special focus on ASD. Results: To date, five RCTs on non-organic sleep disorders in children and adolescents with the sole diagnosis of ASD or with subgroup analyses in the presence of several initial diagnoses such as ADHD, epilepsy, Smith–Magenis, or Fragile X syndrome are available. In these studies, rapid-release, non-delayed preparations were administered orally. In one of these studies, the clinical efficacy of a combination preparation with a sustained-release and a non-released active substance component was tested. Pharmacokinetic data with multiple determinations of melatonin concentrations in the blood are only available for children with ASD in the form of a case series (N = 9). Discussion: RCTs comparing the efficacy of delayed melatonin preparations with non-delayed rapid-release oral preparations are not yet available. Physiological data and clinical effects documented in five RCTs indicate that non-delayed melatonin preparations with an initial rapid onset of action are effective for non-organic sleep disorders in children and adolescents with ASD. Conclusions: From a clinical, pharmacokinetic, and physiological point of view, the RCTs available to date and the data on melatonin concentrations in the blood of children with ASD, measured several times over 24 h, suggest that a low oral melatonin dose and a non-delayed preparation with rapid onset should be started in children and adolescents with non-organic sleep disorders in ASD, if sleep hygiene advice and psychotherapeutic interventions have not demonstrated sufficient effects. Full article
(This article belongs to the Section Pediatric Pulmonary and Sleep Medicine)
Show Figures

Figure 1

21 pages, 856 KiB  
Review
Melatonin in Glaucoma: Integrative Mechanisms of Intraocular Pressure Control and Neuroprotection
by Xinyu Hou and Yingzi Pan
Biomedicines 2025, 13(5), 1213; https://doi.org/10.3390/biomedicines13051213 - 16 May 2025
Viewed by 359
Abstract
Background: Glaucoma is a leading cause of irreversible visual loss worldwide, characterized by progressive retinal ganglion cell (RGC) degeneration and optic nerve damage. Current therapies mainly focus on lowering intraocular pressure (IOP), yet fail to address pressure-independent neurodegenerative mechanisms. Melatonin, an endogenously [...] Read more.
Background: Glaucoma is a leading cause of irreversible visual loss worldwide, characterized by progressive retinal ganglion cell (RGC) degeneration and optic nerve damage. Current therapies mainly focus on lowering intraocular pressure (IOP), yet fail to address pressure-independent neurodegenerative mechanisms. Melatonin, an endogenously produced indoleamine, has gained attention for its potential in modulating both IOP and neurodegeneration through diverse cellular pathways. This review evaluates the therapeutic relevance of melatonin in glaucoma by examining its mechanistic actions and emerging delivery approaches. Methods: A comprehensive literature search was conducted via PubMed and Medline to identify studies published between 2000 and 2025 on melatonin’s roles in glaucoma. Included articles discussed its effects on IOP regulation, RGC survival, oxidative stress, mitochondrial integrity, and inflammation. Results: Evidence supports melatonin’s involvement in IOP reduction via MT receptor activation and its synergism with adrenergic and enzymatic regulators. Moreover, it protects RGCs by mitigating oxidative stress, preventing mitochondrial dysfunction, and inhibiting apoptotic and inflammatory cascades. Recent advances in ocular drug delivery systems enhance its bioavailability and therapeutic potential. Conclusions: Melatonin represents a multi-target candidate for glaucoma treatment. Further clinical studies are necessary to establish optimal dosing strategies, delivery methods, and long-term safety in patients. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

