Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = mesoscopic crystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6770 KB  
Article
Machine Learning-Driven Design and Optimization of Multi-Metal Nitride Hard Coatings via Multi-Arc Ion Plating Using Genetic Algorithm and Support Vector Regression
by Yu Gu, Jiayue Wang, Jun Zhang, Yu Zhang, Bushi Dai, Yu Li, Guangchao Liu, Li Bao and Rihuan Lu
Materials 2025, 18(15), 3478; https://doi.org/10.3390/ma18153478 - 24 Jul 2025
Viewed by 493
Abstract
The goal of this study is to develop an efficient machine learning framework for designing high-hardness multi-metal nitride coatings, overcoming the limitations of traditional trial-and-error methods. The development of multicomponent metal nitride hard coatings via multi-arc ion plating remains a significant challenge due [...] Read more.
The goal of this study is to develop an efficient machine learning framework for designing high-hardness multi-metal nitride coatings, overcoming the limitations of traditional trial-and-error methods. The development of multicomponent metal nitride hard coatings via multi-arc ion plating remains a significant challenge due to the vast compositional search space. Although theoretical studies in macroscopic, mesoscopic, and microscopic domains exist, these often focus on idealized models and lack effective coupling across scales, leading to time-consuming and labor-intensive traditional methods. With advancements in materials genomics and data mining, machine learning has become a powerful tool in material discovery. In this work, we construct a compositional search space for multicomponent nitrides based on electronic configuration, valence electron count, electronegativity, and oxidation states of metal elements in unary nitrides. The search space is further constrained by FCC crystal structure and hardness theory. By incorporating a feature library with micro-, meso-, and macro-structural characteristics and using clustering analysis with theoretical intermediate variables, the model enriches dataset information and enhances predictive accuracy by reducing experimental errors. This model is successfully applied to design multicomponent metal nitride coatings using a literature-derived database of 233 entries. Experimental validation confirms the model’s predictions, and clustering is used to minimize experimental and data errors, yielding a strong agreement between predicted optimal molar ratios of metal elements and nitrogen and measured hardness performance. Of the 100 Vickers hardness (HV) predictions made by the model using input features like molar ratios of metal elements (e.g., Ti, Al, Cr, Zr) and atomic size mismatch, 82 exceeded the dataset’s maximum hardness, with the best sample achieving a prediction accuracy of 91.6% validated against experimental measurements. This approach offers a robust strategy for designing high-performance coatings with optimized hardness. Full article
(This article belongs to the Special Issue Advances in Computation and Modeling of Materials Mechanics)
Show Figures

Figure 1

15 pages, 5932 KB  
Article
Numerical Simulation of Fluid Flow, Heat Transfer, and Solidification in AISI 304 Stainless Steel Twin-Roll Strip Casting
by Jingzhou Lu, Wanlin Wang and Kun Dou
Metals 2025, 15(7), 749; https://doi.org/10.3390/met15070749 - 2 Jul 2025
Viewed by 578
Abstract
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the [...] Read more.
The production of AISI 304 stainless steel (a corrosion-resistant alloy prone to solidification defects from high alloy content) particularly benefits from twin-roll strip casting—a short-process green technology enabling sub-rapid solidification (the maximum cooling rate exceeds 1000 °C/s) control for high-performance steels. However, the internal phenomena within its molten pool remain exceptionally challenging to monitor. This study developed a multiscale numerical model to simulate coupled fluid flow, heat transfer, and solidification in AISI 304 stainless steel twin-roll strip casting. A quarter-symmetry 3D model captured macroscopic transport phenomena, while a slice model resolved mesoscopic solidification structure. Laboratory experiments had verified that the deviation between the predicted temperature field and the measured average value (1384.3 °C) was less than 5%, and the error between the solidification structure simulation and the electron backscatter diffraction (EBSD) data was within 5%. The flow field and flow trajectory showed obvious recirculation zones: the center area was mainly composed of large recirculation zones, and many small recirculation zones appeared at the edges. Parameter studies showed that, compared with the high superheat (110 °C), the low superheat (30 °C) increased the total solid fraction by 63% (from 8.3% to 13.6%) and increased the distance between the kiss point and the bottom of the molten pool by 154% (from 6.2 to 15.8 mm). The location of the kiss point is a key industrial indicator for assessing solidification integrity and the risk of strip fracture. In terms of mesoscopic solidification structure, low superheat promoted the formation of coarse columnar crystals (equiaxed crystals accounted for 8.9%), while high superheat promoted the formation of equiaxed nucleation (26.5%). The model can be used to assist in the setting of process parameters and process optimization for twin-roll strip casting. Full article
(This article belongs to the Special Issue Advances in Metal Rolling Processes)
Show Figures

