Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,553)

Search Parameters:
Keywords = membrane interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5333 KB  
Article
Leaf Blight in Ilex verticillata Caused by Alternaria alternata: Mechanisms of Antioxidant Defense, Phytohormone Crosstalk, and Oxidative Stress Responses
by Huijie Lu, Caixia Zhou, Peiwen Cheng, Liangye Huang, Qinyuan Shen, Ye Zheng, Yihui Li, Wenjun Dai, Jianhong Zhang, Dengfeng Shen, Anket Sharma, Muhammad Junaid Rao, Bingsong Zheng and Huwei Yuan
Plants 2025, 14(19), 3057; https://doi.org/10.3390/plants14193057 - 3 Oct 2025
Abstract
Ilex verticillata (winterberry) is a valuable ornamental shrub increasingly threatened by leaf blight, a disease that compromises its aesthetic and economic value. While fungal pathogens like Alternaria alternata are known to cause leaf blight in horticultural crops, their role in I. verticillata and [...] Read more.
Ilex verticillata (winterberry) is a valuable ornamental shrub increasingly threatened by leaf blight, a disease that compromises its aesthetic and economic value. While fungal pathogens like Alternaria alternata are known to cause leaf blight in horticultural crops, their role in I. verticillata and the host’s defense mechanisms have not been fully characterized. Our study investigated the pathogen-host interaction by identifying the causal agent and examining the physiological and molecular defense mechanisms of I. verticillata. Through morphological and multi-locus molecular analyses (ITS, TEF1-α, G3PDH, RPB2), A. alternata was confirmed as the primary pathogen, fulfilling Koch’s postulates. Pathogenicity assays revealed distinct disease progression stages, from necrotic lesions to tissue degradation. Transcriptomic profiling uncovered dynamic host responses, with early upregulation of pattern recognition receptors (PRRs) and transcripts encoding antioxidant enzymes (SOD, CAT), followed by downregulation of metabolic pathway genes. Phytohormone analysis highlighted intricate crosstalk, with salicylic acid (SA) peaking during mid-infection and jasmonic acid (JA) rebounding later, reflecting a coordinated defense strategy. Additionally, the oxidative stress marker malondialdehyde (MDA), an indicator of membrane lipid peroxidation, surged early, indicating membrane damage, while sustained induction of antioxidant enzymes suggested adaptive responses. The key finding was distinct phytohormone crosstalk, characterized by a mid-infection SA peak followed by a late JA rebound, alongside an early oxidative burst marked by MDA accumulation and sustained antioxidant enzyme activity. These findings provide a framework for understanding I. verticillata’s defense mechanisms and offer insights for developing targeted disease management strategies, such as resistant cultivar breeding or hormone-mediated interventions. Full article
Show Figures

Figure 1

22 pages, 543 KB  
Review
Carbon Dots as Multifunctional Nanomaterials: A Review on Antimicrobial Activities and Fluorescence-Based Microbial Detection
by Andreas Romulo, Steven Suryoprabowo, Raden Haryo Bimo Setiarto and Yahui Guo
Molecules 2025, 30(19), 3969; https://doi.org/10.3390/molecules30193969 - 3 Oct 2025
Abstract
The increasing prevalence of antimicrobial resistance and the persistent challenge of infectious diseases highlight the critical necessity for novel approaches that integrate pathogen management with swift detection methods. Carbon dots (CDs) are a versatile class of fluorescent nanomaterials that have garnered increasing attention [...] Read more.
The increasing prevalence of antimicrobial resistance and the persistent challenge of infectious diseases highlight the critical necessity for novel approaches that integrate pathogen management with swift detection methods. Carbon dots (CDs) are a versatile class of fluorescent nanomaterials that have garnered increasing attention owing to their tunable surface chemistry, strong photoluminescence, high stability, and biocompatibility. Recent studies demonstrate that CDs possess broad-spectrum antibacterial and antifungal activities via multiple mechanisms, including the generation of reactive oxygen species, disruption of membranes, inhibition of biofilms, and synergistic interactions with conventional antimicrobials. The performance is significantly affected by precursor selection, heteroatom doping, and surface functionalization, with minimum inhibitory concentrations reported to range from highly potent at the microgram level to moderate at elevated concentrations. The intrinsic fluorescence of CDs, in addition to their antimicrobial activity, facilitates their use as sensitive and selective probes for microbial detection, allowing for rapid and real-time monitoring in biomedical, food safety, and environmental settings. This review summarizes recent advancements in the antimicrobial properties of carbon dots (CDs) and their fluorescence-based applications in microbial detection. It emphasizes their theranostic potential and future prospects as multifunctional nanomaterials for combating infectious diseases and ensuring microbial safety. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

