Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = melt dilution method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 896 KB  
Article
Application of COI Gene-Based Molecular Analysis for Verifying Honey Authenticity and Detecting Trace Residues in Vegan Food Products
by Małgorzata Natonek-Wiśniewska, Julia Adamiak, Piotr Krzyścin, Maciej Sylwester Bryś and Aneta Strachecka
Molecules 2025, 30(16), 3374; https://doi.org/10.3390/molecules30163374 - 13 Aug 2025
Viewed by 1058
Abstract
Honey is a natural bee product with confirmed health-promoting properties, the quality and authenticity of which are of key importance from a consumer’s perspective. However, the demand for honey is affected by the problem of its adulteration. Moreover, despite its numerous taste and [...] Read more.
Honey is a natural bee product with confirmed health-promoting properties, the quality and authenticity of which are of key importance from a consumer’s perspective. However, the demand for honey is affected by the problem of its adulteration. Moreover, despite its numerous taste and health benefits, honey may be an undesirable product for some groups of consumers, such as people with allergies or vegans. This work aimed to develop a sensitive molecular test enabling the unambiguous detection of honey adulteration and the identification of its trace amounts in food products. The test was based on the analysis of a fragment of the cytochrome c oxidase gene subunit I using real-time PCR with SYBR®Green dye and melting curve analysis. The key parameter of the analysis was the melting temperature, which in the case of natural honey was within a narrow range of 74.34–75.38 °C (for its dilutions, 71.10–77.00 °C). The developed method demonstrated high repeatability and sensitivity, enabling the detection of honey presence even at a level of 0.1%. To products labelled as vegan, Tm analysis effectively distinguished samples containing trace amounts of honey from those that were truly vegan. The procedure used is simple, highly repeatable, and effective even in the case of processed products. The developed method can be successfully used to control the quality and authenticity of honey, meeting the requirements of V-Label certification. Full article
(This article belongs to the Special Issue Advanced DNA Methods for Food Authenticity)
Show Figures

Graphical abstract

26 pages, 9424 KB  
Article
A Multiscale Study on Substrate Size Effect and Energy Density Regulation on Dynamic Response of Dilution Rate in Laser Cladding Iron-Based Coatings
by Danqing Yin, Meng Wang, Yonglei Wang, Meng Zhang, Jinglong Dong, Zhaohua Huang, Junming Chang, Haoqi Zhao and Sumsun Naher
Coatings 2025, 15(6), 694; https://doi.org/10.3390/coatings15060694 - 8 Jun 2025
Cited by 1 | Viewed by 569
Abstract
This study systematically revealed the synergistic effects of laser power, cladding speed, and substrate diameter on the dilution rate and hardness of iron-based alloy coatings on the surface of 45 steel through the integration of finite element simulation, elemental migration analysis, and response [...] Read more.
This study systematically revealed the synergistic effects of laser power, cladding speed, and substrate diameter on the dilution rate and hardness of iron-based alloy coatings on the surface of 45 steel through the integration of finite element simulation, elemental migration analysis, and response surface methodology (RSM). The experiments showed that when the substrate diameter was greater than 50 mm, the coupling effect of thermal diffusion retardation and molten pool expansion caused a nonlinear surge in the dilution rate. The growth rate of the molten pool depth increased by 46% (from 0.28 to 0.41 μm), and the melting volume of the substrate expanded by 1.7 times. The dilution rate reached 15.6%–31.7% through a dual-regulation mechanism involving energy density (1.43–3.75 J/mm2) and substrate diameter (30–60 mm), with a significant hardness demarcation of 343–738 HV. Substrates with a small diameter (30 mm) achieved a peak hardness of 738 HV at an energy density of 2.14 J/mm2 through ultra-fast cooling (>1.5 × 104 K/s), while those with a large diameter (60 mm) exhibited a hardness drop to 426.5 HV due to grain coarsening. The multi-method integrated model constructed in this study achieved a dilution rate prediction error of less than 5% (R2 = 0.9775), with a prediction deviation of less than 2% under extreme parameters (diameter of 55 mm and power of 4800 W). The study proposed an optimized process window with a substrate diameter of 42–57 mm and an energy density of 1.43–2.14 J/mm2, providing a physically mechanism-driven intelligent parameter design strategy for laser cladding repair of shaft parts. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

