Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (347)

Search Parameters:
Keywords = meristem development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2747 KB  
Review
The Role of CRABS CLAW Transcription Factor in Floral Organ Development in Plants
by Piotr Szymczyk, Jadwiga Nowak and Małgorzata Majewska
Int. J. Mol. Sci. 2025, 26(19), 9377; https://doi.org/10.3390/ijms26199377 - 25 Sep 2025
Abstract
CRABS CLAW (CRC) is a member of the plant-specific YABBY transcription factor family, defined by the presence of a C2C2 zinc-finger domain and a C-terminal YABBY domain. CRC is essential for proper floral development, functioning in the termination of the floral meristem, maintenance [...] Read more.
CRABS CLAW (CRC) is a member of the plant-specific YABBY transcription factor family, defined by the presence of a C2C2 zinc-finger domain and a C-terminal YABBY domain. CRC is essential for proper floral development, functioning in the termination of the floral meristem, maintenance of adaxial–abaxial polarity within the gynoecium, and regulation of nectary and leaf morphogenesis. CRC orchestrates its diverse regulatory functions through interaction networks comprising other transcription factors and plant developmental regulators, including chromatin-modifying enzymes and proteins involved in auxin biosynthesis, transport, and signaling. The roles of genes and proteins interacting with CRC or CRC have been characterized in several model plant species, and the number of identified CRC/CRC-associated interactions continues to expand, revealing both species-specific and conserved functional roles across angiosperms. Many functions of CRC and its interacting partners have been elucidated through the analysis of anatomical and physiological phenotypes associated with specific gene mutations. The functional roles of CRC in plant development appear to have been acquired progressively through evolutionary diversification. These evolutionary changes have been associated with the relative conservation of CRC gene copy number and a predominant role of mutations occurring in non-coding regulatory regions. These properties are attributed to the relatively limited number of genes comprising the CRC regulatory network and the capacity to induce dosage-dependent effects via the emergence of novel proteins with overlapping or analogous functions. The identification and functional characterization of CRC transcription factors across diverse plant species has advanced rapidly in recent years, yet a comprehensive synthesis of these findings has not been presented in a dedicated article. Therefore, this study reviews the current knowledge on CRC transcription factors, with a focus on their identification, expression patterns, and functional roles in plant development. Full article
Show Figures

Figure 1

27 pages, 19015 KB  
Article
GmSAUR46b Integrates Light Signals to Regulate Leaf Midrib Thickness and Stem Trichome Density in Soybean
by Xiao Li, Bei Liu, Yunhua Yang, Han Gou, Huan Du, Yuhao Chen, Huakun Yu, Jinming Zhao and Fengjie Yuan
Int. J. Mol. Sci. 2025, 26(18), 9200; https://doi.org/10.3390/ijms26189200 - 20 Sep 2025
Viewed by 229
Abstract
Soybean (Glycine max (L.) Merr.) is a vital crop for the global supply of protein and oil, with its growth and development being regulated by genetic, hormonal, and environmental factors, particularly light and hormone signaling. The Small Auxin-Up RNA (SAUR) [...] Read more.
Soybean (Glycine max (L.) Merr.) is a vital crop for the global supply of protein and oil, with its growth and development being regulated by genetic, hormonal, and environmental factors, particularly light and hormone signaling. The Small Auxin-Up RNA (SAUR) gene family plays a crucial role in plant growth regulation; however, the molecular mechanisms by which GmSAUR46 integrates photosynthesis and hormonal networks in soybean remain unclear. In this study, we focused on GmSAUR46b (Glyma.19G182600.1) and employed CRISPR/Cas9-mediated knockout and 35S-driven overexpression lines, alongside wild-type soybean (cv. Williams 82), to investigate its function. RNA sequencing (RNA-Seq) was conducted on shoot apical meristems, stems, and leaves at three developmental stages (V1, V2, V3), followed by transcriptomic analyses, including differential gene expression (DEG) identification and functional enrichment (GO, KEGG, KOG). Anatomical studies using paraffin sectioning and scanning electron microscopy (SEM) assessed the leaf midrib thickness and stem trichome density under varying light conditions. The transcriptomic results revealed DEGs enriched in pathways related to cell wall metabolism, hormone response, and photosynthesis. Anatomical analyses demonstrated that GmSAUR46b specifically regulates the leaf midrib thickness and stem trichome density in a light-dependent manner: under shade, the overexpression lines exhibited increased midrib thickness and trichome density, whereas the knockout lines showed reduced trichome density. Additionally, novel transcripts associated with stress resistance, hormone metabolism, and photosynthesis were identified, expanding the known soybean gene repertoire. Collectively, GmSAUR46b functions as a central hub integrating light signals with hormone and cell wall pathways to modulate soybean growth, particularly leaf and stem traits. This study advances understanding of SAUR gene function in soybean and provides valuable insights for molecular breeding aimed at improving adaptability and yield under diverse environmental conditions. Full article
Show Figures