33 pages, 1114 KiB  
Review
Melatonin Interplay in Physiology and Disease—The Fountain of Eternal Youth Revisited
by Cándido Ortiz-Placín, Ginés María Salido and Antonio González
Biomolecules 2025, 15(5), 682; https://doi.org/10.3390/biom15050682 - 8 May 2025
Viewed by 611
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone associated with the regulation of biological rhythms. The indoleamine is secreted by the pineal gland during the night, following a circadian rhythm. The highest plasmatic levels are reached during the night, whereas the lowest levels are achieved during [...] Read more.
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone associated with the regulation of biological rhythms. The indoleamine is secreted by the pineal gland during the night, following a circadian rhythm. The highest plasmatic levels are reached during the night, whereas the lowest levels are achieved during the day. In addition to the pineal gland, other organs and tissues also produce melatonin, like, for example, the retina, Harderian glands, gut, ovaries, testes, skin, leukocytes, or bone marrow. The list of organs is extensive, including the cerebellum, airway epithelium, liver, kidney, adrenals, thymus, thyroid, pancreas, carotid body, placenta, and endometrium. At all these locations, the availability of melatonin is intended for local use. Interestingly, a decline of the circadian amplitude of the melatonin secretion occurs in old subjects in comparison to that found in younger subjects. Moreover, genetic and environmental factors are the primary causes of diseases, and oxidative stress is a key contributor to most pathologies. Numerous studies exist that show interesting effects of melatonin in different models of disease. Impairment in its secretion might have deleterious consequences for cellular physiology. In this regard, melatonin is a natural compound that is a carrier of a not yet completely known potential that deserves consideration. Thus, melatonin has emerged as a helpful ally that could be considered as a guard with powerful tools to orchestrate homeostasis in the body, majorly based on its antioxidant effects. In this review, we provide an overview of the widespread actions of melatonin against diseases preferentially affecting the elderly. Full article
(This article belongs to the Special Issue Melatonin in Normal Physiology and Disease, 2nd Edition)
Show Figures

Figure 1

15 pages, 6772 KiB  
Article
Melatonin MT1 Receptor Expression in Luminal Invasive Ductal Breast Carcinoma in Postmenopausal Women
by Leda Pistiolis, Sahar Alawieh, Thorhildur Halldorsdottir, Anikó Kovács and Roger Olofsson Bagge
Biomolecules 2025, 15(4), 581; https://doi.org/10.3390/biom15040581 - 15 Apr 2025
Viewed by 483
Abstract
Laboratory and animal studies indicate that melatonin exerts a negative impact on breast cancer progression and metastasis. These actions are both receptor-dependent and -independent. Of the two transmembrane melatonin receptors identified in humans, breast cancer expresses only MT1. The aim of this study [...] Read more.
Laboratory and animal studies indicate that melatonin exerts a negative impact on breast cancer progression and metastasis. These actions are both receptor-dependent and -independent. Of the two transmembrane melatonin receptors identified in humans, breast cancer expresses only MT1. The aim of this study was to investigate the expression of MT1 in hormone-receptor-positive, HER2-negative invasive ductal breast carcinoma in postmenopausal women and its possible correlations with clinicopathological parameters and survival. A total of 118 patients with luminal A/B primary breast cancer with or without axillary metastases were identified. The MT1 receptor expression was immunohistochemically assessed as a percentage of stained cells and a weighted index (WI) (percentage multiplied by staining intensity). Most tumor samples (84.7%) and metastasized lymph nodes (96%) stained positive for MT1, with varying intensity. No statistically significant correlations were found between the MT1 expression or the WI in the primary tumor and the patient and tumor characteristics, or the MT1 and WI in the metastasized lymph nodes. The survival analysis did not reveal a significant effect of MT1 expression or the WI on the risk of recurrence or survival. Full article
(This article belongs to the Special Issue Melatonin in Normal Physiology and Disease, 2nd Edition)
Show Figures