Figure 1

14 pages, 1885 KB  
Article
Insight into the Mechanism for the Emergence of Thermally Stable Reflection Colors from Cholesteric Liquid Crystals of Etherified Ethyl Cellulose Derivatives and Methacrylic Acid
by Wakako Kishi, Naoto Iwata and Seiichi Furumi
Molecules 2025, 30(13), 2839; https://doi.org/10.3390/molecules30132839 - 2 Jul 2025
Viewed by 479
Abstract
Ethyl cellulose (EC) and its derivatives are known to exhibit the cholesteric liquid crystal (CLC) phase with visible light reflection in a lyotropic manner after adding appropriate solvents. Generally, the reflection peak of conventional CLCs is easily wavelength shifted by temperature. However, our [...] Read more.
Ethyl cellulose (EC) and its derivatives are known to exhibit the cholesteric liquid crystal (CLC) phase with visible light reflection in a lyotropic manner after adding appropriate solvents. Generally, the reflection peak of conventional CLCs is easily wavelength shifted by temperature. However, our previous study showed that the reflection wavelength can be maintained even after heating for the lyotropic CLCs of completely pentyl-etherified EC derivatives with methacrylic acid (MAA). However, the emergence of thermally stable reflection colors still remains obscure in the mechanism at the mesoscopic scale. In this study, we evaluated the temperature dependence of the reflection wavelength for the lyotropic CLCs of a series of completely etherified EC derivatives possessing different alkoxy chains by addition of MAA. It was found that butyl- or pentyl-etherified EC derivatives are suitable for preparation of the lyotropic CLCs with visible Bragg reflection, whereas visible light reflection cannot be observed for the other mixtures of propyl- and hexyl-etherified EC derivatives with MAA. Furthermore, it turned out that lyotropic CLCs of pentyl-etherified EC derivatives with MAA show the smallest temperature dependence of their reflection wavelength. Based on the results of ultra-small-angle X-ray scattering (USAXS) and small-angle X-ray scattering (SAXS) measurements of CLC films, we presumed that the emergence of thermally stable reflection colors from the lyotropic CLCs of pentyl-etherified EC derivatives with MAA arises from their phase separation at the mesoscopic scale by changing the temperature. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

27 pages, 5230 KB  
Review
Advances in Solidification Processing in Steady Magnetic Field
by Shengya He, Chenglin Huang and Chuanjun Li
Materials 2025, 18(12), 2886; https://doi.org/10.3390/ma18122886 - 18 Jun 2025
Viewed by 669
Abstract
As a contactless physical field, a steady magnetic field (SMF) is capable of acting on substances, which leads to changes in physical and/or chemical properties and to further influencing thermodynamic and kinetic behaviors at macroscopic, mesoscopic, and microscopic scales. The application of the [...] Read more.
As a contactless physical field, a steady magnetic field (SMF) is capable of acting on substances, which leads to changes in physical and/or chemical properties and to further influencing thermodynamic and kinetic behaviors at macroscopic, mesoscopic, and microscopic scales. The application of the SMF to material science has evolved into an important interdisciplinary field—the Electromagnetic Processing of Materials (EPM). Therein, the implementation of the SMF for the solidification of metals and alloys has been increasingly given attention. The SMF was found to regulate nucleation, crystal growth, the distribution of solutes and structure morphology during alloy solidification via various magnetic effects, such as magnetic damping, the thermoelectric magnetic effect, magnetic orientation and magnetically controlled diffusion. In this review, we briefly summarize the main SMF effects and review recent progress in magnetic field-assisted solidification processing, including nucleation, dendritic growth, solute segregation and interfacial phenomena. Finally, future perspectives regarding controlling alloys’ solidification using an SMF are discussed. Full article
(This article belongs to the Special Issue Energy Field-Assisted Metal Forming)
Show Figures