Figure 1

17 pages, 2667 KB  
Article
Comprehensive Analysis of TaNCED Gene Family in Wheat Vernalization Process
by Guoqing Cui and Hao Cheng
Biology 2025, 14(9), 1293; https://doi.org/10.3390/biology14091293 - 19 Sep 2025
Viewed by 268
Abstract
9-cis-epoxycarotenoid dioxygenases (NCEDs), serving as the rate-limiting enzymes in abscisic acid (ABA) biosynthesis, play a pivotal role in regulating plant growth and development, as well as responses to abiotic stresses. Despite their agronomic importance, the molecular dialog between ABA signaling and [...] Read more.
9-cis-epoxycarotenoid dioxygenases (NCEDs), serving as the rate-limiting enzymes in abscisic acid (ABA) biosynthesis, play a pivotal role in regulating plant growth and development, as well as responses to abiotic stresses. Despite their agronomic importance, the molecular dialog between ABA signaling and vernalization, a cold-induced switch from vegetative to reproductive growth in wheat, remains poorly characterized, particularly regarding the TaNCED gene family members. Here, we systematically identified 13 TaNCED members in hexaploid wheat, followed by multi-omics characterization encompassing physicochemical properties, exon–intron architectures, conserved catalytic domains, protein motifs, and cis-acting elements. By analyzing transcriptome data from vernalization treatments, we profiled the expression patterns of TaNCED genes during vernalization. Notably, TaNCED5-6A, TaNCED5-6B, and TaNCED5-6D exhibited significant upregulation in vernalized leaves and tiller buds, while maintaining basal expression in the shoot apical meristem, the site of floral induction. This tissue-specific expression pattern implicates their specialized role in mediating vernalization responses via ABA biosynthesis. Collectively, our findings provide novel insights into the regulatory mechanisms of ABA-mediated vernalization in wheat and offer valuable targets for vernalization efficiency in cereal breeding programs. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 3872 KB  
Article
PtrIAA12-PtrARF8 Complex Regulates the Expression of PtrSAUR17 to Control the Growth of Roots in Poncirus trifoliata
by Xiaoli Wang, Manman Zhang, Xiaoya Li, Saihang Zheng, Fusheng Wang, Shiping Zhu and Xiaochun Zhao
Plants 2025, 14(18), 2875; https://doi.org/10.3390/plants14182875 - 16 Sep 2025
Viewed by 262
Abstract
The root system is an important determinant affecting the growth, adaptivity and stress resistance of citrus plants. Currently, the genetic regulatory network underlying root growth and development in citrus remains largely unknown. We report that a PtrAUX/IAA-ARF complex mediates the growth and development [...] Read more.
The root system is an important determinant affecting the growth, adaptivity and stress resistance of citrus plants. Currently, the genetic regulatory network underlying root growth and development in citrus remains largely unknown. We report that a PtrAUX/IAA-ARF complex mediates the growth and development of roots in citrus through regulating the transcription of PtrSAUR. The auxin signaling pathway plays an essential role in regulating the growth and development of roots. In this study, we found that in citrus Poncirus trifoliata, PtrIAA12, encoding a canonical Aux/IAA protein, was highly expressed in the meristem and elongation zone of the root. Functional characterization showed that overexpression and silence of PtrIAA12 significantly enhanced and suppressed the elongation of primary roots, respectively. Further analysis revealed that PtrIAA12 could interact with some members of PtrARFs, of which, PtrARF8 was identified to be the transcriptional factor of PtrSAUR17. Investigation of PtrSAUR17 transgenic plants verified that PtrSAUR17 is a key gene regulating the growth of roots in citrus. In conclusion, PtrIAA12 and PtrARF8 are the key members of the AUX/IAA-ARF complex in citrus controlling the growth and development of roots through regulating the transcription of PtrSAUR17. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 3526 KB  
Article
Non-CG DNA Methylation Regulates Root Stem Cell Niche Maintenance, Auxin Signaling, and ROS Homeostasis in Arabidopsis Under Cadmium Stress
by Emanuela Talarico, Eleonora Greco, Fabrizio Araniti, Adriana Chiappetta and Leonardo Bruno
Plants 2025, 14(18), 2838; https://doi.org/10.3390/plants14182838 - 11 Sep 2025
Viewed by 348
Abstract
Non-CG DNA methylation plays a critical role in regulating root development and stress responses in Arabidopsis thaliana under cadmium (Cd2+) exposure. We compared wild type (WT) plants with the ddc triple mutant (deficient in DRM1, DRM2, and CMT3) [...] Read more.
Non-CG DNA methylation plays a critical role in regulating root development and stress responses in Arabidopsis thaliana under cadmium (Cd2+) exposure. We compared wild type (WT) plants with the ddc triple mutant (deficient in DRM1, DRM2, and CMT3) to assess how epigenetic modifications affect the root apical meristem (RAM) under 100 µM and 150 µM CdCl2 treatments. Cd2+ exposure led to RAM disorganization, reduced cortical cell number, and quiescent center (QC) cell loss in WT roots, while ddc mutants maintained meristem integrity and exhibited QC cell expansion. Auxin signaling, assessed via pDR5::GFP, was disrupted in WT roots at high Cd2+ levels but remained stable in ddc mutants. Similarly, WT roots showed elevated reactive oxygen species accumulation under stress, whereas ddc mutants displayed a reduced oxidative response. These results suggest that non-CG DNA methylation suppresses key regulators of stem cell maintenance, hormonal balance, and redox homeostasis during heavy metal stress. Loss of this methylation in the ddc mutant confers enhanced resilience to Cd2+ toxicity, highlighting an epigenetic mechanism underlying root stress adaptation. Full article
Show Figures