Figure 1

17 pages, 2565 KiB  
Article
Photoreceptors Are Involved in Antioxidant Effects of Melatonin Under High Light in Arabidopsis
by Ivan Bychkov, Anastasia Doroshenko, Natalia Kudryakova and Victor Kusnetsov
Antioxidants 2025, 14(4), 458; https://doi.org/10.3390/antiox14040458 - 12 Apr 2025
Viewed by 372
Abstract
The beneficial role of melatonin (MT) as a potent broad-spectrum antioxidant and hormone-like regulator in plant protection against adverse environmental conditions is indisputable. However, the molecular networks underlying its unique scavenging capabilities are still far from understood. Herein, we show the ability of [...] Read more.
The beneficial role of melatonin (MT) as a potent broad-spectrum antioxidant and hormone-like regulator in plant protection against adverse environmental conditions is indisputable. However, the molecular networks underlying its unique scavenging capabilities are still far from understood. Herein, we show the ability of MT to maintain physiological functions under high light stress (HL) is mediated by photoreceptors. Melatonin treatment (50 μM) of the photoreceptor mutants phyA/B and cry1/2 augmented the deleterious effects of excess light (600 μmol m−2 s−1, 24 h), as evidenced by increased TBARs levels and electrolyte leakage, as well as decreased photosynthetic efficiency, in contrast to their parental form, Landsberg erecta, in which these parameters were significantly improved. The reduced stress resistance of the mutants was also confirmed by analysis of the transcript accumulation of ROS markers and enzymatic scavengers. Moreover, the increase in melatonin content in the mutants exposed to HL + MT contributed to increased ROS accumulation; therefore, the deleterious effect of MT could not be explained by an imbalance in ROS production below the cytostatic level. We hypothesize that the light-sensitive phenotypes of photoreceptor mutants under MT treatment may be due to the misregulation of stress-related genes that are targets for melatonin action. Full article
Show Figures

Figure 1

30 pages, 2545 KiB  
Review
Overview of Epitalon—Highly Bioactive Pineal Tetrapeptide with Promising Properties
by Szymon Kamil Araj, Jakub Brzezik, Katarzyna Mądra-Gackowska and Łukasz Szeleszczuk
Int. J. Mol. Sci. 2025, 26(6), 2691; https://doi.org/10.3390/ijms26062691 - 17 Mar 2025
Viewed by 6489
Abstract
Epitalon, also known as Epithalon or Epithalone, is a tetrapeptide, Ala-Glu-Asp-Gly (AEDG), which was synthesized based on the amino acids composition of Epithalamin, a bovine pineal gland extract, prior to its discovery in pineal gland polypeptide complex solution. During the last 25 years, [...] Read more.
Epitalon, also known as Epithalon or Epithalone, is a tetrapeptide, Ala-Glu-Asp-Gly (AEDG), which was synthesized based on the amino acids composition of Epithalamin, a bovine pineal gland extract, prior to its discovery in pineal gland polypeptide complex solution. During the last 25 years, this compound has been extensively studied using in vitro, in vivo, and in silico methods. The results of these studies indicate significant geroprotective and neuroendocrine effects of Epitalone, resulting from its antioxidant, neuro-protective, and antimutagenic effects, originating from both specific and nonspecific mechanisms. Although it has been demonstrated that Epitalon exerts, among other effects, a direct influence on melatonin synthesis, alters the mRNA levels of interleukin-2, modulates the mitogenic activity of murine thymocytes, and enhances the activity of various enzymes, including AChE, BuChE, and telomerase, it remains uncertain whether these are the sole mechanisms of action of this compound. Moreover, despite the considerable volume of research on the biological and pharmacodynamic characteristics of Epitalon, the quantity of physico-chemical and structural investigations of this peptide remains quite limited. This review aims to conclude the most important findings from such studies, thus presenting the current state of knowledge on Epitalon. Full article
Show Figures