Figure 1

24 pages, 2455 KB  
Review
A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals
by Akikazu Sakudo, Koichi Furusaki, Rumiko Onishi, Takashi Onodera and Yasuhiro Yoshikawa
Microorganisms 2025, 13(3), 507; https://doi.org/10.3390/microorganisms13030507 - 25 Feb 2025
Cited by 1 | Viewed by 1025
Abstract
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants [...] Read more.
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants and coral are separated, the crystals of the mesoscopic structure can be reformed by applying a high voltage under a specific set of conditions. A suspension of these mesoscopic crystals in water (CAC-717) can be used as an effective disinfectant. CAC-717 exhibits universal virucidal activity against both enveloped and non-enveloped viruses as well as bactericidal and anti-prion activity. Moreover, in comparison to sodium hypochlorite, the potency of CAC-717 as a disinfectant is less susceptible to organic substances such as albumin. The disinfection activity of CAC-717 is maintained for at least 6 years and 4 months after storage at room temperature. CAC-717 is non-irritating and harmless to humans and animals, making it a promising biosafe disinfectant. This review explores the disinfection activity of CAC-717 as well as the potential and future uses of this material. Full article
Show Figures

Figure 1

33 pages, 53585 KB  
Article
Unraveling the Determinant Mechanisms in Flow-Mediated Crystal Growth and Phase Behaviors
by L. Connor Willis, Tesia D. Janicki, Rekha R. Rao and Z. Leonardo Liu
Crystals 2025, 15(2), 157; https://doi.org/10.3390/cryst15020157 - 4 Feb 2025
Viewed by 1059
Abstract
To uncover the critical mechanisms responsible for mesoscopic level development during flow-mediated crystal growth, we develop a semi-two-way hydrodynamic coupled structural phase-field crystal formalism (HXPFC-s2). The new formalism, inspired by previous attempts at coupling hydrodynamic and phase-field crystal (PFC) equations, allows for studying [...] Read more.
To uncover the critical mechanisms responsible for mesoscopic level development during flow-mediated crystal growth, we develop a semi-two-way hydrodynamic coupled structural phase-field crystal formalism (HXPFC-s2). The new formalism, inspired by previous attempts at coupling hydrodynamic and phase-field crystal (PFC) equations, allows for studying mesoscopic flow-mediated crystallization at diffusive timescales pertinent to industrial applications. Unlike previous efforts, the devised coupling to the structural PFC (XPFC) equations allows generalization to more complex crystal structures through explicit parameterization of the direct correlation function (DCF). Utilizing the HXPFC-s2 formalism, we seek to uncover the determinant physical mechanisms in crystallization under simple shear flows by comparing temperature-driven crystallization to flow-mediated crystallization under varying flow-strengths. Parallels and deviations of under-cooling and flow-strength effects on crystal growth are drawn using the crystal cluster-size and system ordering time evolutions. In doing so, we identify scaling behaviors with a Peclet-like number, Pe, a critical Peclet-like number, Pe*, and flow-field-crystal plane-dependent interactions. Our findings may be relevant for controlling crystal growth and phase behaviors in flow applications. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

10 pages, 1518 KB  
Article
Degradation and/or Dissociation of Neurodegenerative Disease-Related Factor Amyloid-β by a Suspension Containing Calcium Hydrogen Carbonate Mesoscopic Crystals
by Nodoka Iwaya, Akikazu Sakudo, Takuya Kanda, Koichi Furusaki, Rumiko Onishi, Takashi Onodera and Yasuhiro Yoshikawa
Int. J. Mol. Sci. 2024, 25(23), 12761; https://doi.org/10.3390/ijms252312761 - 27 Nov 2024
Cited by 1 | Viewed by 971
Abstract
Amyloid-β (Aβ) aggregates accumulate in the brains of individuals with Alzheimer’s disease and are thought to potentially act as prions, promoting further aggregation. Consequently, the biochemistry of Aβ has emerged as a promising target for Alzheimer’s disease. CAC-717, a suspension of calcium bicarbonate [...] Read more.
Amyloid-β (Aβ) aggregates accumulate in the brains of individuals with Alzheimer’s disease and are thought to potentially act as prions, promoting further aggregation. Consequently, the biochemistry of Aβ has emerged as a promising target for Alzheimer’s disease. CAC-717, a suspension of calcium bicarbonate mesoscopic structures derived from natural sources, has been shown to inactivate various pathogens, including prions. This study examined the effects of CAC-717 on both the formation and degradation/dissociation of Aβ aggregates using thioflavin T fluorescence and enzyme-linked immunosorbent assays. Aggregates of Aβ(1–42) peptide were generated by incubation at 37 °C for 24 h, and the effect of introducing CAC-717 on the aggregates was evaluated after further incubation at 25 °C for 30 min. Moreover, CAC-717 was also tested for its ability to inhibit the initial aggregation of Aβ. The results showed that CAC-717 significantly degraded and/or dissociated Aβ aggregates in a concentration-dependent manner. Specifically, CAC-717 treatment for 5 min disrupted Aβ aggregates to give Aβ monomer and oligomer concentrations as high as 130 nM compared to ~10 nM for the water control. In addition, CAC-717 degraded and/or dissociated aggregates within 10 s at 37 °C, and pre-treatment with CAC-717 significantly inhibited aggregation. These results suggest that CAC-717 not only degrades and/or dissociates Aβ aggregates but also inhibits their formation, highlighting its potential as a disinfectant for Alzheimer’s disease. Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Figure 1

17 pages, 4175 KB  
Article
Facile Synthesis, Sintering, and Optical Properties of Single-Nanometer-Scale SnO2 Particles with a Pyrrolidone Derivative for Photovoltaic Applications
by Wingki Mey Hendra, Naohide Nagaya, Yuto Hibi, Norimitsu Yoshida, Takashi Sugiura, Saeid Vafaei and Kazuhiro Manseki
Materials 2024, 17(20), 5095; https://doi.org/10.3390/ma17205095 - 18 Oct 2024
Viewed by 1219
Abstract
We investigate the preparation of mesoscopic SnO2 nanoparticulate films using a Sn(IV) hydrate salt combined with a liquid pyrrolidone derivative to form a homogeneous precursor mixture for functional SnO2 nanomaterials. We demonstrate that N-methyl-2-pyrrolidone (NMP) plays a crucial role in forming [...] Read more.
We investigate the preparation of mesoscopic SnO2 nanoparticulate films using a Sn(IV) hydrate salt combined with a liquid pyrrolidone derivative to form a homogeneous precursor mixture for functional SnO2 nanomaterials. We demonstrate that N-methyl-2-pyrrolidone (NMP) plays a crucial role in forming uniform SnO2 films by both stabilizing the hydrolysis products of Sn(IV) sources and acting as a base liquid during nanoparticle growth. The hydrolysis of Sn(IV) was controlled by adjusting the reaction temperature to as low as 110 °C for 48 h. High-resolution TEM analysis revealed that highly crystalline SnO2 nanoparticles, approximately 3–5 nm in size, were formed. The SnO2 nanoparticles were deposited onto F-doped SnO2 glass and converted into dense particle films through heat treatments at 400 °C and 500 °C. This pyrrolidone-based nanoparticle synthesis enabled the production of not only crystallized SnO2 but also transparent and uniform films, most importantly by controlling the slow hydrolysis of Sn(IV) and polycondensation only with those two chemicals. These findings offer valuable insights for developing stable and uniform electron transport layers of SnO2 in mesoscopic solar cells, such as perovskite solar cells. Full article
Show Figures

Figure 1

20 pages, 12121 KB  
Article
Simulation of Frost-Heave Failure of Air-Entrained Concrete Based on Thermal–Hydraulic–Mechanical Coupling Model
by Xinmiao Wang, Feng Xue, Xin Gu and Xiaozhou Xia
Materials 2024, 17(15), 3727; https://doi.org/10.3390/ma17153727 - 27 Jul 2024
Cited by 2 | Viewed by 1705
Abstract
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based [...] Read more.
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based on the ice-crystal phase transition mechanism of pore water and the theory of fine-scale inclusions, this paper establishes an estimation model for effective thermal conductivity and permeability coefficients that can reflect the distribution characteristics of the internal pore size and the content of microbubbles in porous media and explores the evolution mechanism of effective thermal conductivity and permeability coefficients during the freezing process. The segmented Gaussian integration method is adopted for the calculation of integrals involving pore size distribution curves. In addition, based on the concept that the fracture phase represents continuous damage, a switching model for the permeability coefficient is proposed to address the fundamental impact of frost cracking on permeability. Finally, the proposed estimation models for thermal conductivity and permeability are applied to the cement mortar and the interface transition zone (ITZ), and a thermal–hydraulic–mechanical coupling finite element model of concrete specimens at the mesoscale based on the fracture phase-field method is established. After that, the frost-cracking mechanism in ordinary concrete samples during the freezing process is explored, as well as the mechanism of microbubbles in relieving pore pressure and the adverse effect of accelerated cooling on frost cracking. The results show that the cracks first occurred near the aggregate on the concrete sample surface and then extended inward along the interface transition zone, which is consistent with the frost-cracking scenario of concrete structures in cold regions. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

13 pages, 6340 KB  
Article
Experimental Study on the Wind Erosion Resistance of Aeolian Sand Solidified by Microbially Induced Calcite Precipitation (MICP)
by Jing Qu, Gang Li, Bin Ma, Jia Liu, Jinli Zhang, Xing Liu and Yijia Zhang
Materials 2024, 17(6), 1270; https://doi.org/10.3390/ma17061270 - 9 Mar 2024
Cited by 8 | Viewed by 1877
Abstract
Microbially induced calcite precipitation (MICP) is an emerging solidification method characterized by high economic efficiency, environmental friendliness, and durability. This study validated the reliability of the MICP sand solidification method by conducting a small-scale wind tunnel model test using aeolian sand solidified by [...] Read more.
Microbially induced calcite precipitation (MICP) is an emerging solidification method characterized by high economic efficiency, environmental friendliness, and durability. This study validated the reliability of the MICP sand solidification method by conducting a small-scale wind tunnel model test using aeolian sand solidified by MICP and analyzing the effects of wind velocity (7 m/s, 10 m/s, and 13 m/s), deflation angle (0°, 15°, 30°, and 45°), wind erosion cycle (1, 3, and 5), and other related factors on the mass loss rate of solidified aeolian sand. The microstructure of aeolian sand was constructed by performing mesoscopic and microscopic testing based on X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). According to the test results, the mass loss rate of solidified aeolian sand gradually increases with the increase in wind velocity, deflation angle, and wind erosion cycle. When the wind velocity was 13 m/s, the mass loss rate of the aeolian sand was only 63.6%, indicating that aeolian sand has excellent wind erosion resistance. CaCO3 crystals generated by MICP were mostly distributed on sand particle surfaces, in sand particle pores, and between sand particles to realize the covering, filling, and cementing effects. Full article
Show Figures

Figure 1

24 pages, 16525 KB  
Article
Hierarchical Structuring of Black Silicon Wafers by Ion-Flow-Stimulated Roughening Transition: Fundamentals and Applications for Photovoltaics
by Vyacheslav N. Gorshkov, Mykola O. Stretovych, Valerii F. Semeniuk, Mikhail P. Kruglenko, Nadiia I. Semeniuk, Victor I. Styopkin, Alexander M. Gabovich and Gernot K. Boiger
Nanomaterials 2023, 13(19), 2715; https://doi.org/10.3390/nano13192715 - 6 Oct 2023
Cited by 3 | Viewed by 2016
Abstract
Ion-flow-stimulated roughening transition is a phenomenon that may prove useful in the hierarchical structuring of nanostructures. In this work, we have investigated theoretically and experimentally the surface texturing of single-crystal and multi-crystalline silicon wafers irradiated using ion-beam flows. In contrast to previous studies, [...] Read more.
Ion-flow-stimulated roughening transition is a phenomenon that may prove useful in the hierarchical structuring of nanostructures. In this work, we have investigated theoretically and experimentally the surface texturing of single-crystal and multi-crystalline silicon wafers irradiated using ion-beam flows. In contrast to previous studies, ions had relatively low energies, whereas flow densities were high enough to induce a quasi-liquid state in the upper silicon layers. The resulting surface modifications reduced the wafer light reflectance to values characteristic of black silicon, widely used in solar energetics. Features of nanostructures on different faces of silicon single crystals were studied numerically based on the mesoscopic Monte Carlo model. We established that the formation of nano-pyramids, ridges, and twisting dune-like structures is due to the stimulated roughening transition effect. The aforementioned variety of modified surface morphologies arises due to the fact that the effects of stimulated surface diffusion of atoms and re-deposition of free atoms on the wafer surface from the near-surface region are manifested to different degrees on different Si faces. It is these two factors that determine the selection of the allowable “trajectories” (evolution paths) of the thermodynamic system along which its Helmholtz free energy, F, decreases, concomitant with an increase in the surface area of the wafer and the corresponding changes in its internal energy, U (dU>0), and entropy, S (dS>0), so that dF=dU  TdS<0, where T is the absolute temperature. The basic theoretical concepts developed were confirmed in experimental studies, the results of which showed that our method could produce, abundantly, black silicon wafers in an environmentally friendly manner compared to traditional chemical etching. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanotechnology for Solar Cells)
Show Figures

Graphical abstract

16 pages, 46547 KB  
Article
The Cellular Structure and Mechanical Properties of Polypropylene/Nano-CaCO3/Ethylene-propylene-diene-monomer Composites Prepared by an In-Mold-Decoration/Microcellular-Injection-Molding Process
by Fankun Zeng, Xiaorui Liu, Yingxian Chen, Hao Li, Huajie Mao and Wei Guo
Polymers 2023, 15(17), 3604; https://doi.org/10.3390/polym15173604 - 30 Aug 2023
Cited by 4 | Viewed by 2316
Abstract
Polypropylene (PP)-composite foams were prepared by a combination process of microcellular injection molding (MIM) and in-mold decoration (IMD). The effect of ethylene propylene diene monomer (EPDM) on the crystallization properties, rheological properties, microstructure, and mechanical properties of PP-composite foams was studied. The effect [...] Read more.
Polypropylene (PP)-composite foams were prepared by a combination process of microcellular injection molding (MIM) and in-mold decoration (IMD). The effect of ethylene propylene diene monomer (EPDM) on the crystallization properties, rheological properties, microstructure, and mechanical properties of PP-composite foams was studied. The effect of the additives on the strength and toughness of PP-composite foam as determined by the multiscale simulation method is discussed. The results showed that an appropriate amount of EPDM was beneficial to the cell growth and toughening of the PP blends. When the content of EPDM was 15 wt%, the PP-composite foams obtained the minimum cellular size, the maximum cellular density, and the best impact toughness. At the same time, the mesoscopic simulation shows that the stress concentration is the smallest, which indicates that 15 wt% EPDM has the best toughening effect in these composite materials. Full article
Show Figures

