Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (814)

Search Parameters:
Keywords = micro-nanostructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 17374 KB  
Article
Performance Impact of the Nano-Colloidal Aphron-Based Drilling Fluids on Rheological and Filtration Properties
by Raboon Dizayee, Jagar Ali and Hewa Omar
Processes 2026, 14(4), 587; https://doi.org/10.3390/pr14040587 (registering DOI) - 7 Feb 2026
Abstract
Severe fluid loss in fractured, depleted reservoirs usually defeat conventional water-based drilling fluids (WBDFs), and rigid lost-circulation materials (LCMs) struggle to form durable, conformal seals. We report an eco-oriented colloidal gas aphron (CGA) fluid built from a nanostructured corn biopolymer (NCBP) and a [...] Read more.
Severe fluid loss in fractured, depleted reservoirs usually defeat conventional water-based drilling fluids (WBDFs), and rigid lost-circulation materials (LCMs) struggle to form durable, conformal seals. We report an eco-oriented colloidal gas aphron (CGA) fluid built from a nanostructured corn biopolymer (NCBP) and a biodegradable peanut-oil-derived surfactant, benchmarked against a reference fluid (RF) and aphron-only baselines (aphron based fluid, ABF). NCBP, produced by ball milling, was confirmed nanostructured by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), electron and atomic microscopies. Performance was evaluated from 25 to 90 °C for rheology, aphron stability and filtration at low temperature and low pressure (LTLP) of 100 psi and 25 °C, with post-test mud cake imaging. The optimized formulation, NCBP-2, showed stronger shear-thinning and higher gel strengths with heat, sustained stable and uniform aphrons for at least 120 min with foam persistence beyond 24 h, and delivered 3.0 mL filtrate with a 0.8 mm mud cake. These outcomes correspond to 60% less filtrate and approximately 73% thinner mud cakes than RF (7.5 mL; 3.0 mm), and about 14% and 33% improvements over the best ABF (3.5 mL; 1.2 mm). Micrographs revealed denser, finer-pored mud cakes, consistent with a mechanism in which deformable aphrons bridge micro-fractures while nano-scale polymeric fillers tighten the mud cake network. The results demonstrate decisive loss-control gains with temperature-tolerant rheology, supporting bio-based CGA fluids for depleted and fractured formations. Full article
Show Figures

Figure 1

27 pages, 6905 KB  
Article
Effect of Laser Scanning Parameters on Topography and Morphology of Femtosecond Laser-Structured Hot-Work Tool Steel Surfaces
by Robert Thomas, Hermann Seitz and Georg Schnell
J. Manuf. Mater. Process. 2026, 10(2), 58; https://doi.org/10.3390/jmmp10020058 (registering DOI) - 7 Feb 2026
Abstract
In mechanical engineering, interest in reliable and practicable technologies for nano- and microstructuring of tool surfaces is increasing. Femtosecond laser structuring offers a promising approach that combines high processing speeds with high precision. However, a knowledge gap remains regarding the optimal process parameters [...] Read more.
In mechanical engineering, interest in reliable and practicable technologies for nano- and microstructuring of tool surfaces is increasing. Femtosecond laser structuring offers a promising approach that combines high processing speeds with high precision. However, a knowledge gap remains regarding the optimal process parameters for achieving specific surface patterns on hot-work tool steel substrates. The current study aims to investigate the effects of laser scanning parameters on the formation of self-organized surface structures and the resulting topography and morphology. Therefore, samples were irradiated using a 300 fs laser with linearly polarized light (λ = 1030 nm). Scanning electron microscopy revealed four structure types: laser-induced periodic surface structures (LIPSSs), micrometric ripples, micro-crater structures, and pillared microstructures. The results for surface area and line roughness indicate that high laser pulse overlaps lower the strong ablation threshold more effectively than high scanning line overlaps, promoting the formation of pillared microstructures. For efficient ablation and increased surface roughness, higher pulse overlaps are therefore advantageous. In contrast, at low fluences, higher scanning line overlaps support a more homogeneous formation of nanostructures and reduce waviness. Full article
(This article belongs to the Special Issue Advanced Laser-Assisted Manufacturing Processes)
Show Figures