Graphical abstract

16 pages, 3834 KiB  
Article
Melatonin Mitigates Acidosis-Induced Neuronal Damage by Up-Regulating Autophagy via the Transcription Factor EB
by Yan Shi, Zhaoyu Mi, Wei Zhao, Yue Hu, Hui Xiang, Yaoxue Gan and Shishan Yuan
Int. J. Mol. Sci. 2025, 26(3), 1170; https://doi.org/10.3390/ijms26031170 - 29 Jan 2025
Viewed by 829
Abstract
Acidosis, a common feature of cerebral ischemia and hypoxia, results in neuronal damage and death. This study aimed to investigate the protective effects and mechanisms of action of melatonin against acidosis-induced neuronal damage. SH-SY5Y cells were exposed to an acidic environment to simulate [...] Read more.
Acidosis, a common feature of cerebral ischemia and hypoxia, results in neuronal damage and death. This study aimed to investigate the protective effects and mechanisms of action of melatonin against acidosis-induced neuronal damage. SH-SY5Y cells were exposed to an acidic environment to simulate acidosis, and a photothrombotic (PT) infarction model was used to establish an animal model of cerebral ischemia of male C57/BL6J mice. Both in vivo and in vitro studies demonstrated that acidosis increased cytoplasmic transcription factor EB (TFEB) levels, reduced nuclear TFEB levels, and suppressed autophagy, as evidenced by elevated p62 levels, a higher LC3-II/LC3-I ratio, decreased synapse-associated proteins (PSD-95 and synaptophysin), and increased neuronal apoptosis. In contrast, melatonin promoted the nuclear translocation of TFEB, enhanced autophagy, and reversed neuronal apoptosis. Moreover, the role of TFEB in melatonin’s neuroprotective effects was validated by modulating TFEB nuclear translocation. In conclusion, melatonin mitigates acidosis-induced neuronal damage by promoting the nuclear translocation of TFEB, thereby enhancing autophagy. These findings offer new insights into potential treatments for acidosis. Full article
(This article belongs to the Special Issue Metabolism, Synthesis and Function of Melatonin)
Show Figures

Figure 1

17 pages, 10432 KiB  
Article
Mechanistic Insights into Melatonin’s Antiarrhythmic Effects in Acute Ischemia-Reperfusion-Injured Rabbit Hearts Undergoing Therapeutic Hypothermia
by Hui-Ling Lee, Po-Cheng Chang, Hung-Ta Wo, Shih-Chun Chou and Chung-Chuan Chou
Int. J. Mol. Sci. 2025, 26(2), 615; https://doi.org/10.3390/ijms26020615 - 13 Jan 2025
Viewed by 963
Abstract
The electrophysiological mechanisms underlying melatonin’s actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), [...] Read more.
The electrophysiological mechanisms underlying melatonin’s actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups. HF was induced by rapid right ventricular pacing. Melatonin was administered orally (10 mg/kg/day) for four weeks, and IR was created by 60-min coronary artery ligation and 30-min reperfusion. The hearts were then excised and Langendorff-perfused for optical mapping studies at normothermia, followed by TH. Melatonin significantly reduced ventricular fibrillation (VF) maintenance. In failing hearts, melatonin reduced the spatially discordant alternans (SDA) inducibility mainly by modulating intracellular Ca2+ dynamics via upregulation of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) and calsequestrin 2 and attenuating the downregulation of phosphorylated phospholamban protein expression. In control hearts, melatonin improved conduction slowing and reduced dispersion of action potential duration (APDdispersion) by upregulating phosphorylated connexin 43, attenuating the downregulation of SERCA2a and phosphorylated phospholamban and attenuating the upregulation of phosphorylated Ca2+/calmodulin-dependent protein kinase II. TH significantly retarded intracellular Ca2+ decay slowed conduction, and increased APDdispersion, thereby facilitating SDA induction, which counteracted the beneficial effects of melatonin in reducing VF maintenance. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 15465 KiB  
Article
Functional Involvement of Melatonin and Its Receptors in Reproductive Regulation of the Marine Teleost, Large Yellow Croaker (Larimichthys crocea)
by Xudong Liang, Jixiu Wang, Baoyi Huang, Haojie Yuan, Yucheng Ren, Chenqian Wu, Tianming Wang and Jingwen Yang
Fishes 2025, 10(1), 28; https://doi.org/10.3390/fishes10010028 - 10 Jan 2025
Cited by 3 | Viewed by 836
Abstract
Melatonin is a critical regulator of biological rhythms across organisms, transducing light signals into neuroendocrine signals that facilitate reproductive regulation in response to environmental cues. However, the precise mechanisms through which melatonin regulates reproduction in fish require further investigation. In this study, we [...] Read more.
Melatonin is a critical regulator of biological rhythms across organisms, transducing light signals into neuroendocrine signals that facilitate reproductive regulation in response to environmental cues. However, the precise mechanisms through which melatonin regulates reproduction in fish require further investigation. In this study, we employed molecular and organizational biological techniques to examine the expression patterns of melatonin and its five receptor subtypes (LcMTNR1A1, LcMTNR1A2, LcMTNR1B1, LcMTNR1B2, and LcMTNR1C) in various tissues of the large yellow croaker (Larimichthys crocea). Our results revealed significant expression of all receptors in the pituitary and testes, with distinct gender differences, including a lack of expression in the ovary. Moreover, our data indicate that melatonin and its receptors are primarily expressed during stage III, highlighting their role in sexual maturity. Enzyme- linked immunosorbent assay (ELISA) results further demonstrated that in vitro melatonin incubation in the brain of L. crocea influenced gonadotropin-releasing hormone (GnRH) and testosterone secretion in a dose-dependent manner, suggesting actions beyond the classical hypothalamic–pituitary–gonadal (HPG) axis. Overall, our findings provide new evidence supporting the role of the melatonin system in reproductive regulation in marine teleosts. Full article
(This article belongs to the Special Issue Rhythms in Marine Fish and Invertebrates)
Show Figures