23 pages, 4223 KB  
Article
Features of the Defect Structure of LiNbO3:Mg:B Crystals of Different Composition and Genesis
by Roman A. Titov, Alexandra V. Kadetova, Diana V. Manukovskaya, Maxim V. Smirnov, Olga V. Tokko, Nikolay V. Sidorov, Irina V. Biryukova, Sofja M. Masloboeva and Mikhail N. Palatnikov
Materials 2025, 18(2), 436; https://doi.org/10.3390/ma18020436 - 18 Jan 2025
Viewed by 1127
Abstract
We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO3 (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate. It is suitable for light modulation and transformation. [...] Read more.
We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO3 (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate. It is suitable for light modulation and transformation. We found that non-metal boron decreases threshold concentrations of the target dopant in many ways. In addition, we earlier determined that the method of boron introduction into the LN charge strongly affects the LN:B crystal structure. So we investigated the point structural defects of two series of LN:Mg:B crystals obtained by different doping methods, in which the stage of dopant introduction was different. We investigated the features of boron cation localization in LN:Mg:B single crystals. We conducted the study using XRD (X-ray diffraction) analysis. We have confirmed that the homogeneous doping method introduces an additional defect (MgV) into the structure of LN:Mg:B single crystals. Vacancies in niobium positions (VNb) are formed as a compensator for the excess positive charge of point structural defects. According to model calculations, boron is localized in most cases in the tetrahedron face common with the vacant niobium octahedron from the first layer (VNbIO6). The energy of the Coulomb interaction is minimal in the LN:Mg:B crystal (2.57 mol% MgO and 0.42 × 10−4 wt% B in the crystal); it was obtained using the solid-phase doping technology. The solid-phase doping technology is better suited for obtaining boron-containing crystals with properties characteristic of double-doped crystals (LN:Mg:B). Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

394 KB  
Proceeding Paper
Synthesis and In Vitro Antibacterial Studies of Two New Hydrazone Derivatives
by Hamza Karimatu, Idris Abdullahi Yunusa, Muhammad Aliyu Musa, Hamza Asmau Nasiru, Hamza Sa’adatu Auwal and Abdullahi Maryam
Chem. Proc. 2024, 16(1), 118; https://doi.org/10.3390/ecsoc-28-20138 - 14 Nov 2024
Viewed by 342
Abstract
Throughout history to the present day, infectious diseases have been a persistent global threat, causing significant harm to public health and economic stability. To address these challenges, the development of novel antimicrobial drugs is crucial. Hydrazones have gained significant attention in the scientific [...] Read more.
Throughout history to the present day, infectious diseases have been a persistent global threat, causing significant harm to public health and economic stability. To address these challenges, the development of novel antimicrobial drugs is crucial. Hydrazones have gained significant attention in the scientific literature as promising candidates for developing new antimicrobial drugs. Two new hydrazones (H3 and H4) incorporating moieties that are known to enhance antimicrobial activity were synthesized. Methods: Hydrazone derivatives were synthesized through a condensation reaction of substituted acetophenone and nitro phenyl hydrazine. The compounds were characterized by their melting points and spectral analyses, including FT-IR, 1H NMR, 13C NMR, and 2D NMR. Their antibacterial effects on Escherichia coli and Staphylococcus aureus were assessed in-vitro using the agar diffusion and broth dilution methods. Results: In-vitro testing demonstrated the compounds’ good activity against the tested organisms, particularly Gram-positive bacteria. At a concentration of 50 mg/mL, H3 produced a zone of inhibition (19 mm) comparable to that of the standard ciprofloxacin (20 mm) at 0.05 mg/mL. Only H3 was able to kill both Staphylococcus aureus and Escherichia coli at a concentration of 50 mg/mL. In all cases, H3 was found to be the most effective with optimum bactericidal and bacteriostatic activity against staphylococcus aureus and Escherichia coli. Conclusions: All the synthesized compounds were proven to possess promising antibacterial activity in vitro against the tested organisms. Full article
Show Figures