Figure 1

27 pages, 14478 KB  
Article
rolB Promotes Adventitious Root Development in Pyrus betulaefolia by Modulating Endogenous Hormones and Gene Expression
by Ting Xie, Weimin Wang, Kuozhen Nie, Zijuan He, Jiaojiao He, Yuxing Zhang, Na Liu and Yingli Li
Agronomy 2025, 15(9), 2165; https://doi.org/10.3390/agronomy15092165 - 11 Sep 2025
Viewed by 300
Abstract
We investigated the effect of Agrobacterium rhizogenes-mediated transformation mof rolB on adventitious root development and endogenous hormones in ‘duli’ (Pyrus betulaefolia) via transcriptomic analysis of wild-type (WT) and rolB-transformed plants. The formation of root primordia occurred earlier [...] Read more.
We investigated the effect of Agrobacterium rhizogenes-mediated transformation mof rolB on adventitious root development and endogenous hormones in ‘duli’ (Pyrus betulaefolia) via transcriptomic analysis of wild-type (WT) and rolB-transformed plants. The formation of root primordia occurred earlier in transgenic ‘duli’ than in the WT plants. At seven days, 57% of the transgenic seedlings had formed root primordia, whereas root primordia first appeared at seven days in WT ‘duli’. The rooting rate of transgenic ‘duli’ and WT plants was 90% and 77.14%, respectively. rolB significantly promoted the formation of secondary roots. Within 20 days, auxin (IAA), gibberellic acid (GA3), and zeatin riboside (ZR) were higher and abscisic acid (ABA) was lower in transgenic ‘duli’ than in WT plants. Gene Ontology analysis revealed high enrichment in signaling pathways and ADP binding, and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that several differentially expressed genes were enriched in flavonoid and carotenoid-related pathways and plant hormone signal transduction. rolB induced changes in the expression patterns of several genes involved in hormone biosynthesis, metabolism, and signal transduction pathways in ‘duli’. Weighted gene co-expression network analysis identified the DEGs associated with endogenous hormone levels and indicated that the central genes of modules most strongly correlated with ABA, ZR, IAA, and GA3 regulate protein synthesis, signaling, and root tissue meristem activity. Protein–protein interaction analysis yielded a co-expression network of physiological and transcriptomic data during rooting and identified key genes at the network core. These findings provide valuable insights into the regulatory mechanisms of rolB and its influence on root development in ‘duli’. Full article
Show Figures