Graphical abstract

18 pages, 4412 KiB  
Article
The Protective Effects of Melatonin on Hainan Black Goats Under Heat Stress: Understanding Its Actions and Mechanisms
by Hao Wu, Baochun Qin, Guang Yang, Pengyun Ji, Yu Gao, Lu Zhang, Bingyuan Wang and Guoshi Liu
Antioxidants 2025, 14(1), 44; https://doi.org/10.3390/antiox14010044 - 3 Jan 2025
Viewed by 929
Abstract
As the global climate changes, high temperatures will cause heat stress, which significantly affects the productive efficiency of livestock. Currently, there is a lack of efficient methods to use in targeting this issue. In this study, we report that melatonin supplementation may represent [...] Read more.
As the global climate changes, high temperatures will cause heat stress, which significantly affects the productive efficiency of livestock. Currently, there is a lack of efficient methods to use in targeting this issue. In this study, we report that melatonin supplementation may represent an alternative method to reduce the negative impact of heat stress on livestock, particularly in Hainan black goats. Our results show that melatonin treatment increased the average daily gain of Hainan black goats that were exposed to constantly high temperatures for two months compared to controls. Our mechanistic exploration revealed that melatonin treatment not only reduced the oxidative stress and inflammatory reaction caused by heat stress but also improved goats’ metabolic capacity, promoting their growth and development. More importantly, for the first time, we observed that melatonin treatment modified the abundance of the intestinal microflora, altering the metabolism of the goats, which further improved their tolerance to constant heat stress. Full article
(This article belongs to the Special Issue Antioxidant Actions of Melatonin)
Show Figures

Graphical abstract

25 pages, 8089 KiB  
Article
Protective Effects of Exogenous Melatonin Administration on White Fat Metabolism Disruption Induced by Aging and a High-Fat Diet in Mice
by Dongying Lv, Yujie Ren, Jiayan Chen, Ziyao Pang, Yaxuan Tang, Lizong Zhang, Laiqing Yan, Xiufeng Ai, Xiaoping Xv, Dejun Wang and Zhaowei Cai
Antioxidants 2024, 13(12), 1500; https://doi.org/10.3390/antiox13121500 - 9 Dec 2024
Viewed by 1363
Abstract
Obesity has emerged as a major risk factor for human health, exacerbated by aging and changes in dietary habits. It represents a significant health challenge, particularly for older people. While numerous studies have examined the effects of obesity and aging on fat metabolism [...] Read more.
Obesity has emerged as a major risk factor for human health, exacerbated by aging and changes in dietary habits. It represents a significant health challenge, particularly for older people. While numerous studies have examined the effects of obesity and aging on fat metabolism independently, research on their combined effects is limited. In the present study, the protective action against white fat accumulation after a high-fat diet (HFD) exerted by exogenous melatonin, a circadian hormone endowed with antioxidant properties also involved in fat metabolism, was investigated in a mouse model. For this purpose, a battery of tests was applied before and after the dietary and melatonin treatments of the animals, including epididymal white adipose tissue (eWAT) histological evaluations, transcriptomic and lipidomic analyses, real-time PCR tests, immunofluorescence staining, Western blot, the appraisal of serum melatonin levels, and transmission electron microscopy. This study found that aged mice on a high-fat diet (HFD) showed increased lipid deposition, inflammation, and reduced antioxidant glutathione (GSH) levels compared to younger mice. Lipidomic and transcriptomic analyses revealed elevated triglycerides, diglycerides, ceramides, and cholesterol, along with decreased sphingomyelin and fatty acids in eWAT. The genes linked to inflammation, NF-κB signaling, autophagy, and lipid metabolism, particularly the melatonin and glutathione pathways, were significantly altered. The aged HFD mice also exhibited reduced melatonin levels in serum and eWAT. Melatonin supplementation reduced lipid deposition, increased melatonin and GSH levels, and upregulated AANAT and MTNR1A expression in eWAT, suggesting that melatonin alleviates eWAT damage via the MTNR1A pathway. It also suppressed inflammatory markers (e.g., TNF-α, NLRP3, NF-κB, IL-1β, and CEBPB) and preserved mitochondrial function through enhanced mitophagy. This study highlights how aging and HFD affect lipid metabolism and gene expression, offering potential intervention strategies. These findings provide important insights into the mechanisms of fat deposition associated with aging and a high-fat diet, suggesting potential intervention strategies. Full article
(This article belongs to the Special Issue Antioxidant Therapy for Obesity-Related Diseases)
Show Figures

