Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = metal–CFRTP welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8597 KiB  
Article
Electrochemical Jet Machining of Surface Texture: Improving the Strength of Hot-Pressure-Welded AA6061-CF/PA66 Joints
by Weidong Liu, Yan Luo, Yonghua Zhao, Haipeng Zhou, Sansan Ao and Yang Li
J. Compos. Sci. 2024, 8(7), 263; https://doi.org/10.3390/jcs8070263 - 7 Jul 2024
Cited by 1 | Viewed by 1435
Abstract
Diverse industries are witnessing an increase in demand for hybrid structures of metals and carbon-fiber-reinforced thermoplastic composites (CFRTPs). Welding is an essential technique in the manufacture of metal–CFRTP hybrid structures. However, achieving high-strength metal–CFRTP welded joints faces serious challenges due to the considerable [...] Read more.
Diverse industries are witnessing an increase in demand for hybrid structures of metals and carbon-fiber-reinforced thermoplastic composites (CFRTPs). Welding is an essential technique in the manufacture of metal–CFRTP hybrid structures. However, achieving high-strength metal–CFRTP welded joints faces serious challenges due to the considerable disparities in material characteristics. As an effective method to strengthen metal–CFRTP joints, surface texturing on metal is gaining significant attention. This study introduces an emerging surface texturing approach, electrochemical jet machining (EJM) using a film electrolyte jet, for enhancing the performance of AA6061-CF/PA66 hot-pressure-welded (HPW) joints. Parametric effects on surface morphology and roughness in the EJM of AA6061 are investigated. The results show that a rough surface with multiscale pores can be generated on AA6061 by EJM, and that surface morphology can be modulated by adjusting the applied current density and jet translational speed. Subsequently, the effects of different EJM-textured surface morphologies on the performance of HPW joints are examined. Surface textures created by EJM are demonstrated to significantly enhance the mechanical interlocking effect at the bonding interface between AA6061 and CF/PA66, resulting in a substantial increase in joint strength. The maximum joint strength attained in the present work with EJM texturing is raised by 45.29% compared to the joints without surface texturing. Additionally, the joint strength slightly improves as the roughness of EJM-textured surfaces rises, with the exception of rough surfaces that are textured with a combination of low current density and rapid translational speed. Overall, these findings suggest that EJM texturing using a film jet prior to welding is a potential approach for the manufacture of high-performance metal–CFRTP hybrid structures. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, Volume III)
Show Figures

Figure 1

16 pages, 16387 KiB  
Article
Process Characterizations of Ultrasonic Extruded Weld-Riveting of AZ31B Magnesium Alloy to Carbon Fiber-Reinforced PA66
by Zeguang Liu, Guanxiong Lu, Yuanduo Yang, Sansan Ao, Kaifeng Wang and Yang Li
Polymers 2024, 16(12), 1749; https://doi.org/10.3390/polym16121749 - 20 Jun 2024
Cited by 7 | Viewed by 1105
Abstract
Traditional metal–plastic dissimilar welding methods directly heat the metal workpiece, which may cause potential thermal damage to the metal workpiece. Ultrasonic extruded weld-riveting (UEWR) is a relatively new method for dissimilar joining of carbon fiber-reinforced thermoplastic (CFRTP) and metal. In this method, the [...] Read more.
Traditional metal–plastic dissimilar welding methods directly heat the metal workpiece, which may cause potential thermal damage to the metal workpiece. Ultrasonic extruded weld-riveting (UEWR) is a relatively new method for dissimilar joining of carbon fiber-reinforced thermoplastic (CFRTP) and metal. In this method, the CFRTP workpiece is melted using the ultrasonic effect and is squeezed into prefabricated holes in the metal workpiece to form a rivet structure. In this method, the metal workpiece is not directly heated, and potential high-temperature losses can be avoided. This paper investigates the process characterizations of UERW of AZ31B magnesium alloy to carbon fiber-reinforced PA66. The process parameters are optimized by the Taguchi method. The joint formation process is analyzed based on the fiber distribution in the cross-sections of joints. The effects of welding parameters on the joint microstructure and fracture surface morphology are discussed. The results show that a stepped amplitude strategy (40 μm amplitude in the first stage and 56 μm amplitude in the second stage) could balance the joint strength and joint appearance. Insufficient (welding energy < 2600 J or amplitude-A < 50%) or excessive (welding energy > 2800 J or amplitude-A > 50%) welding parameters lead to the formation of porous defects. Three fracture modes are identified according to the fracture surface analysis. The maximum tensile shear strength of joints at the optimal parameters is about 56.5 ± 6.2 MPa. Full article
Show Figures

Figure 1

21 pages, 4927 KiB  
Article
A Novel Nickel-Plated Carbon Fiber Insert in Aluminum Joints with Thermoplastic ABS Polymer or Stainless Steel
by Yoshitake Nishi, Kouhei Sagawa, Michael C. Faudree, Helmut Takahiro Uchida, Masae Kanda, Satoru Kaneko, Michelle Salvia, Yoshihito Matsumura and Hideki Kimura
Materials 2023, 16(17), 5777; https://doi.org/10.3390/ma16175777 - 23 Aug 2023
Cited by 1 | Viewed by 1958
Abstract
New types of hybrid aluminum joints: Al-acrylonitrile butadiene styrene (ABS) carbon fiber reinforced thermoplastic polymer (CFRTP) designated Al/Ni-CFP/ABS, and Al-18-8 Stainless steel, Al/Ni-CFP/18-8, by Ni-plated carbon fiber plug (Ni-CFP) insert not before seen in the literature have been fabricated. [...] Read more.
New types of hybrid aluminum joints: Al-acrylonitrile butadiene styrene (ABS) carbon fiber reinforced thermoplastic polymer (CFRTP) designated Al/Ni-CFP/ABS, and Al-18-8 Stainless steel, Al/Ni-CFP/18-8, by Ni-plated carbon fiber plug (Ni-CFP) insert not before seen in the literature have been fabricated. The goal is to take advantage of extremely high ~6 mm CF surface area for high adhesion, to enhance the safety level of aircraft and other parts. This is without fasteners, chemical treatment, or glue. First, the CFP is plated with Ni. Second, the higher melting point half-length is spot welded to the CFP; and third, the remaining half-length is fabricated. The ultimate tensile strength (UTS) of Al/Ni-CFP/ABS was raised 15 times over that of Al/ABS. Normalized cUTS according to CFP cross-section by Rule of Mixtures for cAl/Ni-CFP/18-8 was raised over that of cAl/Ni-CFP/18-8 from 140 to 360 MPa. Resistance energy to tensile deformation, UT, was raised 12 times from Al/ABS to Al/Ni-CFP/ABS, and 6 times from Al/CFP/18-8 to Al/Ni-CFP/18-8. Spot welding allows rapid melting followed by rapid solidification for amorphous metal structures minimizing grain boundaries. The Ni-coating lowers or counters the effects of brittle Al4C3 and FexC formation at the interface and prevents damage by impingement to CFs, allowing joints to take on more of the load. Full article
Show Figures

Figure 1

16 pages, 6438 KiB  
Article
Study on the SPCC and CFRTP Hybrid Joint Performance Produced with Additional Nylon-6 Interlayer by Ultrasonic Plastic Welding
by Tai Wang, Kiyokazu Yasuda and Hiroshi Nishikawa
Polymers 2022, 14(23), 5235; https://doi.org/10.3390/polym14235235 - 1 Dec 2022
Cited by 8 | Viewed by 2230
Abstract
Due to the high degree of dissimilarity in physicochemical properties between metal and carbon fiber, it presents a tremendous challenge to join them directly. In this paper, cold rolled steel (SPCC) and carbon fiber reinforced thermoplastic (CFRTP) chopped sheet hybrid joints were produced [...] Read more.
Due to the high degree of dissimilarity in physicochemical properties between metal and carbon fiber, it presents a tremendous challenge to join them directly. In this paper, cold rolled steel (SPCC) and carbon fiber reinforced thermoplastic (CFRTP) chopped sheet hybrid joints were produced with the addition of Nylon 6 (PA6) thermoplastic film as an intermediate layer by the ultrasonic plastic welding method. The effect of ultrasonic welding energy and preheating temperature on the hybrid joint microstructure and mechanical behavior was well investigated. The suitable joining parameters could obtain a strong joint by adding the PA6 film as an intermediate layer between the SPCC and bare carbon fibers. Microstructural analysis revealed that the interface joining condition between the PA6 film and the SPCC component is the primary reason for the joint strength. The crevices generated at the interface were eliminated when the preheating temperature arrived at 200 °C, and the joint strength thus significantly increased. The lap shear test results under quasi-static loading showed that the welding energy and preheating temperature synergistically affect the joint performances. At 240 °C, the joint strength value reached the maximum. Through the analysis of the microstructure morphology, mechanical performance, and the failure mechanism of the joint, the optimized joining process window for ultrasonic plastic welding of SPCC-CFRTP by adding an intermediate layer, was obtained. Full article
Show Figures

Figure 1

Back to TopTop