Figure 1

13 pages, 9997 KB  
Article
The Influence of Variable Plasma Welding Parameters on Weld Geometry, Dilution Factor, and Microhardness
by Sylwia Bazychowska, Katarzyna Panasiuk and Robert Starosta
Appl. Sci. 2024, 14(16), 7248; https://doi.org/10.3390/app14167248 - 17 Aug 2024
Viewed by 1168
Abstract
Weld surfacing is the process of applying a layer of metal to the surface of metal objects by simultaneously melting the substrate. As a result of this process, the metal content of the padding weld can be as high as several tens of [...] Read more.
Weld surfacing is the process of applying a layer of metal to the surface of metal objects by simultaneously melting the substrate. As a result of this process, the metal content of the padding weld can be as high as several tens of percents. It is a method used to regenerate machine parts and improve the properties of the surface layer, increasing its resistance to abrasion, corrosion, erosion, and cavitation. It also supports the repair and creation of permanent protective coatings in the engineering, automotive, energy, and aerospace industries. This makes it possible to repair damaged parts instead of completely replacing them, saving time and production costs. Plasma surfacing technology is used for components that require high hardness and corrosion resistance under various environmental conditions. Plasma wire surfacing is not sufficiently presented and described in the current literature, which creates problems in determining the appropriate process parameters. The influence of variable plasma surfacing parameters on steel C45 significantly affects surfacing weld geometry, the dilution factor, and microhardness. Higher currents can increase the dilution factor, integrating more base metal into the weld pool, which may alter the chemical composition and mechanical properties of the weld. Variations in surfacing speed and heat input also affect the microhardness of the surfaced joint, with higher heat inputs potentially leading to softer welds due to slower cooling rates. Optimizing these parameters is essential to achieving desired surfacing weld characteristics and ensuring the structural integrity of C45 steel joints. This paper presents the influence of varying plasma surfacing parameters on the surfacing geometry, the dilution factor, and microhardness. The tests were carried out on a Panasonic TM-1400 GIII automated surfacing machine with CastoMag 45554S solid wire as the filler material. Flat bars of C45 steel were prepared, and then the variable parameters of the surfacing process were developed. Tests were carried out to determine the dilution factor, followed by microhardness measurements. The results showed a significant dependence of the effect of the parameters on the surfacing geometry and the dilution factor. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 3758 KB  
Article
Prediction Method for High-Speed Laser Cladding Coating Quality Based on Random Forest and AdaBoost Regression Analysis
by Yifei Xv, Yaoning Sun and Yuhang Zhang
Materials 2024, 17(6), 1266; https://doi.org/10.3390/ma17061266 - 8 Mar 2024
Cited by 9 | Viewed by 1836
Abstract
The initial melting quality of a high-speed laser cladding layer has an important impact on its post-treatment and practical application. In this study, based on the repair of hydraulic support columns of coal mining machines, the influence of high-speed laser cladding process parameters [...] Read more.
The initial melting quality of a high-speed laser cladding layer has an important impact on its post-treatment and practical application. In this study, based on the repair of hydraulic support columns of coal mining machines, the influence of high-speed laser cladding process parameters on the quality of Fe-Cr-Ni alloy coatings was investigated to realize the accurate prediction of coating quality. The Taguchi orthogonal method was used to design the L25(56) test. The prediction models of the relationship between the cladding process and the coating quality were established using the Random Forest (RF) and AdaBoost (Adaptive Boosting, AB) algorithms, respectively. Then, the prediction accuracy of the two models was compared, and the process parameter features were screened for importance evaluation. The results show that the AB prediction model is more accurate than the RF prediction model and more sensitive to abnormal data. The importance evaluation based on the AdaBoost model shows that the scanning speed has a great influence on the height and surface roughness of the coating. On the other hand, the overlap rate is the most important factor in controlling the dilution ratio and near-surface grain size of high-speed laser melting coatings. In addition, the micro-hardness of the coating and the thermal effect of the substrate can be effectively enhanced by adjusting the laser power and scanning speed. Finally, it was verified that the AB prediction model could accurately estimate the quality indexes of the coating with a prediction error less than 6%. The results show that it is feasible to predict the quality of high-speed laser cladding with the AB algorithm. It provides a basis for the adjustment of process parameters in the subsequent quality control process of cladding. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