Figure 1

22 pages, 4896 KiB  
Article
Involvement of Melatonin, Oxidative Stress, and Inflammation in the Protective Mechanism of the Carotid Artery over the Torpor–Arousal Cycle of Ground Squirrels
by Ziwei Hao, Yuting Han, Qi Zhao, Minghui Zhu, Xiaoxuan Liu, Yingyu Yang, Ning An, Dinglin He, Etienne Lefai, Kenneth B. Storey, Hui Chang and Manjiang Xie
Int. J. Mol. Sci. 2024, 25(23), 12888; https://doi.org/10.3390/ijms252312888 - 29 Nov 2024
Viewed by 1244
Abstract
Hibernating mammals experience severe hemodynamic changes over the torpor–arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action [...] Read more.
Hibernating mammals experience severe hemodynamic changes over the torpor–arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear. Morphology, hemodynamic, mitochondrial oxidative stress, and inflammatory factors of the carotid artery were assessed in ground squirrels who were sampled during summer active (SA), late torpor (LT), and interbout arousal (IBA) conditions. Changes were assessed by methods including hematoxylin and eosin staining, color Doppler ultrasound, ELISA, Western blots, and qPCR. Changes in arterial blood and serum melatonin were also measured by blood gas analyzer and ELISA, whereas mitochondrial oxidative stress and inflammation factors of primary vascular smooth muscle cells (VSMCs) were assessed by qPCR. (1) Intima-media carotid thickness, peak systolic velocity (PSV), end diastolic blood flow velocity (EDV), maximal blood flow rate (Vmax) and pulsatility index (PI) were significantly decreased in the LT group as compared with the SA group, whereas there were no difference between the SA and IBA groups. (2) PO2, oxygen saturation, hematocrit and PCO2 in the arterial blood were significantly increased, and pH was significantly decreased in the LT group as compared with the SA and IBA groups. (3) The serum melatonin concentration was significantly increased in the LT group as compared with the SA and IBA groups. (4) MT treatment significantly reduced the elevated levels of LONP1, NF-κB, NLRP3 and IL-6 mRNA expression of VSMCs under hypoxic conditions. (5) Protein expression of HSP60 and LONP1 in the carotid artery were significantly reduced in the LT and IBA groups as compared with the SA group. (6) The proinflammatory factors IL-1β, IL-6, and TNF-α were reduced in the carotid artery of the LT group as compared with the SA and IBA groups. The carotid artery experiences no oxidative stress or inflammatory response during the torpor–arousal cycle. In addition, melatonin accumulates during torpor and alleviates oxidative stress and inflammatory responses caused by hypoxia in vitro in VSMCs from ground squirrels. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 1527 KiB  
Review
Food Functional Factors in Alzheimer’s Disease Intervention: Current Research Progress
by Rong-Zu Nie, Huo-Min Luo, Ya-Ping Liu, Shuang-Shuang Wang, Yan-Jie Hou, Chen Chen, Hang Wang, Hui-Lin Lv, Xing-Yue Tao, Zhao-Hui Jing, Hao-Kun Zhang and Pei-Feng Li
Nutrients 2024, 16(23), 3998; https://doi.org/10.3390/nu16233998 - 22 Nov 2024
Cited by 1 | Viewed by 2237
Abstract
Alzheimer’s disease (AD) is a complex multifactorial neurodegenerative disease. With the escalating aging of the global population, the societal burden of this disease is increasing. Although drugs are available for the treatment of AD, their efficacy is limited and there remains no effective [...] Read more.
Alzheimer’s disease (AD) is a complex multifactorial neurodegenerative disease. With the escalating aging of the global population, the societal burden of this disease is increasing. Although drugs are available for the treatment of AD, their efficacy is limited and there remains no effective cure. Therefore, the identification of safe and effective prevention and treatment strategies is urgently needed. Functional factors in foods encompass a variety of natural and safe bioactive substances that show potential in the prevention and treatment of AD. However, current research focused on the use of these functional factors for the prevention and treatment of AD is in its initial stages, and a complete theoretical and application system remains to be determined. An increasing number of recent studies have found that functional factors such as polyphenols, polysaccharides, unsaturated fatty acids, melatonin, and caffeine have positive effects in delaying the progression of AD and improving cognitive function. For example, polyphenols exhibit antioxidant, anti-inflammatory, and neuroprotective effects, and polysaccharides promote neuronal growth and inhibit inflammation and oxidative stress. Additionally, unsaturated fatty acids inhibit Aβ production and Tau protein phosphorylation and reduce neuroinflammation, and melatonin has been shown to protect nerve cells and improve cognitive function by regulating mitochondrial homeostasis and autophagy. Caffeine has also been shown to inhibit inflammation and reduce neuronal damage. Future research should further explore the mechanisms of action of these functional factors and develop relevant functional foods or nutritional supplements to provide new strategies and support for the prevention and treatment of AD. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