Figure 1

14 pages, 2469 KB  
Article
WUSCHEL Transcription Factor Regulates Floral Development in ‘Jizaomi’ Grapevine
by Zedong Sun, Huan Xu, Wenxuan Shi, Jialin Fu, Pengfei Wen, Jinjun Liang and Pengfei Zhang
Horticulturae 2025, 11(9), 1099; https://doi.org/10.3390/horticulturae11091099 - 11 Sep 2025
Viewed by 354
Abstract
Carpel number has been recognized as a critical factor influencing fruit size, ultimately determining yield and economic efficiency. The WUSCHEL (WUS) protein is essential for maintaining stem cell homeostasis in the floral meristem. Its expression level directly influences the size of the floral [...] Read more.
Carpel number has been recognized as a critical factor influencing fruit size, ultimately determining yield and economic efficiency. The WUSCHEL (WUS) protein is essential for maintaining stem cell homeostasis in the floral meristem. Its expression level directly influences the size of the floral meristem (FM), thereby determining the number of floral organs in Arabidopsis thaliana, Solanum lycopersicum, and Cucumis sativus. While its role remained largely unexplored in grapevine (Vitis vinifera). This study cloned the VvWUS gene from the polycarpic grape cultivar ‘Jizaomi’. Transgenic tomato lines expressing VvWUS heterologously exhibited accelerated floral transition, enhanced carpel/floral organ initiation, and had significantly higher locule numbers relative to wild type. Furthermore, direct binding of VvWUS to the VvAGAMOUS (VvAG) promoter and activation of VvAG expression were demonstrated through yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays. These findings elucidated the molecular function of VvWUS in grape carpel development, providing a foundational basis for molecular breeding strategies targeting large-berry grape varieties. Full article
Show Figures

Figure 1

13 pages, 3521 KB  
Article
Evaluation of In Vitro Regeneration Aptitude Through Histological Detection in Ocimum basilicum L.
by Michela Montone, Arianna Cassetti, Barbara Ruffoni, Laura Pistelli and Marco Savona
Horticulturae 2025, 11(9), 1060; https://doi.org/10.3390/horticulturae11091060 - 4 Sep 2025
Viewed by 417
Abstract
Sweet basil (Ocimum basilicum L.) is one of the most well-known aromatic herbs, which are economically important for food and pharmaceutical purposes. In vitro regeneration protocols are a fundamental part of molecular approaches, such as genome editing, which are used to enhance [...] Read more.
Sweet basil (Ocimum basilicum L.) is one of the most well-known aromatic herbs, which are economically important for food and pharmaceutical purposes. In vitro regeneration protocols are a fundamental part of molecular approaches, such as genome editing, which are used to enhance crop quality and pathogen resistance. In this research, in vitro regeneration methods were developed to examine the morphogenic aptitude of four different explant types from five commercial cvs of Ocimum basilicum L. (‘Prospera’, ‘Paoletto’, ‘Italiko FT’, ‘Dark opal’, and ‘Bolloso napoletano’). ‘Prospera’ showed the highest direct regeneration efficiency in all of the explant types (100% in the roots, 36% ± 0.02 in the cotyledons, 7.5% ± 0.2 in the hypocotyls, and 50% ± 0.04 in the cotyledonary nodes). The roots were found to be the most effective explant type, producing nodule-like meristems (100% in ‘Prospera’ and ‘FT Italiko’, 95.24% ± 0.01 in ‘Bolloso napoletano’), as precursors of shoots. Histological analysis was confirmed to be a suitable method to detect meristematic activity during the early morphogenic process and to evaluate the explants’ regeneration potential. Full article
Show Figures