14 pages, 3715 KB  
Article
Al2O3 Thin Layer Formed inside Porous Membrane Using Spray Synthesis Method and Its Application
by Masato Imai, Tadahiko Kubota, Atsushi Miyazawa, Masahiro Aoki, Haruna Mori, Yuta Komaki and Kenji Yoshino
Crystals 2024, 14(2), 195; https://doi.org/10.3390/cryst14020195 - 17 Feb 2024
Cited by 2 | Viewed by 1884
Abstract
Aluminum oxide (Al2O3) films have been investigated for use in various applications, and numerous deposition techniques have been reported. The spray synthesis method has the advantage of forming a thin layer of crystal at low temperatures using the appropriate [...] Read more.
Aluminum oxide (Al2O3) films have been investigated for use in various applications, and numerous deposition techniques have been reported. The spray synthesis method has the advantage of forming a thin layer of crystal at low temperatures using the appropriate precursors. A precursor prepared by diluting Methylaluminoxane with N-methyl pyrrolidone was sprayed onto a porous membrane while varying conditions such as the substrate temperature, feeding speed, and spray amount. The solution penetrated the film during spray application, and the ultra-thin layers deposited on the side wall of the internal pores were observed using a cross-sectional transmission electron microscope (XTEM). The lattice image obtained using the TEM and the composition analysis conducted using a scanning TEM and an energy-dispersive X-ray spectroscope suggest that this thin layer is a layer of Al2O3. The formation of Al2O3 occurred at lower temperatures than in previous reports. This is a major advantage for applications with low-melting-point materials. The most suitable spraying conditions were determined based on the state of deposition on the surface and inside the membrane. These conditions were applied to a three-layer separator for lithium-ion batteries and their effect on thermal stability was investigated. Through heating experiments and XRD analysis, it was confirmed that the shrinkage and melting of the separator are suppressed by spraying. This process can be expected to have wide applications in low-melting-point materials such as polyolefin. Full article
Show Figures

Figure 1

12 pages, 2774 KB  
Article
A Surface Imprinted Polymer EIS Sensor for Detecting Alpha-Synuclein, a Parkinson’s Disease Biomarker
by Roslyn Simone Massey, Rishabh Ramesh Appadurai and Ravi Prakash
Micromachines 2024, 15(2), 273; https://doi.org/10.3390/mi15020273 - 15 Feb 2024
Cited by 8 | Viewed by 2636
Abstract
Parkinson’s Disease (PD) is a debilitating neurodegenerative disease, causing loss of motor function and, in some instances, cognitive decline and dementia in those affected. The quality of life can be improved, and disease progression delayed through early interventions. However, current methods of confirming [...] Read more.
Parkinson’s Disease (PD) is a debilitating neurodegenerative disease, causing loss of motor function and, in some instances, cognitive decline and dementia in those affected. The quality of life can be improved, and disease progression delayed through early interventions. However, current methods of confirming a PD diagnosis are extremely invasive. This prevents their use as a screening tool for the early onset stages of PD. We propose a surface imprinted polymer (SIP) electroimpedance spectroscopy (EIS) biosensor for detecting α-Synuclein (αSyn) and its aggregates, a biomarker that appears in saliva and blood during the early stages of PD as the blood-brain barrier degrades. The surface imprinted polymer stamp is fabricated by low-temperature melt stamping polycaprolactone (PCL) on interdigitated EIS electrodes. The result is a low-cost, small-footprint biosensor that is highly suitable for non-invasive monitoring of the disease biomarker. The sensors were tested with αSyn dilutions in deionized water and in constant ionic concentration matrix solutions with decreasing concentrations of αSyn to remove the background effects of concentration. The device response confirmed the specificity of these devices to the target protein of monomeric αSyn. The sensor limit of detection was measured to be 5 pg/L, and its linear detection range was 5 pg/L–5 µg/L. This covers the physiological range of αSyn in saliva and makes this a highly promising method of quantifying αSyn monomers for PD patients in the future. The SIP surface was regenerated, and the sensor was reused to demonstrate its capability for repeat sensing as a potential continuous monitoring tool for the disease biomarker. Full article
(This article belongs to the Special Issue Flexible and Hybrid Flexible Organic Chemical and Biosensor Systems)
Show Figures

Figure 1

16 pages, 6581 KB  
Article
Synthesis and Antibacterial Activity of Novel Triazolo[4,3-a]pyrazine Derivatives
by Zhang Hu, Hongrui Dong, Zhenyu Si, Yurong Zhao and Yuanwei Liang
Molecules 2023, 28(23), 7876; https://doi.org/10.3390/molecules28237876 - 30 Nov 2023
Cited by 4 | Viewed by 3094
Abstract
Infectious diseases pose a major challenge to human health, and there is an urgent need to develop new antimicrobial agents with excellent antibacterial activity. A series of novel triazolo[4,3-a]pyrazine derivatives were synthesized and their structures were characterized using various techniques, such [...] Read more.
Infectious diseases pose a major challenge to human health, and there is an urgent need to develop new antimicrobial agents with excellent antibacterial activity. A series of novel triazolo[4,3-a]pyrazine derivatives were synthesized and their structures were characterized using various techniques, such as melting point, 1H and 13C nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis. All the synthesized compounds were evaluated for in vitro antibacterial activity using the microbroth dilution method. Among all the tested compounds, some showed moderate to good antibacterial activities against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli strains. In particular, compound 2e exhibited superior antibacterial activities (MICs: 32 μg/mL against Staphylococcus aureus and 16 μg/mL against Escherichia coli), which was comparable to the first-line antibacterial agent ampicillin. In addition, the structure–activity relationship of the triazolo[4,3-a]pyrazine derivatives was preliminarily investigated. Full article
Show Figures

Figure 1

9 pages, 2740 KB  
Article
Optimization of the Forming Quality of a Laser-Cladded AlCrFeNiW0.2 High-Entropy Alloy Coating
by Hui Liang, Jianhong Liu, Likun Sun, Jinxin Hou and Zhiqiang Cao
Coatings 2023, 13(10), 1744; https://doi.org/10.3390/coatings13101744 - 9 Oct 2023
Cited by 7 | Viewed by 1784
Abstract
Laser cladding is an effective surface strengthening method widely used in the surface treatment of extreme operating components such as gas turbines, aviation engines, and nuclear facilities. However, traditional cladding layers struggle to meet the diverse application needs of extreme working conditions due [...] Read more.
Laser cladding is an effective surface strengthening method widely used in the surface treatment of extreme operating components such as gas turbines, aviation engines, and nuclear facilities. However, traditional cladding layers struggle to meet the diverse application needs of extreme working conditions due to their single cladding material and poor forming quality. Therefore, this article selected the new-type high-entropy alloy as the coating material and optimized its laser cladding process parameters in order to obtain an AlCrFeNiW0.2 high-entropy alloy coating with an excellent forming quality. It was found that as the laser power increased from 300 to 1800 W, the AlCrFeNiW0.2 high-entropy alloy coating transitioned from the incomplete or near-melted state to the fully and over-melted state gradually, while the coating showed the opposite trend of change as the laser scanning speed increased from 0.002 to 0.008 m/s. And when the laser power was 1000 W, the scanning speed was 0.005 m/s, and the spot diameter was 0.003 m, the AlCrFeNiW0.2 high-entropy alloy coating with a low dilution rate (9.95%) had no defects such as pores and cracks, and achieved good metallurgical bonding with Q235 steel substrate, demonstrating excellent forming quality. These could provide valuable theoretical and technical guidance for optimizing the laser cladding process and forming quality of new-type high-entropy alloy coatings. Full article
(This article belongs to the Special Issue Advances in Wear-Resistant Coatings)
Show Figures

Figure 1

12 pages, 2725 KB  
Article
Detection of Listeria monocytogenes in Food Using the Proofman-LMTIA Assay
by Chunmei Song, Borui Wang, Yongzhen Wang, Jinxin Liu and Deguo Wang
Molecules 2023, 28(14), 5457; https://doi.org/10.3390/molecules28145457 - 17 Jul 2023
Cited by 13 | Viewed by 2679
Abstract
Microbial factors, including bacteria, viruses, and other pathogens, are significant contributors to foodborne illnesses, posing serious food safety risks due to their potential for rapid growth and contamination. Listeria monocytogenes is one of the most common types of foodborne bacteria that can cause [...] Read more.
Microbial factors, including bacteria, viruses, and other pathogens, are significant contributors to foodborne illnesses, posing serious food safety risks due to their potential for rapid growth and contamination. Listeria monocytogenes is one of the most common types of foodborne bacteria that can cause serious foodborne diseases or even fatalities. In this study, a novel nucleic acid amplification method called Proofman-LMTIA was employed to detect Listeria monocytogenes contamination in food. This method combines proofreading enzyme-mediated probe cleavage with ladder-shape melting temperature isothermal amplification. A positive recombinant plasmid was used as a control to ensure the accuracy of the detection results, and primers and Proofman probes were specifically designed for the LMTIA. Genomic DNA was extracted, the reaction temperature was optimized, and the primers’ specificity was verified using foodborne pathogens like Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella. The sensitivity was assessed by testing serial dilutions of genomic DNA, and the method’s applicability was confirmed by detecting artificially contaminated fresh pork. The established LMTIA method exhibited both high specificity and sensitivity. At the optimal reaction temperature of 63 °C, the primers specifically identified Listeria monocytogenes contamination in pork at a concentration of 8.0 ± 0.7 colony-forming units (CFUs) per 25 g. Furthermore, the Proofman-LMTIA method was applied to test Listeria monocytogenes DNA in 30 food samples purchased from a Chinese retail market, and reassuringly, all results indicated no contamination. Proofman-LMTIA can serve as a reliable and rapid method for detecting Listeria monocytogenes in food, contributing to public health by safeguarding consumers from foodborne illnesses, and strengthening food safety regulations. Full article
Show Figures