14 pages, 2370 KiB  
Article
Effect of Constant Illumination on the Morphofunctional State and Rhythmostasis of Rat Livers at Experimental Toxic Injury
by Sevil A. Grabeklis, Maria A. Kozlova, Lyudmila M. Mikhaleva, Alexander M. Dygai, Rositsa A. Vandysheva, Anna I. Anurkina and David A. Areshidze
Int. J. Mol. Sci. 2024, 25(22), 12476; https://doi.org/10.3390/ijms252212476 - 20 Nov 2024
Viewed by 804
Abstract
The effect of dark deprivation on the morphofunctional state and rhythmostasis of the liver under CCl4 toxic exposure has been studied. The relevance of this study is due to the fact that the hepatotoxic effect of carbon tetrachloride on the liver is [...] Read more.
The effect of dark deprivation on the morphofunctional state and rhythmostasis of the liver under CCl4 toxic exposure has been studied. The relevance of this study is due to the fact that the hepatotoxic effect of carbon tetrachloride on the liver is well studied, but there are very few data on the relationship between CCl4 intoxication and circadian biorhythms, and most of the studies consider the susceptibility of the organism in general and of the liver in particular to the influence of CCl4 in some separate periods of the rhythm, but not the influence of this chemical agent on the structure of the whole rhythm. In addition, earlier studies indicate that light disturbance causes certain changes in the morphofunctional state of the liver and the structure of the circadian rhythm of a number of parameters. As a result of this study, we found that the effect of CCl4 in conditions of prolonged dark deprivation causes more significant structural and functional changes in hepatocytes, as well as leading to significant changes in the circadian rhythms of a number of parameters, which was not observed in the action of CCl4 as a monofactor. We assume that the severity of structural and functional changes is due to the light-induced deficiency of melatonin, which has hepatoprotective properties. Thus, the mechanisms of CCl4 action on CRs under conditions of light regime violations leave a large number of questions requiring further study, including the role of melatonin in these processes. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop