Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = mesosphere-lower thermosphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 18175 KB  
Article
Observational Evidence of Distinct Excitation Pathways for Migrating and Non-Migrating Tides in the Mesosphere-Lower Thermosphere During the 2021 Sudden Stratospheric Warming
by Reuben Acheampong Asamoah, Gizaw Mengistu Tsidu, Gemechu Fanta Garuma and Leonard Kofitse Amekudzi
Atmosphere 2025, 16(11), 1254; https://doi.org/10.3390/atmos16111254 - 31 Oct 2025
Viewed by 231
Abstract
We investigate the excitation and variability of migrating and non-migrating diurnal and semi-diurnal tides in the mesosphere and lower thermosphere (MLT) during the 2021 Northern Hemisphere sudden stratospheric warming (SSW). Zonal wind data from MERRA-2 reanalysis are decomposed into tidal components using a [...] Read more.
We investigate the excitation and variability of migrating and non-migrating diurnal and semi-diurnal tides in the mesosphere and lower thermosphere (MLT) during the 2021 Northern Hemisphere sudden stratospheric warming (SSW). Zonal wind data from MERRA-2 reanalysis are decomposed into tidal components using a two-dimensional least-squares harmonic fitting technique. The migrating diurnal tide (DW1) strengthens at low latitudes following the SSW onset, whereas the migrating semi-diurnal tide (SW2) intensifies at high latitudes. Non-migrating diurnal tides (D0, DW2, DW3) arise from nonlinear interactions between DW1 and stationary planetary waves (SPWs), while non-migrating semi-diurnal tides (SW1, SW3) are modulated by stratospheric ozone variability linked to planetary-wave activity. The zonally symmetric semi-diurnal tide (S0) responds primarily to dynamical perturbations associated with the SSW. Eastward non-migrating diurnal tides (DE2, DE3) correlate strongly with total precipitable water vapor (TPWV), indicating tropospheric latent-heat forcing, whereas DE1 exhibits weak coupling. These results reveal distinct, latitude-dependent excitation pathways connecting stratospheric and tropospheric dynamics to tidal variability in the MLT during major SSW events. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

19 pages, 3428 KB  
Article
Comparison and Analysis of Neutral Wind Observations from Meteor and MF Radars at Low Latitude in the Northern Hemisphere
by Yanli Guo, Xiongbin Wu, Zonghua Ding and Na Li
Remote Sens. 2025, 17(19), 3266; https://doi.org/10.3390/rs17193266 - 23 Sep 2025
Viewed by 449
Abstract
Accurate wind measurements in the mesosphere and lower thermosphere (MLT) region are essential for climate modeling, satellite drag estimation, and space weather prediction. This study presents a comprehensive comparison and correlation analysis of the zonal and meridional wind observations from co-located meteor radar [...] Read more.
Accurate wind measurements in the mesosphere and lower thermosphere (MLT) region are essential for climate modeling, satellite drag estimation, and space weather prediction. This study presents a comprehensive comparison and correlation analysis of the zonal and meridional wind observations from co-located meteor radar and medium-frequency (MF) radar systems in Kunming (102.1°E, 24.2°N), China, in the year 2022. Both zonal and meridional wind components were analyzed within the overlapping altitude range of 70–100 km. Statistical distributions of the wind speeds from both radars followed a near-Gaussian pattern concentrated within ±100 m/s, indicating good consistency. A joint dataset was constructed for the 78–100 km range, where over 2000 h of concurrent observations were available. The strongest correlation between the wind speed measurements of the two radars was ~0.6, which occurred near 82–84 km. Seasonal analysis further indicated better consistency in the winter and spring months, while the summer months exhibited reduced correlations, especially for zonal wind measurements. Systematic biases between the two instruments were also identified, with minimal intercept offsets observed from April to October. This study is valuable in the development of high-quality, long-term MLT wind field datasets for atmospheric research and numerical model validation. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

14 pages, 2075 KB  
Article
Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause
by Arseniy Sokolov, Elena Savenkova, Andrey Koval, Nikolai Gavrilov, Karina Kravtsova, Kseniia Didenko and Tatiana Ermakova
Atmosphere 2025, 16(8), 922; https://doi.org/10.3390/atmos16080922 - 30 Jul 2025
Viewed by 598
Abstract
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating [...] Read more.
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating by PMC crystals has been developed, the main feature of which is to incorporate the thermal properties of ice and the interaction of cloud particles with the environment. Parametrization is based on PMCs zero-dimensional (0-D) model and uses temperature, pressure, and water vapor data in the 80–90 km altitude range retrieved from Solar Occultation for Ice Experiment (SOFIE) measurements. The calculations are made for 14 PMC seasons in both hemispheres with the summer solstice as the central date. The obtained results show that PMCs can make a significant contribution to the heat balance of the upper atmosphere, comparable to the heating caused, for example, by the dissipation of atmospheric gravity waves (GWs). The interhemispheric differences in heating are manifested mainly in the altitude structure: in the Southern Hemisphere (SH), the area of maximum heating values is 1–2 km higher than in the Northern Hemisphere (NH), while quantitatively they are of the same order. The most intensive heating is observed at the lower boundary of the minimum temperature layer (below 150 K) and gradually weakens with altitude. The NH heating median value is 5.86 K/day, while in the SH it is 5.24 K/day. The lowest values of heating are located above the maximum of cloud ice concentration in both hemispheres. The calculated heating rates are also examined in the context of the various factors of temperature variation in the observed atmospheric layers. It is shown in particular that the thermal impact of PMC is commensurate with the influence of dissipating gravity waves at heights of the mesosphere and lower thermosphere (MLT), which parameterizations are included in all modern numerical models of atmospheric circulation. Hence, the developed parameterization can be used in global atmospheric circulation models for further study of the peculiarities of the thermodynamic regime of the MLT. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

13 pages, 4411 KB  
Article
Construction of a High-Resolution Temperature Dataset at 40–110 KM over China Utilizing TIMED/SABER and FY-4A Satellite Data
by Qian Ye, Mohan Liu, Dan Du and Xiaoxin Zhang
Atmosphere 2025, 16(7), 758; https://doi.org/10.3390/atmos16070758 - 20 Jun 2025
Viewed by 609
Abstract
This study aims to develop a high-resolution temperature dataset from 40 km to 110 km over China by machine learning techniques, with a horizontal resolution of 0.5° × 0.5° and vertical resolution of 1 km, utilizing measurements from SABER onboard the Thermosphere, Ionosphere, [...] Read more.
This study aims to develop a high-resolution temperature dataset from 40 km to 110 km over China by machine learning techniques, with a horizontal resolution of 0.5° × 0.5° and vertical resolution of 1 km, utilizing measurements from SABER onboard the Thermosphere, Ionosphere, Mesosphere Energetics, and Dynamics (TIMED) and Fengyun 4A (FY-4A) satellites. Accurate temperature profiles play a critical role in understanding the atmospheric dynamics and climate change. However, because of the limitation of traditional detecting methods, the measurements of the upper stratosphere and mesosphere are rare. In this study, a new method is developed to construct a high-resolution temperature dataset over China in the middle atmosphere based on the XGBoost technique. The model’s performance is also validated based on rocket observations and ERA5 reanalysis data. The results indicate that the model effectively captures the characteristics of the vertical and seasonal variations in temperature, which provide a valuable opportunity for further research and improvement of climate models. The model demonstrates the highest accuracy below 80 km with RMSE < 12 K, while its performance decreases above 100 km, where RMSE can exceed 20 K, indicating optimal performance in the upper stratosphere and lower mesosphere regions. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 556 KB  
Article
Remote Sensing in the 15 µm CO2 Band: Key Concepts and Implications for the Heat Balance of Mesosphere and Thermosphere
by Alexander Kutepov, Artem Feofilov, Ladislav Rezac and Konstantinos S. Kalogerakis
Remote Sens. 2025, 17(11), 1896; https://doi.org/10.3390/rs17111896 - 29 May 2025
Viewed by 1345
Abstract
We investigated the algorithms and physical models currently applied to remote sensing of the mesosphere and lower thermosphere (MLT) using space-based observations of the CO2 15 µm emission. We show that the measured 15 µm radiation constrains the population of excited CO [...] Read more.
We investigated the algorithms and physical models currently applied to remote sensing of the mesosphere and lower thermosphere (MLT) using space-based observations of the CO2 15 µm emission. We show that the measured 15 µm radiation constrains the population of excited CO2 vibrational levels and the 15 µm radiative flux divergence in the MLT, but not the 15 µm cooling. Moreover, the models of the non-local thermodynamic (non-LTE) excitation of CO2 in the MLT contradict the laboratory studies of this excitation. We present a new model of the non-LTE in CO2 that is both consistent with the observed CO2 15 µm radiation and provides the CO2 cooling of the MLT, which aligns with the laboratory-measured rate coefficient kO of the CO2 vibrational excitation by collisions with O(3P) atoms. Its application shows that the current non-LTE models dramatically overestimate this cooling. Even for the low laboratory-confirmed rate coefficient of the CO2-O(3P) excitation, kO=1.5×1012 s1cm3, excess cooling is equal or higher than the true cooling, reaches a value of 10 K/day, and is maximized in the mesosphere region around 100 km—a region which is very sensitive to any changes in the heat balance. For kO=3.0×1012 s1cm3, which is currently used in the general circulation models of the MLT, excess cooling reaches 25–30 K/day. The results of this study contradict the widely held belief that the 15 µm CO2 emission is the primary cooling mechanism of the middle and upper atmospheres of Earth, Venus, and Mars. A significant reduction in 15 µm cooling will have a major impact on both the modeling of the current MLT and the estimation of its future changes due to increasing CO2. It also strongly influences the interpretation of MLT 15 µm emission observations and provides new insights into the role of this emission in the middle and upper atmospheres of Mars, Venus, and other extraterrestrial planets. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

19 pages, 1634 KB  
Article
A New Method for Determining the Wave Turbopause Based on SABER/TIMED Data
by Zewei Wang, Cunying Xiao, Xiong Hu, Junfeng Yang, Xuan Cheng, Kuan Li, Luo Xiao, Xiaoqi Wu, Yang Yu and Hao Li
Remote Sens. 2025, 17(4), 623; https://doi.org/10.3390/rs17040623 - 12 Feb 2025
Viewed by 873
Abstract
The determination of the wave turbopause is vital for understanding the dynamics of atmospheric processes in the Mesosphere and Lower Thermosphere (MLT). In this study, we introduce a novel approach for identifying the wave turbopause, using SABER/TIMED temperature data and number density data, [...] Read more.
The determination of the wave turbopause is vital for understanding the dynamics of atmospheric processes in the Mesosphere and Lower Thermosphere (MLT). In this study, we introduce a novel approach for identifying the wave turbopause, using SABER/TIMED temperature data and number density data, addressing the limitations associated with traditional linear fitting methods that can lead to ambiguities in results. Our approach is grounded in the conservation-of-energy principle, which facilitates the introduction of an energy index to effectively delineate the boundaries of the turbopause layer. This method allows us to define several key parameters: the lower boundary height, upper boundary height, turbopause height, and turbopause layer thickness. Analyzing long-term SABER data specifically over Beijing, we observed that the turbopause layer exhibited significant seasonal and inter-annual variations. Our findings indicated that the average height of the lower boundary was approximately 69.17 km, while the average height of the upper boundary was around 93.85 km. The energy index provided a comprehensive assessment of atmospheric wave activity, revealing periodic variations at different altitudes within the turbopause layer. The proposed method not only offers a more precise and applicable characterization of the turbopause but also enhances our capacity for atmospheric modeling and empirical investigations. Future work will focus on extending this methodology, to analyze the comprehensive SABER data collected globally. We aim to uncover insights into the seasonal characteristics of the turbopause across various geographic regions, allowing for a more detailed understanding of its behavior under different climatic conditions, ultimately contributing to a deeper understanding of MLT dynamics. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

13 pages, 2080 KB  
Communication
Mesosphere and Lower Thermosphere (MLT) Density Responses to the May 2024 Superstorm at Mid-to-High Latitudes in the Northern Hemisphere Based on Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Observations
by Ningtao Huang, Jingyuan Li, Jianyong Lu, Shuai Fu, Meng Sun, Guanchun Wei, Mingming Zhan, Ming Wang and Shiping Xiong
Remote Sens. 2025, 17(3), 511; https://doi.org/10.3390/rs17030511 - 31 Jan 2025
Viewed by 1677
Abstract
The thermospheric density response during geomagnetic storms has been extensively explored, but with limited studies on the density response in the Mesosphere and Lower Thermosphere (MLT) region. In this study, the density response in the MLT region at mid-to-high latitudes of the Northern [...] Read more.
The thermospheric density response during geomagnetic storms has been extensively explored, but with limited studies on the density response in the Mesosphere and Lower Thermosphere (MLT) region. In this study, the density response in the MLT region at mid-to-high latitudes of the Northern Hemisphere during the intense geomagnetic storm in May 2024 is investigated using density data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. The results indicate that during the geomagnetic storm, the density response exhibits both significant decreases and increases; specifically, approximately 25.2% of the observation points show a notable reduction within a single day, with the maximum decrease exceeding −59.9% at 105 km. In contrast, around 16.5% of the observation points experience a significant increase over the same period, with the maximum increase surpassing 82.4% at 105 km. The distribution of density changes varies with altitudes. The magnitude of density increases diminishes with decreasing altitude, whereas the density decreases exhibit altitude-dependent intensity variations. Density decreases are primarily concentrated in high-latitude regions, especially in the polar cap, while density increases are mainly observed between 50°N and 70°N. The intensity of density response is generally stronger in the dusk sector than in the dawn sector. These results suggest that atmospheric expansion and uplift driven by temperature variations are the primary factors underlying the observed density change. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

20 pages, 5437 KB  
Article
Dynamic Calibration Method of Multichannel Amplitude and Phase Consistency in Meteor Radar
by Yujian Jin, Xiaolong Chen, Songtao Huang, Zhuo Chen, Jing Li and Wenhui Hao
Remote Sens. 2025, 17(2), 331; https://doi.org/10.3390/rs17020331 - 18 Jan 2025
Cited by 2 | Viewed by 1665
Abstract
Meteor radar is a widely used technique for measuring wind in the mesosphere and lower thermosphere, with the key advantage of being unaffected by terrestrial weather conditions, thus enabling continuous operation. In all-sky interferometric meteor radar systems, amplitude and phase consistencies between multiple [...] Read more.
Meteor radar is a widely used technique for measuring wind in the mesosphere and lower thermosphere, with the key advantage of being unaffected by terrestrial weather conditions, thus enabling continuous operation. In all-sky interferometric meteor radar systems, amplitude and phase consistencies between multiple channels exhibit dynamic variations over time, which can significantly degrade the accuracy of wind measurements. Despite the inherently dynamic nature of these inconsistencies, the majority of existing research predominantly employs static calibration methods to address these issues. In this study, we propose a dynamic adaptive calibration method that combines normalized least mean square and correlation algorithms, integrated with hardware design. We further assess the effectiveness of this method through numerical simulations and practical implementation on an independently developed meteor radar system with a five-channel receiver. The receiver facilitates the practical application of the proposed method by incorporating variable gain control circuits and high-precision synchronization analog-to-digital acquisition units, ensuring initial amplitude and phase consistency accuracy. In our dynamic calibration, initial coefficients are determined using a sliding correlation algorithm to assign preliminary weights, which are then refined through the proposed method. This method maximizes cross-channel consistencies, resulting in amplitude inconsistency of <0.0173 dB and phase inconsistency of <0.2064°. Repeated calibration experiments and their comparison with conventional static calibration methods demonstrate significant improvements in amplitude and phase consistency. These results validate the potential of the proposed method to enhance both the detection accuracy and wind inversion precision of meteor radar systems. Full article
Show Figures

Figure 1

12 pages, 2323 KB  
Article
SuperDARN Radar Wind Observations of Eastward-Propagating Planetary Waves
by Tina Mirzaamin, Yvan J. Orsolini, Patrick J. Espy and Christian T. Rhodes
Atmosphere 2024, 15(11), 1333; https://doi.org/10.3390/atmos15111333 - 6 Nov 2024
Viewed by 1103
Abstract
An array of SuperDARN meteor radars at northern high latitudes was used to investigate the sources and characteristics of eastward-propagating planetary waves (EPWs) at 95 km, with a focus on wintertime. The nine radars provided the daily mean meridional winds and their anomalies [...] Read more.
An array of SuperDARN meteor radars at northern high latitudes was used to investigate the sources and characteristics of eastward-propagating planetary waves (EPWs) at 95 km, with a focus on wintertime. The nine radars provided the daily mean meridional winds and their anomalies over 180 degrees of longitude, and these anomalies were separated into eastward and westward waves using a fast Fourier transform (FFT) method to extract the planetary wave components of zonal wavenumbers 1 and 2. Years when a sudden stratospheric warming event with an elevated stratopause (ES-SSW) occurred during the winter were contrasted with years without such events and composited through superposed epoch analysis. The results show that EPWs are a ubiquitous—and unexpected—feature of meridional wind variability near 95 km. Present even in non-ES-SSW years, they display a regular annual cycle peaking in January or February, depending on the zonal wavenumber. In years when an ES-SSW occurred, the EPWs were highly variable but enhanced before and after the onset. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere)
Show Figures

Figure 1

17 pages, 1066 KB  
Article
Efficient Phase Step Determination Approach for Four-Quadrant Wind Imaging Interferometer
by Tingyu Yan, William Ward, Chunmin Zhang and Shiping Guo
Remote Sens. 2024, 16(21), 4108; https://doi.org/10.3390/rs16214108 - 3 Nov 2024
Cited by 1 | Viewed by 1285
Abstract
A four-quadrant wind imaging interferometer is a new generation of wind imaging interferometer with the valuable features of being monolithic, compact, light, and insensitive to temporal variations in the source. Its applications include remote sensing of the wind field of the upper atmosphere [...] Read more.
A four-quadrant wind imaging interferometer is a new generation of wind imaging interferometer with the valuable features of being monolithic, compact, light, and insensitive to temporal variations in the source. Its applications include remote sensing of the wind field of the upper atmosphere and observing important dynamical processes in the mesosphere and lower thermosphere. In this paper, we describe a new phase step determination approach based on the Lissajous figure, which provides an efficient, accurate, and visual method for the characterization and calibration of this type of instrument. Using the data from wavelength or thermal fringe scanning, the phase steps, relative intensities, and instrument visibilities of four quadrants can be retrieved simultaneously. A general model for the four-quadrant wind imaging interferometer is described and the noise sensitivity of this method is analyzed. This approach was successfully implemented with four-quadrant wind imaging interferometer prototypes, and its feasibility was experimentally verified. Full article
Show Figures

Figure 1

15 pages, 7202 KB  
Technical Note
Study of the Tidal Variations in the Ionosphere and the MLT Region over Mohe and Beijing During Six Intense Geomagnetic Storms from 2016 to 2021
by Jiarong Ma, Zheng Ma, Jiaxin Bao, Jiahui Luo, Junfeng Yang and Dan Liu
Remote Sens. 2024, 16(21), 3947; https://doi.org/10.3390/rs16213947 - 23 Oct 2024
Viewed by 1181
Abstract
Geomagnetic storms can cause large variations in the ionosphere, but their impacts on the mesosphere and lower thermosphere (MLT) are not well understood. Based on the Total Electron Content (TEC) data and the meteor neutral winds data over Mohe (53.5°N, 122.3°E) and Beijing [...] Read more.
Geomagnetic storms can cause large variations in the ionosphere, but their impacts on the mesosphere and lower thermosphere (MLT) are not well understood. Based on the Total Electron Content (TEC) data and the meteor neutral winds data over Mohe (53.5°N, 122.3°E) and Beijing (40.3°N, 116.2°E), we analyze the tidal variations during six intense geomagnetic storms from 2016 to 2021. According to the six intense geomagnetic storms, we found that intense geomagnetic storms can lead to diurnal and semidiurnal tidal enhancements in TEC, while their influences on tidal variations in the MLT region are not always captured. Responses of tidal enhancement in the MLT region to the intense geomagnetic storms are more obvious at a lower latitude at Beijing, but the tidal amplitude changes are not proportional to the Dst indices. Some semidiurnal tides are significantly enhanced prior to the onset of geomagnetic storms, which needs to be statistically investigated in the future based on additional observations. Full article
Show Figures

Figure 1

15 pages, 3766 KB  
Article
Mechanisms Underlying the Changes in Sporadic E Layers During Sudden Stratospheric Warming
by Haiyang Zheng, Hanxian Fang, Chao Xiao, Hongtao Huang, Die Duan and Ganming Ren
Atmosphere 2024, 15(10), 1258; https://doi.org/10.3390/atmos15101258 - 21 Oct 2024
Viewed by 1576
Abstract
During sudden stratospheric warming (SSW) events, significant modifications occur, not only in the neutral atmosphere, but also in the ionosphere. Specifically, sporadic E layers in the mesosphere and lower thermosphere regions significantly disrupt satellite communication. Although research has frequently focused on ionospheric alterations [...] Read more.
During sudden stratospheric warming (SSW) events, significant modifications occur, not only in the neutral atmosphere, but also in the ionosphere. Specifically, sporadic E layers in the mesosphere and lower thermosphere regions significantly disrupt satellite communication. Although research has frequently focused on ionospheric alterations during SSW events, detailed studies on sporadic E layers remain limited. Examining these variations during SSW events could enhance our understanding of the interaction mechanisms between the ionosphere and the neutral atmosphere, and provide insights into the patterns of sporadic E layer alterations. This study analyzed the behavior of sporadic E layers during the 2008/2009 winter SSW period using data from three Japanese stations and satellite observations. The principal findings included the following: (1) The enhancement in the critical frequency of the sporadic E layers was most notable following the transition from easterly to westerly winds at 60° N at a 10 hPa altitude, accompanied by quasi 6-day and quasi 16-day oscillations in frequency. (2) The daily average zonal and meridional wind speeds in the MLT region also exhibited quasi 6-day and quasi 16-day oscillations, aligning with the observed periodicities in the critical frequency of the sporadic E layers. (3) Planetary waves were shown to modulate the amplitude of diurnal and semidiurnal tides, influencing the sporadic E layers. Furthermore, a wavelet analysis of foEs data with a time resolution of 0.25 h demonstrated that planetary waves also modulate the frequency of diurnal tides, thereby affecting the sporadic E layers. This research contributes to a deeper understanding of the formation mechanisms and prediction of sporadic E layer behavior. Full article
(This article belongs to the Special Issue Ionospheric Irregularity)
Show Figures

Figure 1

15 pages, 2926 KB  
Article
Solar Cycle Dependence of Migrating Diurnal Tide in the Equatorial Mesosphere and Lower Thermosphere
by Shuai Liu, Guoying Jiang, Bingxian Luo, Jiyao Xu, Ruilin Lin, Yajun Zhu and Weijun Liu
Remote Sens. 2024, 16(18), 3437; https://doi.org/10.3390/rs16183437 - 16 Sep 2024
Viewed by 1492
Abstract
Atmospheric migrating diurnal tide (DW1) is one of the prominent variabilities in the mesosphere and lower thermosphere (MLT). The existence of the solar cycle dependence of DW1 is debated, and there exist different and even opposite findings at different latitudes. In this paper, [...] Read more.
Atmospheric migrating diurnal tide (DW1) is one of the prominent variabilities in the mesosphere and lower thermosphere (MLT). The existence of the solar cycle dependence of DW1 is debated, and there exist different and even opposite findings at different latitudes. In this paper, the solar cycle dependence of temperature DW1 in the equatorial mesosphere and lower thermosphere (MLT) is investigated using temperature global observations from TIMED/SABER spanning 22 years (2002–2023). The results show that (a) the solar cycle dependence of temperature DW1 is seen very clearly at the equator. The maximum correlation coefficient between DW1 and the F10.7 index occurs at 87km, with 0.72; the second maximum coefficient occurs at 99 km, with 0.62. The coefficient could reach 0.87 at 87 km and 0.67 at 99 km after dropping the years influenced by the Stratosphere Quasi-biennial oscillation (SQBO) disruption event. (b) DW1 shows a lag response to the solar cycle at the equator. DW1 amplitudes show a 1-year lag to the F10.7 index at 87 km and a 2-year lag to the F10.7 index at 99 km. Full article
Show Figures

Graphical abstract

21 pages, 5145 KB  
Article
The Climatology of Gravity Waves over the Low-Latitude Region Estimated by Multiple Meteor Radars
by Jianyuan Wang, Wen Yi, Na Li, Xianghui Xue, Jianfei Wu, Hailun Ye, Jian Li, Tingdi Chen, Yaoyu Tian, Boyuan Chang, Zonghua Ding and Jinsong Chen
Remote Sens. 2024, 16(16), 2870; https://doi.org/10.3390/rs16162870 - 6 Aug 2024
Viewed by 2181
Abstract
Atmospheric gravity waves (GWs) can strongly modulate middle atmospheric circulation and can be a significant factor for the coupling between the lower atmosphere and the middle atmosphere. GWs are difficult to resolve in global atmospheric models due to their small scale; thus, GW [...] Read more.
Atmospheric gravity waves (GWs) can strongly modulate middle atmospheric circulation and can be a significant factor for the coupling between the lower atmosphere and the middle atmosphere. GWs are difficult to resolve in global atmospheric models due to their small scale; thus, GW observations play an important role in middle atmospheric studies. The climatology of GW variance and momentum in the low-latitude mesosphere and lower thermosphere (MLT) region are revealed using multiple meteor radars, which are located at Kunming (25.6°N, 103.8°E), Sanya (18.4°N, 109.6°E), and Fuke (19.5°N, 109.1°E). The climatology and longitudinal variations in GW momentum fluxes and variance over the low-latitude region are reported. The GWs show strong seasonal variations and can greatly control the mesospheric horizontal winds via modulation of the quasi-geostrophic balance and momentum deposition. The different GW activities between Kunming and Sanya/Fuke are possibly consistent with the unique prevailing surface winds over Kunming and the convective system over the Tibetan Plateau according to the European Centre for Medium-Range Weather Forecasts (ECMWF), Reanalysis v5 (ERA5) data, and outgoing longwave radiation (OLR) data. These findings provide insight for better understanding the coupling between the troposphere and mesosphere. Full article
Show Figures

Figure 1

33 pages, 9246 KB  
Review
Meteor Radar for Investigation of the MLT Region: A Review
by Iain M. Reid
Atmosphere 2024, 15(4), 505; https://doi.org/10.3390/atmos15040505 - 20 Apr 2024
Cited by 11 | Viewed by 4778
Abstract
This is an introductory review of modern meteor radar and its application to the measurement of the dynamical parameters of the Mesosphere Lower Thermosphere (MLT) Region within the altitude range of around 70 to 110 km, which is where most meteors are detected. [...] Read more.
This is an introductory review of modern meteor radar and its application to the measurement of the dynamical parameters of the Mesosphere Lower Thermosphere (MLT) Region within the altitude range of around 70 to 110 km, which is where most meteors are detected. We take a historical approach, following the development of meteor radar for studies of the MLT from the time of their development after the Second World War until the present. The application of the meteor radar technique is closely aligned with their ability to make contributions to Meteor Astronomy in that they can determine meteor radiants, and measure meteoroid velocities and orbits, and so these aspects are noted when required. Meteor radar capabilities now extend to measurements of temperature and density in the MLT region and show potential to be extended to ionospheric studies. New meteor radar networks are commencing operation, and this heralds a new area of investigation as the horizontal spatial variation of the upper-atmosphere wind over an extended area is becoming available for the first time. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere)
Show Figures

Figure 1

Back to TopTop