19 pages, 6403 KB  
Article
Membrane Composition Modulates Vp54 Binding: A Combined Experimental and Computational Study
by Wenhan Guo, Rui Dong, Ayoyinka O. Okedigba, Jason E. Sanchez, Irina V. Agarkova, Elea-Maria Abisamra, Andrew Jelinsky, Wayne Riekhof, Laila Noor, David D. Dunigan, James L. Van Etten, Daniel G. S. Capelluto, Chuan Xiao and Lin Li
Pathogens 2025, 14(10), 1000; https://doi.org/10.3390/pathogens14101000 - 3 Oct 2025
Abstract
The recruitment of peripheral membrane proteins is tightly regulated by membrane lipid composition and local electrostatic microenvironments. Our experimental observations revealed that Vp54, a viral matrix protein, exhibited preferential binding to lipid bilayers enriched in anionic lipids such as phosphatidylglycerol (PG) and phosphatidylserine [...] Read more.
The recruitment of peripheral membrane proteins is tightly regulated by membrane lipid composition and local electrostatic microenvironments. Our experimental observations revealed that Vp54, a viral matrix protein, exhibited preferential binding to lipid bilayers enriched in anionic lipids such as phosphatidylglycerol (PG) and phosphatidylserine (PS), compared to neutral phosphatidylcholine/phosphatidylethanolamine liposomes, and this occurred in a curvature-dependent manner. To elucidate the molecular basis of this selective interaction, we performed a series of computational analyses including helical wheel projection, electrostatic potential calculations, electric field lines simulations, and electrostatic force analysis. Our results showed that the membrane-proximal region of Vp54 adopted an amphipathic α-helical structure with a positively charged interface. In membranes containing PG or PS, electrostatic potentials at the interface were significantly more negative, enhancing attraction with Vp54. Field line and force analyses further confirmed that both the presence and spatial clustering of anionic lipids intensify membrane–Vp54 electrostatic interactions. These computational findings align with experimental binding data, jointly demonstrating that membrane lipid composition and organization critically modulate Vp54 recruitment. Together, our findings highlight the importance of electrostatic complementarity and membrane heterogeneity in peripheral protein targeting and provide a framework applicable to broader classes of membrane-binding proteins. Full article
Show Figures

Graphical abstract

23 pages, 3128 KB  
Article
Antibacterial Activity of Bis(4-aminopyridinium) Compounds for Their Potential Use as Disinfectants
by Carolina Arriaza-Echanes, Claudio A. Terraza, Mateus Frazao, Sebastián Reyes-Cerpa, Loreto Sanhueza and Pablo A. Ortiz
Molecules 2025, 30(19), 3962; https://doi.org/10.3390/molecules30193962 - 2 Oct 2025
Abstract
The following study presents the initial evaluation (solubility, thermal stability, antibacterial activity, and cytotoxicity) of a series of previously described organic salts, derived from the bis(4-aminopyridinium) cation with different chain lengths, for their potential use as hospital disinfectants. Of the salts studied, those [...] Read more.
The following study presents the initial evaluation (solubility, thermal stability, antibacterial activity, and cytotoxicity) of a series of previously described organic salts, derived from the bis(4-aminopyridinium) cation with different chain lengths, for their potential use as hospital disinfectants. Of the salts studied, those with chain lengths between 2 and 10 carbon atoms (C2–C10) showed high solubility in water, methanol, and DMSO. All salts exhibited high thermal stability, showing a thermal decomposition temperature (T5%) above 330 °C. Antibiotic susceptibility testing of the studied E. coli, S. aureus, and S. typhimurium strains confirmed their resistance to different classes of commonly used clinical antibiotics, validating their selection. During the determination of antibacterial activity, the long-chain salts (C10 and C12) showed the greatest activity, with minimum inhibitory concentrations (MICs) from 31.2 μg/mL to 62.5 μg/mL in all the strains studied. Given the high activity of C10 and C12, their cytotoxicity was assessed in HeLa cells. They exhibited no cytotoxic effects after 12 h and only about 5% cytotoxicity after 24 h. Furthermore, the cell viability assay of the most active and water-soluble salt, C10, showed that this salt can interact with the bacterial cytoplasmic membrane, increasing its permeability in both Gram-positive and Gram-negative bacteria. However, these results cannot rule out the possibility that this salt may have more than one site of action within the bacterial cell. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Figure 1

19 pages, 29087 KB  
Article
Tweaking Polybia-MP1: How a Lysine-Histidine Swap Redefines Its Surface Properties
by Kenneth M. F. Miasaki, Bibiana M. Souza, Mario S. Palma, Natalia Wilke, João Ruggiero Neto and Dayane S. Alvares
Pharmaceutics 2025, 17(10), 1287; https://doi.org/10.3390/pharmaceutics17101287 - 2 Oct 2025
Abstract
Background/Objectives: Polybia-MP1 (MP1) exhibits antimicrobial and anticancer properties. To improve selectivity toward acidic tumor microenvironments, we designed HMP1, a histidine-substituted analog of MP1, aiming to introduce pH-responsive behavior within physiological and pathological pH ranges. Methods: HMP1 was synthesized by replacing all lysine residues [...] Read more.
Background/Objectives: Polybia-MP1 (MP1) exhibits antimicrobial and anticancer properties. To improve selectivity toward acidic tumor microenvironments, we designed HMP1, a histidine-substituted analog of MP1, aiming to introduce pH-responsive behavior within physiological and pathological pH ranges. Methods: HMP1 was synthesized by replacing all lysine residues in MP1 with histidines. We characterized its surfactant properties and interactions with lipid monolayers composed of DPPC under varying pH and ionic strength conditions. Langmuir monolayer experiments were used to evaluate peptide-induced morphological changes and lipid packing effects at physiologically relevant lateral pressures. Results: HMP1 displayed pH-dependent activity between pH 5.5 and 7.5, inducing significant morphological reorganization of lipid domains without reducing the condensed phase area. Ionic strength modulated these effects, with distinct behaviors observed at low and physiological saline conditions. HMP1 preferentially interacted with cholesterol-enriched membranes, while MP1 did not induce comparable effects under the same conditions, as previously reported, at physiological lateral pressures. HMP1 also exhibited non-hemolytic properties and lower cytotoxicity compared to MP1. Conclusions: The lysine-to-histidine substitution conferred pH sensitivity to HMP1, enabling selective modulation of membrane organization based on lipid composition, packing, pH, and ionic environment. These findings highlight HMP1’s potential in targeted therapeutics and pH-responsive drug delivery systems. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

22 pages, 5324 KB  
Article
Vincristine Beyond Mitosis: Uncovering a First Link to G-Quadruplex DNA in Cancer Cells
by Anna Di Porzio, Carolina Persico, Francesca Romano, Alessandra Barra, Immacolata Aiello, Ludovica D’Auria, Sara Abate, Federica D’Aria, Concetta Giancola, Elpidio Cinquegrana, Francesco Saverio Di Leva, Jussara Amato, Simona Marzano, Nunzia Iaccarino and Antonio Randazzo
Int. J. Mol. Sci. 2025, 26(19), 9606; https://doi.org/10.3390/ijms26199606 - 1 Oct 2025
Abstract
Vincristine is a classical chemotherapeutic agent widely used for its ability to disrupt microtubule polymerization, yet additional molecular effects may contribute to its anticancer activity. G-quadruplexes (G4s), non-canonical nucleic acid structures enriched in regulatory regions of the genome and in mitochondrial DNA, have [...] Read more.
Vincristine is a classical chemotherapeutic agent widely used for its ability to disrupt microtubule polymerization, yet additional molecular effects may contribute to its anticancer activity. G-quadruplexes (G4s), non-canonical nucleic acid structures enriched in regulatory regions of the genome and in mitochondrial DNA, have emerged as relevant modulators of cellular homeostasis. In this study, we investigated whether vincristine can influence G4 biology. Cancer cells treated with vincristine were analyzed by immunofluorescence, revealing a consistent increase in nuclear and mitochondrial G4 foci. In particular, mitochondrial G4s were significantly elevated by approximately 1.5–2.5 fold compared to untreated cells, an effect accompanied by a detectable reduction in membrane potential, indicative of impaired organelle function. In addition, biophysical analyses on representative G4-forming sequences were carried out. Proton nuclear magnetic resonance titrations showed localized chemical shift perturbations upon vincristine addition, circular dichroism confirmed preservation of G4 topology, and isothermal titration calorimetry indicated weak but enthalpically favorable interactions. Taken together, these results suggest that vincristine perturbs both the cellular G4 landscape and mitochondrial homeostasis, while also engaging G4 DNA in vitro. Although additional studies are required to establish the mechanistic details, this work provides proof-of-concept for a previously unrecognized dimension of vincristine’s anticancer action. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1246 KB  
Article
Removal of Aggregates During Bispecific Antibody Purification Using Hydrophobic Interaction Chromatography
by Puya Zhao, Yue Qi and Kai Gao
Membranes 2025, 15(10), 299; https://doi.org/10.3390/membranes15100299 - 1 Oct 2025
Abstract
In the production of recombinant antibody/Fc-fusion proteins using mammalian cells, many aggregates often form alongside the target proteins, particularly with bispecific antibodies. To ensure the safety of biological products, it is essential to control the amount of aggregates within a specific range. A [...] Read more.
In the production of recombinant antibody/Fc-fusion proteins using mammalian cells, many aggregates often form alongside the target proteins, particularly with bispecific antibodies. To ensure the safety of biological products, it is essential to control the amount of aggregates within a specific range. A traditional downstream process typically involves using Protein A (ProA) resin to capture the target antibody, followed by two polishing steps to ensure purity; for instance, using an anion exchange chromatography (AEX) in flow-through mode and a cation exchange chromatography (CEX) in binding–elution mode. In this study, we choose a Dual Action Fab (DAF), which can bind two antigens and is prone to aggregation when expression in CHO (Chinese Hamster Ovary) cells. We introduce hydrophobic interaction membrane chromatography (HIMC) operating in flow-through mode, which enhances production efficiency while reducing costs and the risks associated with column packing. We evaluated the impact of the operating buffer system, as well as the pH and conductivity of the loading samples, on aggregate removal using HIMC. Additionally, we investigated the mechanism of aggregate binding and found that loading conditions had a limited impact on this process. Overall, our findings indicate that employing HIMC can achieve a 20% reduction in aggregate levels. These results demonstrate that HIMC in flow-through mode is an effective and robust approach for reducing aggregates during antibody purification. Full article
Show Figures

Figure 1

28 pages, 7157 KB  
Article
Development and Characterization of Sawdust-Based Ceramic Membranes for Textile Effluent Treatment
by Ana Vitória Santos Marques, Antusia dos Santos Barbosa, Larissa Fernandes Maia, Meiry Gláucia Freire Rodrigues, Tellys Lins Almeida Barbosa and Carlos Bruno Barreto Luna
Membranes 2025, 15(10), 298; https://doi.org/10.3390/membranes15100298 - 1 Oct 2025
Abstract
Membranes were assessed on a bench scale for their performance in methylene blue dye separation. The sawdust, along with Brazilian clay and kaolin, were mixed and compacted by uniaxial pressing and sintered at 650 °C. The membranes were characterized by several techniques, including [...] Read more.
Membranes were assessed on a bench scale for their performance in methylene blue dye separation. The sawdust, along with Brazilian clay and kaolin, were mixed and compacted by uniaxial pressing and sintered at 650 °C. The membranes were characterized by several techniques, including X-ray diffraction, scanning electron microscopy, porosity, mechanical strength, water uptake, and membrane hydrodynamic permeability. The results demonstrated that the incorporation of sawdust not only altered the pore morphology but also significantly improved water permeation and dye removal efficiency. The ceramic membrane had an average pore diameter of 0.346–0.622 µm and porosities ranging from 40.85 to 42.96%. The membranes were applied to the microfiltration of synthetic effluent containing methylene blue (MB) and, additionally, subjected to investigation of their adsorptive capacity. All membrane variants showed high hydrophilicity (contact angles < 60°) and achieved MB rejection efficiencies higher than 96%, demonstrating their efficiency in treating dye-contaminated effluents. Batch adsorption using ceramic membranes (M0–M3) removed 34.0–41.2% of methylene blue. Adsorption behavior fitted both Langmuir and Freundlich models, indicating mixed mono- and multilayer mechanisms. FTIR confirmed electrostatic interactions, hydrogen bonding, and possible π–π interactions in dye retention. Full article
Show Figures

Figure 1

15 pages, 2496 KB  
Article
Structures, Interactions, and Antimicrobial Activity of the Shortest Thanatin Peptide from Anasa tristis
by Swaleeha Jaan Abdullah, Jia Sheng Guan, Yuguang Mu and Surajit Bhattacharjya
Int. J. Mol. Sci. 2025, 26(19), 9571; https://doi.org/10.3390/ijms26199571 - 30 Sep 2025
Abstract
Antimicrobial peptides (AMPs), also referred to as host defense peptides, are promising molecules in the development of the next generation of antibiotics against drug-resistant bacterial pathogens. Thanatin comprises a family of naturally occurring cationic AMPs derived from several species of insects. The first [...] Read more.
Antimicrobial peptides (AMPs), also referred to as host defense peptides, are promising molecules in the development of the next generation of antibiotics against drug-resistant bacterial pathogens. Thanatin comprises a family of naturally occurring cationic AMPs derived from several species of insects. The first thanatin, 21 residues long, was identified from the spined soldier bug, and more thanatin peptides have been discovered in recent studies. The 16-residue thanatin from Anasa tristis, or Ana-thanatin, represents the shortest sequence in the family. However, the antimicrobial activity and mechanistic process underpinning bacterial cell killing have yet to be reported for Ana-thanatin peptide. In this work, we examined the antibacterial activity, structures, and target interactions of Ana-thanatin. Our results demonstrated that Ana-thanatin exerts potent antibiotic activity against strains of Gram-negative and Gram-positive bacteria. Biophysical studies demonstrated that Ana-thanatin interacts with LPS outer membrane and can permeabilize the OM barrier in the process. Atomic-resolution structures of the peptide in free solution and in complex with lipopolysaccharide (LPS) micelle were solved by NMR, determining canonical β-sheet structures. Notably, in complex with LPS, the β-sheet structure of the peptide was better defined in terms of the packing of amino acid residues. Further, MD simulations demonstrated rapid binding of the Ana-thanatin peptide with the LPS molecules within the lipid bilayers. These studies have revealed structural features which could be responsible for LPS-OM disruption of the Gram-negative bacteria. In addition, NMR heteronuclear single quantum coherence (HSQC) studies have demonstrated that Ana-thanatin can strongly interact with the LPS transport periplasmic protein LptAm, potentially inhibiting OM biogenesis. Taken together, we surmise that the Ana-thanatin peptide could serve as a template for the further development of novel antibiotics. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

32 pages, 2368 KB  
Article
Quercetin Increases Expression of Membrane-TRAIL in Glioblastoma Cells Resulting in Apoptosis
by Erin M. Thorpe, Gaëlle Muller-Greven, Jamila Hirbawi, Candece L. Gladson and Michael Kalafatis
Cancers 2025, 17(19), 3197; https://doi.org/10.3390/cancers17193197 - 30 Sep 2025
Abstract
Background/Objectives: Glioblastoma isocitrate dehydrogenase (IDH)-wild type (GBM) belongs to a deadly class of cancers with a limited number of effective therapies and a dismal prognosis. Quercetin is a natural flavonoid with proven anti-cancer effects. This study aimed to assess the effect of quercetin [...] Read more.
Background/Objectives: Glioblastoma isocitrate dehydrogenase (IDH)-wild type (GBM) belongs to a deadly class of cancers with a limited number of effective therapies and a dismal prognosis. Quercetin is a natural flavonoid with proven anti-cancer effects. This study aimed to assess the effect of quercetin on recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)-mediated apoptosis in various GBM cells and control astrocytes. Methods: Two astrocyte cell lines and three GBM cell lines, M059K, T98G, and A172, were treated with quercetin (±rhTRAIL), and the results were evaluated by Western blotting, confocal microscopy, and flow cytometry analyses. Results: Quercetin alone did not induce apoptosis in normal astrocytes. Surprisingly, quercetin alone induced apoptosis in all GBM cell lines through both the intrinsic and extrinsic pathways of apoptosis in a TRAIL-dependent manner. M059K were the most sensitive to quercetin-induced apoptosis, followed by T98G and A172. We determined that GBM cells possess endogenous membrane-TRAIL, and that quercetin, in a time- and concentration-dependent manner, increased the trafficking of membrane-TRAIL to the cell surface. Conclusions: We demonstrate that quercetin alone induces apoptosis in GBM cell lines by facilitating endogenous membrane-TRAIL trafficking to the cell surface, where it can interact with death receptors already present on the surface of neighboring cancer cells, resulting in cell death. This unexpected finding may prove to be invaluable for potential future treatment of patients with GBM, since administration of quercetin can cause increased trafficking of membrane-TRAIL to the cell surface, inducing cancer cell apoptosis without affecting neighboring normal cells. Full article
(This article belongs to the Collection Innovations in Cancer Drug Development Research)
25 pages, 7449 KB  
Article
Scion–Rootstock Interactions Enhance Freezing Stress Resilience in Citrus reticulata Through Integrated Antioxidant Defense and Carbon–Nitrogen Metabolic Adjustments
by Alaiha Asif, Shahid Iqbal, Carlos Eduardo Aucique-Perez, KeAndre Leaks, Rashad Mukhtar Balal, Matthew Mattia, John M. Chater and Muhammad Adnan Shahid
Plants 2025, 14(19), 3029; https://doi.org/10.3390/plants14193029 - 30 Sep 2025
Abstract
Frequent and increasingly severe freezing events threaten citrus production in northern Florida, underscoring the need for strategies that enhance freezing resilience in citrus cultivars. Grafting scions onto tolerant rootstocks provides a physiologically integrative approach to improve stress tolerance. This study aims to elucidate [...] Read more.
Frequent and increasingly severe freezing events threaten citrus production in northern Florida, underscoring the need for strategies that enhance freezing resilience in citrus cultivars. Grafting scions onto tolerant rootstocks provides a physiologically integrative approach to improve stress tolerance. This study aims to elucidate how these interactions modulate physiological and metabolic responses under freezing stress, thereby identifying mechanisms that contribute to enhanced freeze resilience in citrus. Here, we grafted Citrus reticulata (cv. UF-950) onto eight rootstocks (Bitters, Blue-1, C-146, Sour Orange, UFR07TC, UFR09TC, UFR5, and US942) to evaluate scion–rootstock interactions under normal (20 °C) and freezing (−6 °C) conditions. Freezing stress caused a sharp increase in oxidative stress markers, lipid peroxidation, and membrane damage while reducing photosynthetic performance across most combinations. Antioxidant capacity, osmolyte accumulation, and carbon–nitrogen metabolic responses varied significantly among rootstocks, revealing strong genotype-dependent modulation of scion physiology. Among the tested combinations, UF-950 grafted onto UFR5 displayed the highest freezing tolerance, characterized by robust activation of antioxidant enzymes, elevated proline and glycine betaine accumulation, reduced oxidative damage, and sustained carbon–nitrogen metabolic fluxes under freezing stress. These results demonstrate that rootstock genotype governs the extent of scion defense activation and metabolic homeostasis under freezing conditions. Our findings identify UFR5 as a promising rootstock for enhancing freezing resilience in citrus and provide mechanistic insight into how scion–rootstock interaction orchestrates integrative stress tolerance pathways. Future work should focus on multi-omics dissection of rootstock-mediated signaling networks and long-term field validation to optimize rootstock selection for enhanced cold resilience under variable climatic conditions. Full article
(This article belongs to the Special Issue Rootstock Influence on Crop Regulation)
27 pages, 1427 KB  
Review
Cardiovascular Physiology During Mechanical Circulatory Support: Implications for Management and Monitoring
by Ettore Crimi, Karuna Rajkumar, Scott Coleman, Rohesh Fernando, Bryan Marchant, Chandrika Garner, John Gaillard, Megan H. Hicks, Ryan C. Maves and Ashish K. Khanna
J. Clin. Med. 2025, 14(19), 6935; https://doi.org/10.3390/jcm14196935 - 30 Sep 2025
Abstract
Background/Objectives: Mechanical circulatory support (MCS) is increasingly utilized for the management of acute decompensated heart failure (HF) and cardiogenic shock (CS). The primary goals of MCS are to restore systemic perfusion, reduce cardiac workload, and support end-organ function. A thorough understanding of cardiovascular [...] Read more.
Background/Objectives: Mechanical circulatory support (MCS) is increasingly utilized for the management of acute decompensated heart failure (HF) and cardiogenic shock (CS). The primary goals of MCS are to restore systemic perfusion, reduce cardiac workload, and support end-organ function. A thorough understanding of cardiovascular physiology in patients supported by MCS is essential for clinical decision-making. This review summarizes current evidence on the physiological effects of various MCS devices, key monitoring techniques, patient management, and explores the emerging role of artificial intelligence (AI) in this field. Main Text: Short-term MCS devices include intra-aortic balloon pumps (IABP), percutaneous left-sided devices such as Impella (Abiomed, Danvers, MA, USA) and TandemHeart (LivaNova, London, UK), percutaneous right-sided support devices like Protek Duo (LivaNova, London, UK) and Impella RP Flex (Abiomed, Danvers, MA, USA), and veno-arterial extracorporeal membrane oxygenation (VA-ECMO). Long-term support is mainly provided by left ventricular assist devices (LVADs), including the HeartMate 3 (Abbott Laboratories, Chicago, IL, USA). Optimal MCS application requires an understanding of device-specific cardiovascular interactions and expertise in appropriate monitoring tools to assess device performance and patient response. The choice of device, timing of initiation, and patient selection must be individualized, with careful consideration of ethical implications. The integration of AI offers significant potential to advance clinical care by improving complication prediction, enabling real-time optimization of device settings, and refining patient selection criteria. Conclusions: MCS is a rapidly evolving field that requires a comprehensive understanding of cardiovascular interactions, careful selection of monitoring strategies, and individualized clinical management. Future research should address current device limitations, clarify device-specific clinical applications, and assess the validity of AI-driven technologies. Full article
(This article belongs to the Special Issue Applied Cardiorespiratory Physiology in Critical Care Medicine)
23 pages, 9866 KB  
Article
Dysferlin Protein–Protein Interaction Pathways in the Organ of Corti and Spiral Ganglion Intersect with Alzheimer’s Protein Pathways
by Marian J. Drescher, Dennis G. Drescher, Khalid M. Khan, James S. Hatfield and Darshi Hemani
Int. J. Mol. Sci. 2025, 26(19), 9559; https://doi.org/10.3390/ijms26199559 - 30 Sep 2025
Abstract
Dysferlin direct protein–protein interactions (PPI) previously have been elucidated with surface plasmon resonance (SPR) and predicted to underlie membrane repair in mechanotransducing myofibrils. In mechanotransducing inner ear hair cells, dysferlin is detected with Z-stack confocal immunofluorescence in the stereocilia and their inserts in [...] Read more.
Dysferlin direct protein–protein interactions (PPI) previously have been elucidated with surface plasmon resonance (SPR) and predicted to underlie membrane repair in mechanotransducing myofibrils. In mechanotransducing inner ear hair cells, dysferlin is detected with Z-stack confocal immunofluorescence in the stereocilia and their inserts in the tectorial membrane (TM) co-localizing with FKBP8, consistent with the SPR determination of tight, positively Ca2+-dependent interaction. FKBP8, a direct binding partner of mechanotransducing TMC1, when overexpressed, evokes an elevation in anti-apoptotic BCL2, inhibition of ryanodine receptor (RYR) activity, and a consequent reduction in Ca2+ release. RYR3 has now been immunolocalized to the tip of the TM in close association with a third-row outer hair cell (OHC) stereociliary BCL2-positive insertion. Dysferlin, annexin A2, and Alzheimer’s proteins BACE1 and amyloid precursor protein (APP) are also accumulated in these stereociliary insertions. RYR2 and RYR1 have been immunolocalized to the TM core, in position to influence TM Ca2+. Dysferlin PPI pathways also intersect with AD protein pathways in the spiral ganglion (SG). Dysferlin segregates with FKBP8, BACE1, and RYR3 in the interiors of SG type I cell bodies. RYR1, RYR2, PSEN1, BCL2, and caspase 3 are primarily confined to plasma membrane sites. RYR3 pathways traverse the plasma membrane to the cell body interior. Western analysis of dysferlinopathy proteins links FKBP8 and BCL2 overexpression with RYR inhibition, indicative of dysferlin targets that are ameliorative in AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

25 pages, 1196 KB  
Review
Microbial Electrosynthesis: The Future of Next-Generation Biofuel Production—A Review
by Radu Mirea, Elisa Popescu and Traian Zaharescu
Energies 2025, 18(19), 5187; https://doi.org/10.3390/en18195187 - 30 Sep 2025
Abstract
Microbial electrosynthesis (MES) has emerged as a promising bio-electrochemical technology for sustainable CO2 conversion into valuable organic compounds since it uses living electroactive microbes to directly convert CO2 into value-added products. This review synthesizes advancements in MES from 2010 to 2025, [...] Read more.
Microbial electrosynthesis (MES) has emerged as a promising bio-electrochemical technology for sustainable CO2 conversion into valuable organic compounds since it uses living electroactive microbes to directly convert CO2 into value-added products. This review synthesizes advancements in MES from 2010 to 2025, focusing on the electrode materials, microbial communities, reactor engineering, performance trends, techno-economic evaluations, and future challenges, especially on the results reported between 2020 and 2025, thus highlighting that MES technology is now a technology to be reckoned with in the spectrum of biofuel technology production. While the current productivity and scalability of microbial electrochemical systems (MESs) remain limited compared to conventional CO2 conversion technologies, MES offers distinct advantages, including process simplicity, as it operates under ambient conditions without the need for high pressures or temperatures; modularity, allowing reactors to be stacked or scaled incrementally to match varying throughput requirements; and seamless integration with circular economy strategies, enabling the direct valorization of waste streams, wastewater, or renewable electricity into valuable multi-carbon products. These features position MES as a promising platform for sustainable and adaptable CO2 utilization, particularly in decentralized or resource-constrained settings. Recent innovations in electrode materials, such as conductive polymers and metal–organic frameworks, have enhanced electron transfer efficiency and microbial attachment, leading to improved MES performance. The development of diverse microbial consortia has expanded the range of products achievable through MES, with studies highlighting the importance of microbial interactions and metabolic pathways in product formation. Advancements in reactor design, including continuous-flow systems and membrane-less configurations, have addressed scalability issues, enhancing mass transfer and system stability. Performance metrics, such as the current densities and product yields, have improved due to exceptionally high product selectivity and surface-area-normalized production compared to abiotic systems, demonstrating the potential of MES for industrial applications. Techno-economic analyses indicate that while MES offers promising economic prospects, challenges related to cost-effective electrode materials and system integration remain. Future research should focus on optimizing microbial communities, developing advanced electrode materials, and designing scalable reactors to overcome the existing limitations. Addressing these challenges will be crucial for the commercialization of MES as a viable technology for sustainable chemical production. Microbial electrosynthesis (MES) offers a novel route to biofuels by directly converting CO2 and renewable electricity into energy carriers, bypassing the costly biomass feedstocks required in conventional pathways. With advances in electrode materials, reactor engineering, and microbial performance, MES could achieve cost-competitive, carbon-neutral fuels, positioning it as a critical complement to future biofuel technologies. Full article
Show Figures

Figure 1

21 pages, 1963 KB  
Review
Lipids, Tetraspanins, and Exosomes: Cell Factors in Orthoflavivirus Replication and Propagation
by Magda L. Benitez-Vega, Carlos D. Cordero-Rivera, Jose De Jesus Bravo-Silva, Ricardo Jimenez-Camacho, Carlos Noe Farfan-Morales, Jonathan Hernández-Castillo, Marcos Pérez-García and Rosa M. del Ángel
Viruses 2025, 17(10), 1321; https://doi.org/10.3390/v17101321 - 29 Sep 2025
Abstract
The cellular membrane is a dynamic structure composed of lipids and proteins organized into specialized domains that facilitate interactions between extracellular molecules and the intracellular environment. Tetraspanins are a family of transmembrane proteins involved in diverse cellular processes, including membrane stabilization and fusion, [...] Read more.
The cellular membrane is a dynamic structure composed of lipids and proteins organized into specialized domains that facilitate interactions between extracellular molecules and the intracellular environment. Tetraspanins are a family of transmembrane proteins involved in diverse cellular processes, including membrane stabilization and fusion, endocytosis, extracellular vesicle formation, and the organization of proteins and lipids at specific membrane sites known as Tetraspanin-Enriched Microdomains (TEMs). These lipid–protein interactions play a critical role in the replicative cycle of Orthoflavivirus, including dengue, Zika, and West Nile, by facilitating viral entry, replication, assembly, and egress. In addition, tetraspanins also regulate the biogenesis and function of extracellular vesicles, contributing to viral dissemination, persistent infection, and immune evasion. This review summarizes the current knowledge on the structural and functional aspects of tetraspanins, their interplay with lipids, and their emerging roles in the Orthoflavivirus replicative cycle. We also discuss how these insights may inform the development of antiviral strategies targeting membrane organization and virus–host interactions. Full article
(This article belongs to the Special Issue Dengue, Zika and Yellow Fever Virus Replication)
Show Figures

Figure 1

Back to TopTop