Graphical abstract

11 pages, 6883 KB  
Article
High-Entropy Alloy Coating Produced by Laser Metal Deposition with Additional Femtosecond Laser Surface Structuring
by Márk Windisch, Gergely Juhász, Anita Heczel, József T. Szabó, Zoltán Dankházi and Ádám Vida
Coatings 2026, 16(2), 213; https://doi.org/10.3390/coatings16020213 - 6 Feb 2026
Abstract
High-entropy alloys (HEAs) represent one of the most promising emerging material families, particularly for advanced surface engineering applications. In this work, a near-high-entropy alloy (near-HEA) coating was produced on a 316L stainless steel substrate using laser metal deposition (LMD) from a powder mixture [...] Read more.
High-entropy alloys (HEAs) represent one of the most promising emerging material families, particularly for advanced surface engineering applications. In this work, a near-high-entropy alloy (near-HEA) coating was produced on a 316L stainless steel substrate using laser metal deposition (LMD) from a powder mixture of Inconel 625, Cr and Mo, without the intentional addition of Fe. Due to dilution from the substrate, the resulting alloy contained elevated Fe content while maintaining Cr, Ni and Mo concentrations within the generally accepted compositional range of HEAs. The deposited layer exhibited a dual-phase microstructure consisting of a face-centered cubic (FCC) phase and a highly distorted tetragonal phase forming a periodic network with a characteristic length scale of several hundred nanometers. The hardness of the coating increased to approximately three times that of the substrate, reaching values of 600–700 HV. To further modify the surface properties, laser-induced periodic surface structures (LIPSS) were generated on the polished coating using femtosecond pulsed laser irradiation at different energy densities. The morphology and subsurface structure of the resulting periodic patterns were investigated by scanning electron microscopy. LIPSS with characteristic dimensions ranging from the micrometer to nanometer scale were successfully produced. Cross-sectional analyses revealed that the underlying dual-phase microstructure remained continuous within the laser-structured regions, indicating that LIPSS formation occurred predominantly via metallic ablation without significant phase transformation or amorphization. These results demonstrate the combined applicability of LMD and femtosecond laser structuring for producing mechanically enhanced, micro- and nanostructured near-HEA coatings with potential for advanced surface-related functionalities. Full article
(This article belongs to the Special Issue Innovations, Applications and Advances of High-Entropy Alloy Coatings)
Show Figures

Figure 1

38 pages, 8537 KB  
Review
Towards Next-Generation Smart Seed Phenomics: A Review and Roadmap for Metasurface-Based Hyperspectral Imaging and a Light-Field Platform for 3D Reconstruction
by Jingrui Yang, Qinglei Zhao, Shuai Liu, Jing Guo, Fengwei Guan, Shuxin Wang, Qinglong Hu, Qiang Liu, Qi Song, Mingdong Zhu and Chao Li
Photonics 2026, 13(1), 61; https://doi.org/10.3390/photonics13010061 - 8 Jan 2026
Viewed by 490
Abstract
Seed phenomics is a critical research field for understanding seed germination mechanisms. Metasurfaces, composed of subwavelength nanostructures, offer a promising pathway to achieve both dispersion control and imaging functionalities within an ultra-compact form factor. Recent advances in micro–nano-optics and computational imaging have opened [...] Read more.
Seed phenomics is a critical research field for understanding seed germination mechanisms. Metasurfaces, composed of subwavelength nanostructures, offer a promising pathway to achieve both dispersion control and imaging functionalities within an ultra-compact form factor. Recent advances in micro–nano-optics and computational imaging have opened new avenues for high-dimensional, multimodal imaging. However, conventional hyperspectral and light-field systems still face limitations in compactness, depth resolution, and spectral–spatial integration. This review summarizes recent progress in metalens and metasurface lens array-based light-field systems for hyperspectral imaging and 3D reconstruction, with a focus on the underlying principles, design strategies, and reconstruction algorithms that enable single-shot 3D hyperspectral acquisition. We further present a forward-looking roadmap toward the realization of a revolutionized imaging paradigm: a metasurface-based light-field platform that fully integrates 3D and hyperspectral imaging capabilities. In particular, we examine how dispersive metasurfaces serve as core optical elements for precise dispersion control in hyperspectral imaging systems, while metalens arrays enable accurate modulation of spatial–angular distributions in light-field configurations. We systematically review both 3D and spectral reconstruction algorithms, highlighting their roles in decoding complex optical encodings. The application of these integrated systems in seed phenotyping is emphasized, demonstrating their capability to capture 3D spatial–spectral distributions in a single exposure. This approach facilitates high-throughput analysis of morphological traits, germination potential, and internal biochemical composition, offering a comprehensive solution for advanced seed characterization. Finally, we outline a practical roadmap for implementing a metasurface-based light-field platform that integrates hyperspectral imaging and computational 3D reconstruction. This review offers a comprehensive overview of the state of the art in compact 3D light-field systems and multimodal hyperspectral imaging platforms, while providing forward-looking insights aimed at advancing smart seed phenotyping, precision agriculture, and next-generation optical imaging technologies. Full article
(This article belongs to the Special Issue Optical Metasurface: Applications in Sensing and Imaging)
Show Figures

Figure 1

15 pages, 1916 KB  
Article
Improvement of Cyclic Stability of High-Capacity Lithium-Ion Battery Si/C Composite Anode Through Cu Current Collector Perforation
by Shakhboz Sh. Isokjanov, Ainur B. Gilmanov, Yulia S. Vlasova, Alena I. Komayko, Olesia M. Karakulina and Valeriy V. Krivetskiy
J. Compos. Sci. 2026, 10(1), 11; https://doi.org/10.3390/jcs10010011 - 1 Jan 2026
Viewed by 624
Abstract
The adoption of silicon-graphite composites as anode materials for the next generation of lithium-ion batteries with enhanced specific capacity requires complex technological efforts in order to mitigate the problem of the quick performance fading of electrodes due to the mechanical degradation of materials. [...] Read more.
The adoption of silicon-graphite composites as anode materials for the next generation of lithium-ion batteries with enhanced specific capacity requires complex technological efforts in order to mitigate the problem of the quick performance fading of electrodes due to the mechanical degradation of materials. The matter is currently being addressed in terms of electrolyte components, polymer binders, materials structure and morphology itself, as well as current collector design, which differ greatly in cost and scalability. The present work describes the efficacy of Cu foil perforation—a simple, low-cost, and easily scalable approach—as a means of Si/C composite anode performance stabilization during extensive charge-discharge cycling. The NMC||Si/C pouch-type full cells demonstrated over 90% of initial capacity retention after 100 charge-discharge cycles in the case of a 250 µm perforated Cu foil used as a current collector, compared to only 60% capacity left in the same conditions for plain Cu foil as an anode. The obtained result is related to the prevention of anode material delamination off the foil surface as a result of silicon expansion and contraction, which is achieved through the formation inter-penetrating metal-composite structure and the presence of “stitches”, connecting and holding both sides of the electrode tightly attached to the current collector. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

23 pages, 3668 KB  
Review
Nanodevice Approaches for Detecting Micro- and Nanoplastics in Complex Matrices
by Rita Paola Debri, Fabrizia Sepe, Silvia Romano, Nicolantonio D’Orazio, Antonino De Lorenzo, Anna Calarco, Raffaele Conte and Gianfranco Peluso
Nanomaterials 2026, 16(1), 55; https://doi.org/10.3390/nano16010055 - 31 Dec 2025
Cited by 1 | Viewed by 607
Abstract
Micro- and nanoplastics (MNPs) are increasingly recognized as pervasive environmental contaminants with profound implications for ecosystems and human health. Their small size, compositional diversity, and occurrence across complex matrices—including water, soil, food, and biological samples—pose substantial analytical challenges. Conventional techniques such as vibrational [...] Read more.
Micro- and nanoplastics (MNPs) are increasingly recognized as pervasive environmental contaminants with profound implications for ecosystems and human health. Their small size, compositional diversity, and occurrence across complex matrices—including water, soil, food, and biological samples—pose substantial analytical challenges. Conventional techniques such as vibrational spectroscopy, chromatographic analysis, and electron microscopy have yielded critical insights into MNP composition, morphology, and distribution; however, these methods often face limitations in sensitivity, throughput, and adaptability to real-world samples. Recent advances in nanotechnology have catalyzed the emergence of nanodevices—encompassing nanosensors, nanopore systems, integrated lab-on-a-chip platforms and nanostructured capture materials—that promise enhanced sensitivity, specificity, and the capacity for real-time, in situ detection. These innovations not only facilitate high-throughput analysis but also provide novel opportunities for integrated characterization of MNPs across diverse matrices. This review synthesizes the current state of nanodevice-based MNP detection, critically examining their principles, performance, and limitations relative to conventional approaches, and outlining the key needs for standardization, matrix-specific adaptation, and regulatory harmonization. Full article
(This article belongs to the Special Issue Smart Nanodevices for Therapy: Present and Future Perspectives)
Show Figures

Figure 1

30 pages, 16390 KB  
Review
Auger Electron Spectroscopy for Chemical Analysis of Passivated (Al,Ga)N-Based Systems
by Alina Domanowska and Bogusława Adamowicz
Micromachines 2026, 17(1), 47; https://doi.org/10.3390/mi17010047 - 30 Dec 2025
Viewed by 631
Abstract
This review summarizes the use of Auger Electron Spectroscopy (AES) for microchemical analysis of two different types of dielectric/(Al,Ga)N-based systems: (i) extrinsic dielectric PECVD SiO2, ALD Al2O3, and ECR-CVD SiNx films on AlxGa1−x [...] Read more.
This review summarizes the use of Auger Electron Spectroscopy (AES) for microchemical analysis of two different types of dielectric/(Al,Ga)N-based systems: (i) extrinsic dielectric PECVD SiO2, ALD Al2O3, and ECR-CVD SiNx films on AlxGa1−xN/GaN structures in the context of their application in microelectronic power devices and (ii) intrinsic Al2O3 films on AlN epitaxial layers grown by high-temperature oxidation for nanostructured technology of various gas/ion sensors. Particular attention is given to AES depth profiling across complete multilayer cross-sections, combining qualitative analysis of spectral line shape and intensity evolution as well as kinetic energy shifts with quantitative elemental depth distributions. This approach enables identification of chemical states and oxidation-related transformations at dielectric/semiconductor interfaces. Reported results demonstrate that AES provides micro- to nanometer-scale chemical information essential for distinguishing interfacial from the bulk properties. The capabilities and inherent limitations of AES depth profiling, including sputter-induced artifacts are also addressed, highlighting the role of optimized experimental conditions in reliable interface analysis. Full article
(This article belongs to the Special Issue GaN Power Devices: Recent Advances, Applications, and Perspectives)
Show Figures

Figure 1

9 pages, 926 KB  
Article
Long-Lasting Hydrophilicity of Al2O3 Surfaces via Femtosecond Laser Microprocessing
by Alessandra Signorile, Liliana Papa, Marida Pontrandolfi, Caterina Gaudiuso, Annalisa Volpe, Antonio Ancona and Francesco Paolo Mezzapesa
Micromachines 2026, 17(1), 29; https://doi.org/10.3390/mi17010029 - 26 Dec 2025
Viewed by 328
Abstract
We explore the wettability modulation induced on alumina (Al2O3) targets by femtosecond laser texturing to demonstrate the stable and durable hydrophilic character of the surface. Specifically, we identify a suitable operational regime to tailor micro-nanostructures onto Al2O [...] Read more.
We explore the wettability modulation induced on alumina (Al2O3) targets by femtosecond laser texturing to demonstrate the stable and durable hydrophilic character of the surface. Specifically, we identify a suitable operational regime to tailor micro-nanostructures onto Al2O3 plates and accurately assess the ablation threshold in our experimental conditions. A periodic geometry with triangular patterns of various groove depths, ranging from 3.2 ± 0.1 to 17.1 ± 0.1 µm, was optimized for establishing a long-term wetting response. The latter was monitored on daily basis over a time interval exceeding 40 days by collecting the contact angle measurements of samples with and without a post-process thermal annealing, adopted to stabilize the surface wettability soon after the laser treatment. The results show that deeper grooves significantly enhance and maintain the hydrophilic character, particularly in samples without post-process thermal annealing, where superhydrophilicity (θ < 5°) is demonstrated to persist the entire time throughout the test. These findings disclose the potential for an effective fine-tuning of the alumina wettability, thus opening up the possibility of specific applications requiring long-term control of surface–liquid interactions, such as biomedical implants, and orthopedic and dental prostheses. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

12 pages, 2987 KB  
Article
Formation Mechanisms of Micro-Nano Structures on Steels by Strong-Field Femtosecond Laser Filament Processing
by Liansheng Zheng, Shuo Wang, Yingbo Cong, Chenxing Wang, Haowen Li, Hongyin Jiang, Helong Li, Hongwei Zang and Huailiang Xu
Nanomaterials 2026, 16(1), 37; https://doi.org/10.3390/nano16010037 - 25 Dec 2025
Viewed by 327
Abstract
Functional steel surfaces engineered through tailored micro-nano structures are increasingly vital for various applications such as high-performance aerospace components, energy conversion systems and defense equipment. Femtosecond laser filament processing is a recently proposed remote fabrication technique, showing the capability of fabricating micro-nano structures [...] Read more.
Functional steel surfaces engineered through tailored micro-nano structures are increasingly vital for various applications such as high-performance aerospace components, energy conversion systems and defense equipment. Femtosecond laser filament processing is a recently proposed remote fabrication technique, showing the capability of fabricating micro-nano structures on irregular and large-area surfaces without the need of tight focusing. Nevertheless, the mechanisms underlying the formation of filament-induced structures remain not fully understood. Here we systematically investigate the formation mechanisms of filament-induced micro-nano structures on stainless steel surfaces by processing stainless steel in three manners: point, line, and area. We clarify the decisive role of the unique core–reservoir energy distribution of the filament in the formation of filament-induced micro-nano structures, and reveal that ablation, molten metal flow, and metal vapor condensation jointly drive the structure evolution through a dynamic interplay of competition and coupling, giving rise to the sequential morphological transitions of surface structures, from laser-induced periodic surface structures to ripple-like, crater-like, honeycomb-like, and ultimately taro-leaf-like structures. Our work not only clarifies the mechanisms of femtosecond laser filament processed morphological structures on steels but also provides insights onto intelligent manufacturing and design of advanced functional steel materials. Full article
Show Figures

Graphical abstract

26 pages, 2339 KB  
Review
Contemporary Micro-Battery Technologies: Advances in Microfabrication, Nanostructuring, and Material Optimisation for Lithium-Ion Batteries
by Nadiia Piiter, Iván Fernández Valencia, Eirik Odinsen and Jacob Joseph Lamb
Appl. Sci. 2026, 16(1), 173; https://doi.org/10.3390/app16010173 - 23 Dec 2025
Viewed by 589
Abstract
The miniaturisation of electronic devices has intensified the demand for compact, high-performance lithium-ion batteries. This review synthesises recent progress in microscale battery development, focusing on microfabrication techniques, nanostructured materials, porosity-engineered architectures, and strategies for reducing non-active components. It explores both top–down and bottom–up [...] Read more.
The miniaturisation of electronic devices has intensified the demand for compact, high-performance lithium-ion batteries. This review synthesises recent progress in microscale battery development, focusing on microfabrication techniques, nanostructured materials, porosity-engineered architectures, and strategies for reducing non-active components. It explores both top–down and bottom–up fabrication methods, the integration of nanomaterials, the role of gradient electrode architectures in enhancing ion transport and energy density, along with strategies to reduce non-active components, such as separators and current collectors, to maximise volumetric efficiency. Advances in top–down and bottom–up fabrication methods, including photolithography, laser structuring, screen printing, spray coating, mechanical structuring, and 3D printing, enable precise control over electrode geometry and enhance ion transport and material utilisation. Nanostructured anodes, cathodes, electrolytes, and separators further improve conductivity, mechanical stability, and cycling performance. Gradient porosity designs optimise ion distribution in thick electrodes, while innovations in ultra-thin separators and lightweight current collectors support higher energy density. Remaining challenges relate to scalability, mechanical robustness, and long-term stability, especially in fully integrated micro-battery architectures. Future development will rely on hybrid fabrication methods, advanced material compatibility, and data-driven optimisation to bridge laboratory innovations with practical applications. By integrating microfabrication and nanoscale engineering, next-generation LIBs can deliver high energy density and long operational lifetimes for miniaturised and flexible electronic systems. Full article
Show Figures

Figure 1

6 pages, 933 KB  
Proceeding Paper
Femtosecond Laser Micro- and Nanostructuring of Aluminium Moulds for Durable Superhydrophobic PDMS Surfaces
by Stefania Caragnano, Raffaele De Palo, Felice Alberto Sfregola, Caterina Gaudiuso, Francesco Paolo Mezzapesa, Pietro Patimisco, Antonio Ancona and Annalisa Volpe
Mater. Proc. 2025, 26(1), 2; https://doi.org/10.3390/materproc2025026002 - 22 Dec 2025
Viewed by 312
Abstract
Surface functionalisation of polymers is essential for enhancing properties such as wettability and mechanical resistance. This study presents a scalable, coating-free approach to fabricate hydrophobic and superhydrophobic Polydimethylsiloxane (PDMS) surfaces. Aluminium (AA2024) moulds were microstructured using a TruMicro femtosecond laser system to generate [...] Read more.
Surface functionalisation of polymers is essential for enhancing properties such as wettability and mechanical resistance. This study presents a scalable, coating-free approach to fabricate hydrophobic and superhydrophobic Polydimethylsiloxane (PDMS) surfaces. Aluminium (AA2024) moulds were microstructured using a TruMicro femtosecond laser system to generate grid patterns with controlled hatch distances and depths, as well as laser-induced periodic surface structures (LIPSSs). These features were accurately replicated onto PDMS, as confirmed by scanning electron miscoscopy (SEM) and profilometry. Contact angle measurements showed a marked increase in hydrophobicity, reaching superhydrophobicity for optimised parameters, with surface stability maintained over four months without degradation. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Materials)
Show Figures

Figure 1

31 pages, 5014 KB  
Review
Flexible Micro-Neural Interface Devices: Advances in Materials Integration and Scalable Manufacturing Technologies
by Jihyeok Lee, Sangwoo Kang and Suck Won Hong
Appl. Sci. 2026, 16(1), 125; https://doi.org/10.3390/app16010125 - 22 Dec 2025
Viewed by 820
Abstract
Flexible microscale neural interfaces are advancing current strategies for recording and modulating electrical activity in the brain and spinal cord. The aim of this review is to colligate recent progress in thin-film micro-electrocorticography (μECoG) systems and establish a framework for their translation toward [...] Read more.
Flexible microscale neural interfaces are advancing current strategies for recording and modulating electrical activity in the brain and spinal cord. The aim of this review is to colligate recent progress in thin-film micro-electrocorticography (μECoG) systems and establish a framework for their translation toward spinal bioelectronic implants. We first outline substrate and electrode material design, ranging from polymeric and hydrogel-based materials to nanostructured conductive materials that enable high-fidelity recording on mechanically compliant platforms. We then summarize structural design rules for μECoG arrays, including electrode size, pitch, and channel scaling, and relate these to data-driven μECoG applications in brain–computer interfaces and closed-loop neuromodulation. Bidirectional μECoG architectures for simultaneous stimulation and recording are examined, with emphasis on safe charge injection, electrochemical and thermal limits, and state-of-the-art hardware and algorithmic strategies for stimulation-artifact suppression. Building upon these cortical technologies, we briefly describe adaptation to spinal interfaces, where anatomical constraints demand optimized mechanical properties. Finally, we discuss the convergence of flexible bioelectronics, wireless power and telemetry, and embedded AI decoding as a path toward autonomous, clinically translatable μECoG and spinal neuroprosthetic systems. Ultimately, by synthesizing these multidisciplinary advances, this review provides a strategic roadmap for overcoming current translational barriers and realizing the full clinical potential of soft bioelectronics. Full article
(This article belongs to the Special Issue Human Activity Recognition (HAR) in Healthcare, 3rd Edition)
Show Figures

Figure 1

14 pages, 3206 KB  
Article
Microstructured Coatings and Surface Functionalization of Poly(caprolactone-co-lactide) Using Gas-Permeable Mold
by Mano Ando, Naoto Sugino, Yoshiyuki Yokoyama, Nur Aliana Hidayah Mohamed and Satoshi Takei
Coatings 2026, 16(1), 10; https://doi.org/10.3390/coatings16010010 - 20 Dec 2025
Viewed by 375
Abstract
Low-melting bioabsorbable polymers, such as poly(caprolactone-co-lactide) (PCLA), hold significant promise for biomedical applications. However, achieving high-precision micro- and nanotopographical functionalization remains a formidable challenge due to the material’s susceptibility to thermal deformation during conventional thermal molding processes. In this study, functional microstructured PCLA [...] Read more.
Low-melting bioabsorbable polymers, such as poly(caprolactone-co-lactide) (PCLA), hold significant promise for biomedical applications. However, achieving high-precision micro- and nanotopographical functionalization remains a formidable challenge due to the material’s susceptibility to thermal deformation during conventional thermal molding processes. In this study, functional microstructured PCLA coatings were engineered via low-temperature nanoimprint lithography utilizing a TiO2–SiO2 gas-permeable mold. These molds were synthesized via a sol–gel method utilizing titanium dioxide and silicon precursors. The gas-permeable nature of the mold facilitated the efficient evacuation of trapped air and volatiles during the imprinting process, enabling the high-fidelity replication of microstructures (1.3 μm height, 3 μm pitch) and nanostructured PCLA coatings featuring linewidths as narrow as 600 nm. The resultant microstructured PCLA coatings demonstrated modulated surface wettability, evidenced by an increase in water contact angles from 70.1° to 91.4°, and exhibited enhanced FD4 elution kinetics. These results confirm morphology-driven functionalities, specifically hydrophobicity and controlled release capabilities. Collectively, these findings underscore the efficacy of this microfabrication approach for polycaprolactone-based materials and highlight its potential to catalyze the development of high-value-added biomaterials for advanced medical and life science applications. This study establishes a foundational framework for the practical deployment of next-generation bioabsorbable materials and is anticipated to drive innovation in precision medical manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

21 pages, 5803 KB  
Article
Microwave-Assisted Synthesis of Visible Light-Driven BiVO4 Nanoparticles: Effects of Eu3+ Ions on the Luminescent, Structural, and Photocatalytic Properties
by Dragana Marinković, Bojana Vasiljević, Nataša Tot, Tanja Barudžija, Sudha Maria Lis Scaria, Stefano Varas, Rossana Dell’Anna, Alessandro Chiasera, Bernhard Fickl, Bernhard C. Bayer, Giancarlo C. Righini and Maurizio Ferrari
Molecules 2025, 30(24), 4757; https://doi.org/10.3390/molecules30244757 - 12 Dec 2025
Viewed by 521
Abstract
The optimization of BiVO4-based structures significantly contributes to the development of a global system towards clean, renewable, and sustainable energies. Enhanced photocatalytic performance has been reported for numerous doped BiVO4 materials. Bi3+-based compounds can be easily doped with [...] Read more.
The optimization of BiVO4-based structures significantly contributes to the development of a global system towards clean, renewable, and sustainable energies. Enhanced photocatalytic performance has been reported for numerous doped BiVO4 materials. Bi3+-based compounds can be easily doped with rare earth (RE3+) ions due to their equal valence and similar ionic radius. This means that RE3+ ions could be regarded as active co-catalysts and dopants to enhance the photocatalytic activity of BiVO4. In this study, a simple microwave-assisted approach was used for preparing nanostructured Bi1−xEuxVO4 (x = 0, 0.03, 0.06, 0.09, and 0.12) samples. Microwave heating at 170 °C yields a bright yellow powder after 10 min of radiation. The materials are characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet–visible–near-infrared diffuse reflectance spectroscopy (UV-Vis-NIR DRS), photoluminescence spectroscopy (PL), and micro-Raman techniques. The effects of the different Eu3+ ion concentrations incorporated into the BiVO4 matrix on the formation of the monoclinic scheelite (ms-) or tetragonal zircon-type (tz-) BiVO4 structure, on the photoluminescent intensity, on the decay dynamics of europium emission, and on photocatalytic efficiency in the degradation of Rhodamine B (RhB) were studied in detail. Additionally, microwave chemistry proved to be beneficial in the synthesis of the tz-BiVO4 nanostructure and Eu3+ ion doping, leading to an enhanced luminescent and photocatalytic performance. Full article
(This article belongs to the Special Issue Chemiluminescence and Photoluminescence of Advanced Compounds)
Show Figures

Graphical abstract

20 pages, 21921 KB  
Article
Shear-Induced Graphitization in Tongyuanpu Shear Zone, Liaodong Peninsula of Eastern China: Insights from Graphite Occurrences, Nanostructures and Carbon Sources
by Mengyan Shi, Nannan Cheng, Jianbin Li, Quanlin Hou, Qianqian Guo and Jienan Pan
Nanomaterials 2025, 15(23), 1778; https://doi.org/10.3390/nano15231778 - 26 Nov 2025
Viewed by 403
Abstract
An in-depth study of the genetic mechanisms of graphite in shear zones is crucial for understanding crustal weakening and the origins of inorganic carbon. This research focuses on mylonitic marble (MM) and cataclastic marble (CM) from the Tongyuanpu shear zone of Eastern China. [...] Read more.
An in-depth study of the genetic mechanisms of graphite in shear zones is crucial for understanding crustal weakening and the origins of inorganic carbon. This research focuses on mylonitic marble (MM) and cataclastic marble (CM) from the Tongyuanpu shear zone of Eastern China. The occurrences, nanostructures, carbon sources, and genesis of graphite were systematically investigated through micro- to ultra-microscale analysis. The results reveal that the MM contains two graphite varieties: C-foliation-aligned bands and stylolite-derived serrated aggregates. Both exhibit strong Z-axis LPO, indicating a deformation temperature below 200 °C. In contrast, the CM features individual graphite particles within fragmented grains. Near-ideal graphite structures are characterized in both types; however, a higher TOC content and a greater graphitization degree are observed in the CM. Raman thermometry indicates metamorphic peak temperatures of 588–673 °C (MM) and 540–682 °C (CM), with the former showing a significant discrepancy from the EBSD results. The δ13CORG values (−12.21‰ to −8.06‰) suggest fluid-derived carbon sources. We propose that reduction reactions involving high-temperature metamorphic fluids supplied the essential carbon source. Ductile shearing accelerated the graphitization of these carbonaceous materials through the accumulation of local strain energy, while subsequent brittle deformation with frictional sliding further facilitated structural transformation. Full article
(This article belongs to the Special Issue Nanopores and Nanostructures in Tight Reservoir Rocks)
Show Figures

Figure 1

Back to TopTop