Figure 1

19 pages, 2421 KB  
Article
Genome-Wide Identification of the Dendrocalamus latiflorus IDD Gene Family and Its Functional Role in Bamboo Shoot Development
by Yu-Han Lin, Peng-Kai Zhu, Mei-Yin Zeng, Xin-Ru Gao, Tian-You He, Jun-Dong Rong, Yu-Shan Zheng and Ling-Yan Chen
Genes 2025, 16(9), 1036; https://doi.org/10.3390/genes16091036 - 30 Aug 2025
Viewed by 586
Abstract
Background: Transcription factors (TFs) critically regulate gene expression, orchestrating plant growth, development, and stress responses. The conserved IDD (INDETERMINATE DOMAIN) TF family modulates key developmental processes, including root, stem, and seed morphogenesis. Dendrocalamus latiflorus Munro, an economically vital sympodial bamboo [...] Read more.
Background: Transcription factors (TFs) critically regulate gene expression, orchestrating plant growth, development, and stress responses. The conserved IDD (INDETERMINATE DOMAIN) TF family modulates key developmental processes, including root, stem, and seed morphogenesis. Dendrocalamus latiflorus Munro, an economically vital sympodial bamboo in southern China, suffers significant yield losses due to prevalent bamboo shoot abortion, impacting both edible shoot production and timber output. Despite the documented roles of IDD TFs in shoot apical meristem expression and lateral organ regulation, their genome-wide characterization in D. latiflorus remains unstudied. Methods: Using IDD members from Arabidopsis thaliana, Oryza sativa, and Phyllostachys edulis as references, we identified 45 DlIDD genes in D. latiflorus. Comprehensive bioinformatics analyses included gene characterization, protein physicochemical assessment, phylogenetic reconstruction, and examination of gene structures/conserved domains. Differential expression of DlIDD genes was profiled between dormant and sprouting bamboo shoots to infer putative functions. Results: The 45 DlIDD genes were phylogenetically classified into three subfamilies and unevenly distributed across 34 chromosomes. Whole-genome duplication (WGD) events drove the expansion of this gene family. Promoter analyses revealed enriched cis-regulatory elements associated with hormone response and developmental regulation. Functional analyses suggested potential roles for DlIDD genes in bamboo shoot development. Conclusions: This study provides a foundation for future research to elucidate the functions of IDD TFs and their regulatory mechanisms in bamboo shoot morphogenesis and lateral bud development within woody monocots. Full article
Show Figures

Figure 1

16 pages, 1164 KB  
Review
Research Advances in AP2/ERF Transcription Factors in Rice Growth and Development
by Ying He, Ruiqi Li, Dike Li, Xingyi Fan, Xiaoyuan Chen, Chuxiong Zhuang and Jing Li
Plants 2025, 14(17), 2673; https://doi.org/10.3390/plants14172673 - 27 Aug 2025
Viewed by 583
Abstract
The AP2/ERF transcription factor family plays a vital role in regulating rice growth and development. Recent years have seen notable progress in understanding the functions of AP2/ERF transcription factors in rice. Studies indicate that these factors not only control the differentiation of rice [...] Read more.
The AP2/ERF transcription factor family plays a vital role in regulating rice growth and development. Recent years have seen notable progress in understanding the functions of AP2/ERF transcription factors in rice. Studies indicate that these factors not only control the differentiation of rice inflorescence meristems but also participate in developing organs such as roots, stems, and leaves. However, the specific molecular mechanisms of AP2/ERF transcription factors, their interactions with other proteins, and how they precisely regulate the expression of particular genes still require further research. This paper systematically reviews recent advances in the functional studies of AP2/ERF transcription factors in rice growth and development, focusing on their roles in inflorescence development, grain formation, and the development of roots, stems, and leaves. It also discusses their potential applications in molecular breeding. By compiling recent research findings, this review aims to provide both theoretical insights and practical guidance for a better understanding of the regulatory networks involving AP2/ERF transcription factors and their use in rice genetic improvement. Full article
(This article belongs to the Special Issue Crop Germplasm Resources, Genomics, and Molecular Breeding)
Show Figures

Figure 1

19 pages, 8100 KB  
Article
Genome-Wide Analysis of the Maize LBD Gene Family Reveals a Role for ZmLBD12 in the Development of Lateral Roots
by Shifeng Wang, Yang Wang, Jianbing Zhong, Wenlin Xu, Qingyou Gong, Lihong Zhai, Gaoke Li and Jun Huang
Plants 2025, 14(16), 2600; https://doi.org/10.3390/plants14162600 - 21 Aug 2025
Viewed by 498
Abstract
The growth and yield of the aboveground parts of maize (Zea mays L.) are closely associated with development of the root system. LBD (Lateral Organ Boundaries Domain) transcription factors are crucial for the regulation of lateral organ development in plants. However, to [...] Read more.
The growth and yield of the aboveground parts of maize (Zea mays L.) are closely associated with development of the root system. LBD (Lateral Organ Boundaries Domain) transcription factors are crucial for the regulation of lateral organ development in plants. However, to date, little information has been uncovered about the LBD gene family in maize. In this research, a genome-wide identification revealed 45 LBD gene members in maize. The subsequent phylogeny, structure, and profiles of expression were analyzed. These genes were found to be dispersed across all 10 maize chromosomes and expressed in diverse tissues, including the roots, leaves, stems, pericarp, and vegetative meristems. Notably, ZmLBD12 exhibited specific expression in roots. Subsequent over-expression of ZmLBD12 in Arabidopsis thaliana demonstrated its role in lateral root development, identifying it as a candidate gene for further investigation of root development in maize. Our findings provide a systematic analysis of ZmLBD genes and highlight ZmLBD12 as a potential target gene for developing high-yielding, lodging-resistant maize varieties. Full article
Show Figures

Figure 1

18 pages, 1967 KB  
Article
Optimizing Growth Regulator Concentrations for Cannabis sativa L. Micropropagation
by Gabrielle A. Johnson, Carissa L. Jackson, Antonio Timoteo, Papaiah Sardaru, Michael H. Foland, Purushothaman Natarajan and Sadanand A. Dhekney
Plants 2025, 14(16), 2586; https://doi.org/10.3390/plants14162586 - 20 Aug 2025
Viewed by 803
Abstract
In this study, the effect of growth regulators on shoot proliferation and rooting were evaluated to develop an efficient micropropagation protocol for the Cannabis sativa L. cultivars ‘Cherry Soda’ and ‘Purple’. Apical meristems were isolated from actively growing shoots of stock plants and [...] Read more.
In this study, the effect of growth regulators on shoot proliferation and rooting were evaluated to develop an efficient micropropagation protocol for the Cannabis sativa L. cultivars ‘Cherry Soda’ and ‘Purple’. Apical meristems were isolated from actively growing shoots of stock plants and transferred to Driver and Kuniyuki Walnut (DKW) culture medium containing either 0.0, 0.5, 1.0, 2.0, or 5.0 μM meta-Topolin to study their shoot proliferation response. Resulting shoot cultures were transferred to medium containing varying levels of Indole Acetic Acid (IAA), Indole Butyric Acid (IBA), or Naphthalene Acetic Acid (NAA), solely or in combination, and were subjected to a 10-day dark incubation followed by a 16 h/8 h light/dark period to identify the best treatment for root production. Among the different shoot proliferation treatments studied, the maximum number of shoots was produced on the control medium that was devoid of any meta-Topolin. Cultures grown on medium containing 5.0 μM meta-Topolin exhibited hyperhydricity, where shoots appeared translucent and pale green in color; were characterized by water-soaked lesions; and leaves appeared curled and brittle in contrast to healthy looking cultures. Among the various rooting treatments studied, shoots grown in the dark for 10 days exhibited the highest frequency of rooting on medium containing 4.0 μM NAA or 6.0 μM IBA + 1.0 μM NAA. Full developed plants with a robust shoot and root system were transferred to soil, acclimatized under conditions for high humidity, and then transferred to ambient conditions in 4 weeks. The micropropagation protocol developed here allows for rapid multiplication of disease-free plants in C. sativa cultivars. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration—2nd Edition)
Show Figures

Figure 1

18 pages, 3069 KB  
Article
Transcriptomic Profiling of Buds Unveils Insights into Floral Initiation in Tea-Oil Tree (Camellia oleifera ‘changlin53’)
by Hongyan Guo, Zongshun Zhou, Jian Zhou, Chao Yan, Wenbin Zhong, Chang Li, Ying Jiang, Yaqi Yuan, Linqing Cao, Wenting Pan, Jinfeng Wang, Jia Wang, Tieding He, Yikai Hua, Yisi Liu, Lixian Cao and Chuansong Chen
Plants 2025, 14(15), 2348; https://doi.org/10.3390/plants14152348 - 30 Jul 2025
Viewed by 520
Abstract
Flowering is a key agronomic trait that directly influences the yield of the tea-oil tree (Camellia oleifera). Floral initiation, which precedes flower bud differentiation, represents a critical developmental stage affecting the flowering outcomes. However, the molecular mechanisms underlying floral initiation in [...] Read more.
Flowering is a key agronomic trait that directly influences the yield of the tea-oil tree (Camellia oleifera). Floral initiation, which precedes flower bud differentiation, represents a critical developmental stage affecting the flowering outcomes. However, the molecular mechanisms underlying floral initiation in C. oleifera remain poorly understood. In this study, buds from five key developmental stages of a 12-year-old C. oleifera cultivar ‘changlin53’ were collected as experimental samples. Scanning electron microscopy was employed to identify the stage of floral initiation. UPLC-MS/MS was used to analyze endogenous gibberellin (GA) concentrations, while transcriptomic analysis was performed to reveal the underlying transcriptional regulatory network. Six GA types were detected during floral initiation and petal development. GA4 was exclusively detected at the sprouting stage (BII), while GA3 was present in all samples but was significantly lower in BII and the flower bud primordium formation stage (BIII) than in the other samples. A total of 64 differentially expressed genes were concurrently enriched in flower development, reproductive shoot system development, and shoot system development. Weighted gene co-expression network analysis (WGCNA) identified eight specific modules significantly associated with different developmental stages. The magenta module, containing Unigene0084708 (CoFT) and Unigene0037067 (CoLEAFY), emerged as a key regulatory module driving floral initiation. Additionally, GA20OX1 and GA2OX8 were identified as candidate genes involved in GA-mediated regulation of floral initiation. Based on morphological and transcriptomic analyses, we conclude that floral initiation of C. oleifera is a continuous regulatory process governed by multiple genes, with the FT-LFY module playing a central role in the transition from apical meristem to floral meristem. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

24 pages, 4780 KB  
Article
Bioinformatics and Functional Validation of CqPRX9L1 in Chenopodium quinoa
by Hongxia Guo, Linzhuan Song, Yufa Wang, Li Zhao and Chuangyun Wang
Plants 2025, 14(14), 2246; https://doi.org/10.3390/plants14142246 - 21 Jul 2025
Viewed by 531
Abstract
As a plant-specific peroxidase family, class III peroxidase (PRX) plays an important role in plant growth, development, and stress response. In this study, a preliminary functional analysis of CqPRX9L1 was conducted. Bioinformatics analysis revealed that CqPRX9L1 encodes a 349-amino acid protein belonging to [...] Read more.
As a plant-specific peroxidase family, class III peroxidase (PRX) plays an important role in plant growth, development, and stress response. In this study, a preliminary functional analysis of CqPRX9L1 was conducted. Bioinformatics analysis revealed that CqPRX9L1 encodes a 349-amino acid protein belonging to the plant-peroxidase-like superfamily, featuring a transmembrane domain and cytoplasmic localization. The promoter region of CqPRX9L1 harbors various cis-acting elements associated with stress responses, hormone signaling, light regulation, and meristem-specific expression. The tissue-specific expression pattern of the CqPRX9L1 gene and its characteristics in response to different stresses were explored using subcellular localization, quantitative real-time PCR (qRT-PCR), and heterologous transformation into Arabidopsis thaliana. The results showed that CqPRX9L1, with a transmembrane structure, was localized in the cytoplasm, which encodes 349 amino acids and belongs to the plant-peroxisome-like superfamily. The promoter region contains stress-response elements, hormone-response elements, light-response elements, and meristem expression-related elements. The expression of CqPRX9L1 was relatively higher in ears and roots at the panicle stage than in stems and leaves. CqPRX9L1 showed a dynamic expression pattern of first decreasing and then increasing under abiotic stresses such as 15% PEG 6000, low temperature, and salt damage, with differences in response time and degree. CqPRX9L1 plays an important role in response to abiotic stress by affecting the activity of antioxidant enzymes such as superoxide dismutase (SOD) and peroxidase (POD), as well as the synthesis and decomposition of proline (Pro). CqPRX9L1 also affects plant bolting and flowering by regulating key flowering genes (such as FT and AP1) and gibberellin (GA)-related pathways. The results establish a foundation for revealing the functions and molecular mechanisms of the CqPRX9L1 gene. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

21 pages, 3766 KB  
Article
Comparative Genomic Analysis of COMT Family Genes in Three Vitis Species Reveals Evolutionary Relationships and Functional Divergence
by Yashi Liu, Zhiyuan Bian, Shan Jiang, Xiao Wang, Lin Jiao, Yun Shao, Chengmei Ma and Mingyu Chu
Plants 2025, 14(13), 2079; https://doi.org/10.3390/plants14132079 - 7 Jul 2025
Viewed by 628
Abstract
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total [...] Read more.
Caffeic acid-O-methyltransferase (COMT) is a key enzyme in lignin synthesis and secondary metabolism in plants, and it participates in the regulation of plant growth and development as well as plants’ stress response. To further investigate the function of COMT in grapevine, a total of 124 COMT family genes were identified from three Vitis species in this study, namely Pinot noir (Vitis vinifera L.), Vitis amurensis, and Vitis riparia. The amino acid sequence encoded by these genes ranged from 55 to 1422 aa, and their molecular mass ranged from 6640.82 to 77,034.43 Da. Subcellular localization prediction inferred that they were mainly located in the plasma membrane and cytoplasm. The prediction of secondary structures showed that α-helix and irregular coiled-coil were primary structural elements. These genes were unevenly distributed across 10 different chromosomes, respectively. Phylogenetic tree analysis of the amino acid sequences of VvCOMT, VaCOMT, VrCOMT, and AtCOMT proteins showed that they were closely related and were divided into four subgroups. The motif distribution was similar among the cluster genes, and the gene sequence was notably conserved. The 124 members of the COMT gene family possessed a variable number of exons, ranging from 2 to 13. The promoter region of all of these COMTs genes contained multiple cis-acting elements related to hormones (e.g., ABA, IAA, MeJA, GA, and SA), growth and development (e.g., endosperm, circadian, meristem, light response), and various stress responses (e.g., drought, low temperature, wounding, anaerobic, defense, and stress). The intraspecies collinearity analysis suggested that there were one pair, three pairs, and six pairs of collinear genes in Va, Pinot noir, and Vr, respectively, and that tandem duplication contributed more to the expansion of these gene family members. In addition, interspecific collinearity revealed that the VvCOMTs had the strongest homology with the VaCOMTs, followed by the VrCOMTs, and the weakest homology with the AtCOMTs. The expression patterns of different tissues and organs at different developmental stages indicated that the VvCOMT genes had obvious tissue expression specificity. The majority of VvCOMT genes were only expressed at higher levels in certain tissues. Furthermore, we screened 13 VvCOMT genes to conduct qRT-PCR verification according to the transcriptome data of VvCOMTs under abiotic stresses (NaCl, PEG, and cold). The results confirmed that these genes were involved in the responses to NaCl, PEG, and cold stress. This study lays a foundation for the exploration of the function of the COMT genes, and is of great importance for the genetic improvement of abiotic stress resistance in grapes. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

Back to TopTop