Figure 1

14 pages, 3662 KB  
Article
PMMA/SWCNT Composites with Very Low Electrical Percolation Threshold by Direct Incorporation and Masterbatch Dilution and Characterization of Electrical and Thermoelectrical Properties
by Ezgi Uçar, Mustafa Dogu, Elcin Demirhan and Beate Krause
Nanomaterials 2023, 13(8), 1431; https://doi.org/10.3390/nano13081431 - 21 Apr 2023
Cited by 2 | Viewed by 2633
Abstract
In the present study, Poly(methyl methacrylate) (PMMA)/single-walled carbon nanotubes (SWCNT) composites were prepared by melt mixing to achieve suitable SWCNT dispersion and distribution and low electrical resistivity, whereby the SWCNT direct incorporation method was compared with masterbatch dilution. An electrical percolation threshold of [...] Read more.
In the present study, Poly(methyl methacrylate) (PMMA)/single-walled carbon nanotubes (SWCNT) composites were prepared by melt mixing to achieve suitable SWCNT dispersion and distribution and low electrical resistivity, whereby the SWCNT direct incorporation method was compared with masterbatch dilution. An electrical percolation threshold of 0.05–0.075 wt% was found, the lowest threshold value for melt-mixed PMMA/SWCNT composites reported so far. The influence of rotation speed and method of SWCNT incorporation into the PMMA matrix on the electrical properties and the SWCNT macro dispersion was investigated. It was found that increasing rotation speed improved macro dispersion and electrical conductivity. The results showed that electrically conductive composites with a low percolation threshold could be prepared by direct incorporation using high rotation speed. The masterbatch approach leads to higher resistivity values compared to the direct incorporation of SWCNTs. In addition, the thermal behavior and thermoelectric properties of PMMA/SWCNT composites were studied. The Seebeck coefficients vary from 35.8 µV/K to 53.4 µV/K for composites up to 5 wt% SWCNT. Full article
Show Figures

Graphical abstract

16 pages, 3842 KB  
Article
Study on the Process Characteristics Based on Joule Heat of Sliding-Pressure Additive Manufacturing
by Kaiyue Ma, Suli Li, Chao Xu, Zhuang Gao, Laixia Yang and Bingheng Lu
Materials 2023, 16(5), 2017; https://doi.org/10.3390/ma16052017 - 28 Feb 2023
Cited by 7 | Viewed by 1784
Abstract
This study developed an experimental system based on Joule heat of sliding-pressure additive manufacturing (SP-JHAM), and Joule heat was used for the first time to accomplish high-quality single-layer printing. The roller wire substrate is short-circuited, and Joule heat is generated to melt the [...] Read more.
This study developed an experimental system based on Joule heat of sliding-pressure additive manufacturing (SP-JHAM), and Joule heat was used for the first time to accomplish high-quality single-layer printing. The roller wire substrate is short-circuited, and Joule heat is generated to melt the wire when the current passes through. Through the self-lapping experimental platform, single-factor experiments were designed to study the effects of power supply current, electrode pressure, contact length on the surface morphology and cross-section geometric characteristics of the single-pass printing layer. Through the Taguchi method, the effect of various factors was analyzed, the optimal process parameters were obtained, and the quality was detected. The results show that with the current increase, the aspect ratio and dilution rate of a printing layer increase within a given range of process parameters. In addition, with the increase in pressure and contact length, the aspect ratio and dilution ratio decrease. Pressure has the greatest effect on the aspect ratio and dilution ratio, followed by current and contact length. When a current of 260 A, a pressure of 0.60 N and a contact length of 1.3 mm are applied, a single track with a good appearance, whose surface roughness Ra is 3.896 μm, can be printed. Additionally, the wire and the substrate are completely metallurgically bonded with this condition. There are also no defects such as air holes and cracks. This study verified the feasibility of SP-JHAM as a new additive manufacturing strategy with high quality and low cost, and provided a reference for developing additive manufacturing technology based on Joule heat. Full article
Show Figures

Figure 1

12 pages, 2244 KB  
Article
Interaction between Iron Fluoride and Molten FLiBe
by Stepan P. Arkhipov, Yury P. Zaikov, Pavel A. Arkhipov and Albert R. Mullabaev
Processes 2022, 10(12), 2742; https://doi.org/10.3390/pr10122742 - 19 Dec 2022
Cited by 5 | Viewed by 2401
Abstract
The equilibrium potentials of iron in a LiF-BeF2-FeF2 melt were measured using the EMF method and were dependent upon the temperature and iron fluoride concentrations. The empirical equations for the isotherms and equilibrium polytherms of the iron fluoride concentration were [...] Read more.
The equilibrium potentials of iron in a LiF-BeF2-FeF2 melt were measured using the EMF method and were dependent upon the temperature and iron fluoride concentrations. The empirical equations for the isotherms and equilibrium polytherms of the iron fluoride concentration were obtained. The cathode polarization of iron fluoride in the molten mixture of lithium and beryllium fluoride was measured using the current switch off method from the stationary state. It was found that in the studied temperature and concentration ranges of iron fluoride in the LiF-BeF2 electrolyte, the valence state of iron in the melt is mainly +2. According to the experimental values of the equilibrium potentials of the iron electrode in the LiF-BeF2-FeF2 melt, the conditional standard potentials of iron were calculated relative to the fluoride reference electrode in the molten mixture of lithium and beryllium fluoride. The conditional standard values of the Gibbs energy change were calculated at the formation of iron difluoride from the element in the form of dilute solutions, as were the thermodynamic values (enthalpy and entropy) when iron difluoride was mixed with LiF-BeF2. Full article
Show Figures

Figure 1

19 pages, 2919 KB  
Article
Ecological Importance of Viral Lysis as a Loss Factor of Phytoplankton in the Amundsen Sea
by Charlotte Eich, Tristan E. G. Biggs, Willem H. van de Poll, Mathijs van Manen, Hung-An Tian, Jinyoung Jung, Youngju Lee, Rob Middag and Corina P. D. Brussaard
Microorganisms 2022, 10(10), 1967; https://doi.org/10.3390/microorganisms10101967 - 5 Oct 2022
Cited by 11 | Viewed by 3119
Abstract
Whether phytoplankton mortality is caused by grazing or viral lysis has important implications for phytoplankton dynamics and biogeochemical cycling. The ecological relevance of viral lysis for Antarctic phytoplankton is still under-studied. The Amundsen Sea is highly productive in spring and summer, especially in [...] Read more.
Whether phytoplankton mortality is caused by grazing or viral lysis has important implications for phytoplankton dynamics and biogeochemical cycling. The ecological relevance of viral lysis for Antarctic phytoplankton is still under-studied. The Amundsen Sea is highly productive in spring and summer, especially in the Amundsen Sea Polynya (ASP), and very sensitive to global warming-induced ice-melt. This study reports on the importance of the viral lysis, compared to grazing, of pico- and nanophytoplankton, using the modified dilution method (based on apparent growth rates) in combination with flow cytometry and size fractionation. Considerable viral lysis was shown for all phytoplankton populations, independent of sampling location and cell size. In contrast, the average grazing rate was 116% higher for the larger nanophytoplankton, and grazing was also higher in the ASP (0.45 d−1 vs. 0.30 d−1 outside). Despite average specific viral lysis rates being lower than grazing rates (0.17 d−1 vs. 0.29 d−1), the average amount of phytoplankton carbon lost was similar (0.6 µg C L−1 d−1 each). The viral lysis of the larger-sized phytoplankton populations (including diatoms) and the high lysis rates of the abundant P. antarctica contributed substantially to the carbon lost. Our results demonstrate that viral lysis is a principal loss factor to consider for Southern Ocean phytoplankton communities and ecosystem production. Full article
(This article belongs to the Special Issue Viruses of Plankton)
Show Figures

Figure 1

Back to TopTop