Figure 1

45 pages, 3943 KB  
Review
The Paramagnetic Meissner Effect (PME) in Metallic Superconductors
by Michael Rudolf Koblischka, Ladislav Půst, Crosby-Soon Chang, Thomas Hauet and Anjela Koblischka-Veneva
Metals 2023, 13(6), 1140; https://doi.org/10.3390/met13061140 - 19 Jun 2023
Cited by 6 | Viewed by 4899
Abstract
The experimental data in the literature concerning the Paramagnetic Meissner Effect (PME) or also called Wohlleben effect are reviewed with the emphasis on the PME exhibited by metallic, s-wave superconductors. The PME was observed in field-cool cooling (FC-C) and field-cool warming (FC-W) [...] Read more.
The experimental data in the literature concerning the Paramagnetic Meissner Effect (PME) or also called Wohlleben effect are reviewed with the emphasis on the PME exhibited by metallic, s-wave superconductors. The PME was observed in field-cool cooling (FC-C) and field-cool warming (FC-W) m(T)-measurements on Al, Nb, Pb, Ta, in compounds such as, e.g., NbSe2, In-Sn, ZrB12, and others, and also in MgB2, the metallic superconductor with the highest transition temperature. Furthermore, samples with different shapes such as crystals, polycrystals, thin films, bi- and multilayers, nanocomposites, nanowires, mesoscopic objects, and porous materials exhibited the PME. The characteristic features of the PME, found mainly in Nb disks, such as the characteristic temperatures T1 and Tp and the apparative details of the various magnetic measurement techniques applied to observe the PME, are discussed. We also show that PME can be observed with the magnetic field applied parallel and perpendicular to the sample surface, that PME can be removed by abrading the sample surface, and that PME can be introduced or enhanced by irradiation processes. The PME can be observed as well in magnetization loops (MHLs, m(H)) in a narrow temperature window Tp<Tc, which enables the construction of a phase diagram for a superconducting sample exhibiting the PME. We found that the Nb disks still exhibit the PME after more than 20 years, and we present the efforts of magnetic imaging techniques (scanning SQUID microscopy, magneto-optics, diamond nitrogen-vacancy (NV)-center magnetometry, and low-energy muon spin spectroscopy, (LE-μSR)). Various attempts to explain PME behavior are discussed in detail. In particular, magnetic measurements of mesoscopic Al disks brought out important details employing the models of a giant vortex state and flux compression. Thus, we consider these approaches and demagnetization effects as the base to understand the formation of the paramagnetic signals in most of the materials investigated. New developments and novel directions for further experimental and theoretical analysis are also outlined. Full article
Show Figures

Figure 1

19 pages, 6881 KB  
Article
Experiment and Numerical Simulation on Friction Ignition Response of HMX-Based Cast PBX Explosive
by Junming Yuan, Yue Qin, Hongzheng Peng, Tao Xia, Jiayao Liu, Wei Zhao, Hu Sun and Yan Liu
Crystals 2023, 13(4), 671; https://doi.org/10.3390/cryst13040671 - 13 Apr 2023
Cited by 3 | Viewed by 2822
Abstract
In order to study the ignition process and response characteristics of cast polymer-bonded explosives (PBX) under the action of friction, HMX-based cast PBX explosives were used to carry out friction ignition experiments at a 90° swing angle and obtain the critical ignition loading [...] Read more.
In order to study the ignition process and response characteristics of cast polymer-bonded explosives (PBX) under the action of friction, HMX-based cast PBX explosives were used to carry out friction ignition experiments at a 90° swing angle and obtain the critical ignition loading pressure was 3.7 MPa. Combined with the morphology characterization results of HMX-based cast PBX, the friction temperature rise process was numerically simulated at the macro and micro scale, and the ignition characteristics were judged. The accuracy of the numerical simulation results was ensured based on the experiment. Based on the thermal–mechanical coupling algorithm, the mechanical–thermal response of HMX-based cast PBX tablet under friction was analyzed from the macro scale. The results show that the maximum temperature rise is 55 °C, and the temperature rise of the whole tablet is not enough to ignite the explosive. Based on the random circle and morphology characterization results of tablet, the mesoscopic model of HMX-based cast PBX was constructed, and the microcrack friction formed after interface debonding was introduced into the model. The temperature rise process at the micro scale shows that HMX crystal particles can be ignited at a temperature of 619 K under 4 MPa hydraulic pressure loaded by friction sensitivity instrument. The main reason for friction ignition of HMX-based cast PBX is the friction hot spot generated by microcracks formed after interface damage of the tablet mesoscopic model, and the external friction heat between cast PBX tablet and sliding column has little effect on ignition. External friction affects the ignition of HMX-based cast PBX by influencing the formation of internal cracks and the stress at microcracks. Full article
(This article belongs to the Special Issue Advanced Energetic Materials: Testing and Modeling)
Show Figures

Figure 1

15 pages, 4915 KB  
Article
Thermal Intra-Layer Interaction of Discretized Fractal Exposure Strategies in Non-Isothermal Powder Bed Fusion of Polypropylene
by Samuel Schlicht and Dietmar Drummer
J. Manuf. Mater. Process. 2023, 7(2), 63; https://doi.org/10.3390/jmmp7020063 - 10 Mar 2023
Cited by 10 | Viewed by 2756
Abstract
Additive manufacturing of material systems sensitive to heat degradation represents an essential prerequisite for the integration of novel functionalized material systems in medical applications, such as the hybrid processing of high-performance thermoplastics and gelling polymers. For enabling an inherent process stability under non-isothermal [...] Read more.
Additive manufacturing of material systems sensitive to heat degradation represents an essential prerequisite for the integration of novel functionalized material systems in medical applications, such as the hybrid processing of high-performance thermoplastics and gelling polymers. For enabling an inherent process stability under non-isothermal conditions at reduced ambient temperatures in laser-based additive manufacturing, maintaining a homogeneous layer formation is of vital significance. To minimize crystallization-induced deflections of formed layers while avoiding support structures, the temporal and spatial discretization of the melting process is combined with the subsequent quenching of the polymer melt due to thermal conduction. Based on implementing superposed, phase-shifted fractal curves as the underlying exposure structure, the locally limited temporal and spatial discretization of the exposure process promotes a mesoscale compensation of crystallization shrinkage and thermal distortion, enabling the essential homogeneous layer formation. For improving the understanding of local parameter-dependent thermal intra-layer interactions under non-isothermal processing conditions, geometric boundary conditions of distinct exposure vectors and the underlying laser power are varied. Applying polypropylene as a model material, a significant influence of the spatial distance of fractal exposure structures on the thermal superposition of distinct exposure vectors can be derived, implicitly influencing temporal and temperature-dependent characteristics of the material crystallization and the emerging thermal material exposure. Furthermore, the formation of sub-focus structures can be observed, contributing to the spatial discretization of the layer formation, representing a decisive factor that influences the structure formation and mesoscopic part properties in non-isothermal powder bed fusion of polymers. Consequently, the presented approach represents a foundation for the support-free, accelerated non-isothermal additive manufacturing of both polymers and metals, demonstrating a novel methodology for the mesoscale compensation of thermal shrinkage. Full article
(This article belongs to the Special Issue Progress in Powder-Based Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop