Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (611)

Search Parameters:
Keywords = microfibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1217 KB  
Article
Fast Fashion Footprint: An Online Tool to Measure Environmental Impact and Raise Consumer Awareness
by Antonella Senese, Erika Filippelli, Blanka Barbagallo, Emanuele Petrosillo and Guglielmina Adele Diolaiuti
Geographies 2025, 5(3), 44; https://doi.org/10.3390/geographies5030044 - 23 Aug 2025
Viewed by 60
Abstract
Fast fashion is a rapidly expanding sector characterized by high production volumes, low costs, and short product lifecycles. While recent efforts have focused on improving sustainability within supply chains, consumer behavior remains a critical yet underexplored driver of environmental impacts. This study presents [...] Read more.
Fast fashion is a rapidly expanding sector characterized by high production volumes, low costs, and short product lifecycles. While recent efforts have focused on improving sustainability within supply chains, consumer behavior remains a critical yet underexplored driver of environmental impacts. This study presents a web-based calculator tool designed to estimate both the carbon and plastic footprints associated with individual fast fashion consumption, with a particular focus on shopping behaviors, garment disposal, and laundry habits. Adopting a geographical perspective, the analysis explicitly considers the spatial dynamics of consumption and logistics within the urban context of Milan (Italy), a dense metropolitan area representative of high fashion activity and mobility. By incorporating user-reported travel patterns, logistics routes, and localized emission factors, the tool links consumer habits to place-specific environmental impacts. By involving over 360 users, the tool not only quantifies emissions and plastic waste (including microfibers) but also serves an educational function, raising awareness about the hidden consequences of fashion-related choices. Results reveal high variability in environmental impacts depending on user profiles and behaviors, with online shopping, frequent use of private vehicles, and improper garment disposal contributing significantly to emissions and plastic pollution. Our findings highlight the importance of integrating consumer-focused educational tools into broader sustainability strategies. The tool’s dual function as both calculator and awareness-raising platform suggests its potential value for educational and policy initiatives aimed at promoting more sustainable fashion consumption patterns. Full article
Show Figures

Figure 1

24 pages, 3480 KB  
Article
Biphasic Electrical Stimulation of Schwann Cells on Conducting Polymer-Coated Carbon Microfibers
by Alexandra Alves-Sampaio and Jorge E. Collazos-Castro
Int. J. Mol. Sci. 2025, 26(16), 8102; https://doi.org/10.3390/ijms26168102 - 21 Aug 2025
Viewed by 194
Abstract
Electroactive biomaterials are a key emerging technology for the treatment of neural damage. Conducting polymer-coated carbon microfibers are particularly useful for this application because they provide directional support for cell growth and tissue repair and simultaneously allow for ultrasensitive recording and stimulation of [...] Read more.
Electroactive biomaterials are a key emerging technology for the treatment of neural damage. Conducting polymer-coated carbon microfibers are particularly useful for this application because they provide directional support for cell growth and tissue repair and simultaneously allow for ultrasensitive recording and stimulation of neural activity. Here, we report in vitro experiments investigating the biology of Schwann cells (SCs), a major player in peripheral nerve regeneration, on electroconducting microfibers. The optimal molecular composition of the cell substrate and cell culture medium was studied for SCs dissociated from rat and pig peripheral nerves. The substrate molecules were then attached to carbon microfibers coated with poly (3,4-ethylenedioxythiophene) doped with poly [(4-styrenesulfonic acid)-co-(maleic acid)] (PCMFs), which served as an electroactive scaffold for culturing nerve explants. Biphasic electrical stimulation (ES) was applied through the microfibers, and its effects on cell proliferation and migration were assessed in different cell culture media. Rodent and porcine SCs avidly migrated on PCMFs functionalized with a complex of poly-L-lysine, heparin, basic fibroblast growth factor, and fibronectin. Serum and forskolin/heregulin increased, by two-fold and four-fold, the number of SCs on PCMFs, respectively, and ES further doubled cell numbers without favoring fibroblast proliferation. ES additionally increased SC migration. These results provide a baseline for using biofunctionalized PCMFs in peripheral nerve repair. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

19 pages, 5085 KB  
Article
Fabrication and Evaluation of Isomalt-Based Microfibers as Drug Carrier Systems
by Andrea Kovács, Bálint Attila Kecskés, Gábor Filipszki, Dóra Farkas, Bence Tóth, István Antal and Nikolett Kállai-Szabó
Pharmaceutics 2025, 17(8), 1063; https://doi.org/10.3390/pharmaceutics17081063 - 15 Aug 2025
Viewed by 413
Abstract
Background/Objectives: The melt-spinning process has seen limited application in the pharmaceutical industry. However, nano- and microfibrous structures show significant potential for novel drug delivery systems, due to their high specific surface area. To facilitate broader adoption in pharmaceutical technology, critical parameters influencing [...] Read more.
Background/Objectives: The melt-spinning process has seen limited application in the pharmaceutical industry. However, nano- and microfibrous structures show significant potential for novel drug delivery systems, due to their high specific surface area. To facilitate broader adoption in pharmaceutical technology, critical parameters influencing fiber quality and yield must be investigated. In this study, we aimed to develop an isomalt-based microfibrous carrier system for active pharmaceutical ingredients. Methods: The effects of different isomalt compositions—specifically, varying ratios of GPS (6-O-α-d-glucopyranosyl-d-sorbitol) and GPM (1-O-α-d-glucopyranosyl-d-mannitol)—as well as key process parameters, were systematically investigated to optimize fiber formation. The prepared fibers underwent different treatments. Morphological changes were monitored with a microscope, and microstructural changes were studied using a differential scanning calorimeter and X-ray diffractometer. The macroscopic behavior of the fibers was evaluated by image analysis under monitored conditions. Results: Statistical analysis was used to determine the optimal setting to produce isomalt-based fibers. We found that storage over ethanol vapor has a positive effect on the stability of the fibers. We successfully prepared ibuprofen sodium-containing fibers that remained stable after alcohol treatment and enabled drug release within 15 s. Conclusions: It was found that the applied GPS:GPM isomalt ratio significantly influenced fiber formation and that storage over ethanol positively influenced the processability and stability of the fibrous structure. An isomalt-based microfibrous system with advantageous physicochemical and structural properties was successfully developed as a potential drug carrier. The system is also resistant to the destructive effects of ambient humidity, enabling preparation of suitable dosage forms. Full article
Show Figures

Graphical abstract

19 pages, 4559 KB  
Article
In Situ Silanization of Ligno-Cellulosic Microfibers Derived from Industrial Waste to Enhance Mechanical Properties of Natural Rubber Compounds
by Patricia Castaño-Rivera, Alexandra Soto-Arriagada, Eduardo Troncoso Ortega, Karen Galvez-Garrido, Gustavo Cabrera-Barjas, Héctor Aguilar-Bolados, Johanna Castaño and Miguel Ángel Pereira
Polysaccharides 2025, 6(3), 70; https://doi.org/10.3390/polysaccharides6030070 - 8 Aug 2025
Viewed by 272
Abstract
Nowadays, the use of materials from renewable resources, such as agricultural waste and forest residues, has increased. In this work, industrial waste recovered from a recycled paper/cardboard company was mechanically refined to obtain ligno-cellulosic microfibers (LCMFs). The obtained LCMFs were well characterized and [...] Read more.
Nowadays, the use of materials from renewable resources, such as agricultural waste and forest residues, has increased. In this work, industrial waste recovered from a recycled paper/cardboard company was mechanically refined to obtain ligno-cellulosic microfibers (LCMFs). The obtained LCMFs were well characterized and chemically modified in situ together with natural rubber through silanization. The effect of in situ silanizated LCMFs, by using (3-triethoxysilylpropyl) tetrasulfide (Si69) as a silane coupling agent, on natural rubber (NR) compound properties was studied. The NR compound with silanizated LCMFs at 2.5 phr of Si69 (NR MF Si2) increased NR stiffness significantly. For example, the 300% modulus of NR MF Si2 was around 9 units higher than that of NR. The physical–mechanical properties, crosslink density, curing behavior, infrared spectroscopy, and microscopy of the compounds were studied to confirm the in situ silanization of the microfibers and its reinforcement effect on the NR matrix. The storage modulus (E′) obtained from Dynamic Mechanical Analysis suggested that the silanizated samples presented an uneven crosslinking, but it was enough to stiffen the NR chains. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Materials)
Show Figures

Figure 1

14 pages, 3499 KB  
Article
Facile Preparation of iPP Fibrous Membranes from In Situ Microfibrillar Composites for Oil/Water Separation
by Chengtao Gao, Li Zhang, Xianrong Liu, Chen He, Shanshan Luo and Qin Tian
Polymers 2025, 17(15), 2114; https://doi.org/10.3390/polym17152114 - 31 Jul 2025
Viewed by 328
Abstract
Superhydrophobic and superoleophilic nanofibrous or microfibrous membranes are regarded as ideal oil/water separation materials owing to their controllable porosity, superior separation efficiency, and ease of operation. However, developing efficient, scalable, and environmentally friendly strategies for fabricating such membranes remains a significant challenge. In [...] Read more.
Superhydrophobic and superoleophilic nanofibrous or microfibrous membranes are regarded as ideal oil/water separation materials owing to their controllable porosity, superior separation efficiency, and ease of operation. However, developing efficient, scalable, and environmentally friendly strategies for fabricating such membranes remains a significant challenge. In this study, isotactic polypropylene (iPP) fibrous membranes with morphologies ranging from ellipsoidal stacking to microfiber stacking were successfully fabricated via a multistage stretching extrusion and leaching process using in situ microfibrillar composites (MFCs). The results establish a significant relationship between microfiber morphology and membrane oil adsorption performance. Compared with membranes formed from high-aspect-ratio microfibers, those comprising short microfibers feature larger pores and a more open structure, which enhances their oil adsorption capacity. Among the fabricated membranes, the iPP membrane with an ellipsoidal stacking morphology exhibits optimal performance, achieving a porosity of 65% and demonstrating both hydrophobicity and superoleophilicity, with a silicone oil adsorption capacity of up to 312.5%. Furthermore, this membrane shows excellent reusability and stability over ten adsorption–desorption cycles using chloroform. This study presents a novel approach leveraging in situ microfibrillar composites to prepare high-performance oil/water separation membranes in this study, underscoring their considerable promise for practical use. Full article
(This article belongs to the Topic Polymer Physics)
Show Figures

Figure 1

25 pages, 13635 KB  
Article
Microplastics in Nearshore and Subtidal Sediments in the Salish Sea: Implications for Marine Habitats and Exposure
by Frances K. Eshom-Arzadon, Kaitlyn Conway, Julie Masura and Matthew R. Baker
J. Mar. Sci. Eng. 2025, 13(8), 1441; https://doi.org/10.3390/jmse13081441 - 28 Jul 2025
Viewed by 510
Abstract
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems [...] Read more.
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems and the extent to which this pollutant is accessible to marine taxa. We examined subtidal benthic sediments and beach sediments in critical nearshore habitats for forage fish species—Pacific sand lance (Ammodytes personatus), Pacific herring (Clupea pallasi), and surf smelt (Hypomesus pretiosus)—to quantify microplastic concentrations in the spawning and deep-water habitats of these fish and better understand how microplastics accumulate and distribute in nearshore systems. In the San Juan Islands, we examined an offshore subtidal bedform in a high-flow channel and beach sites of protected and exposed shorelines. We also examined 12 beach sites proximate to urban areas in Puget Sound. Microplastics were found in all samples and at all sample sites. Microfibers were the most abundant, and flakes were present proximate to major shipyards and marinas. Microplastics were significantly elevated in Puget Sound compared to the San Juan Archipelago. Protected beaches had elevated concentrations relative to exposed beaches and subtidal sediments. Microplastics were in higher concentrations in sand and fine-grain sediments, poorly sorted sediments, and artificial sediments. Microplastics were also elevated at sites confirmed as spawning habitats for forage fish. The model results indicate that both current speed and proximate urban populations influence nearshore microplastic concentrations. Our research provides new insights into how microplastics are distributed, deposited, and retained in marine sediments and shorelines, as well as insight into potential exposure in benthic, demersal, and shoreline habitats. Further analyses are required to examine the relative influence of urban populations and shipping lanes and the effects of physical processes such as wave exposure, tidal currents, and shoreline geometry. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Figure 1

20 pages, 2869 KB  
Article
Influence of Polyester and Denim Microfibers on the Treatment and Formation of Aerobic Granules in Sequencing Batch Reactors
by Victoria Okhade Onyedibe, Hassan Waseem, Hussain Aqeel, Steven N. Liss, Kimberley A. Gilbride, Roxana Sühring and Rania Hamza
Processes 2025, 13(7), 2272; https://doi.org/10.3390/pr13072272 - 16 Jul 2025
Viewed by 581
Abstract
This study examines the effects of polyester and denim microfibers (MFs) on aerobic granular sludge (AGS) over a 42-day period. Treatment performance, granulation, and microbial community changes were assessed at 0, 10, 70, 210, and 1500 MFs/L. Reactors with 70 MFs/L achieved rapid [...] Read more.
This study examines the effects of polyester and denim microfibers (MFs) on aerobic granular sludge (AGS) over a 42-day period. Treatment performance, granulation, and microbial community changes were assessed at 0, 10, 70, 210, and 1500 MFs/L. Reactors with 70 MFs/L achieved rapid granulation and showed improved settling by day 9, while 0 and 10 MFs/L reactors showed delayed granule formation, which was likely due to limited nucleation and weaker shear conditions. Severe clogging and frequent maintenance occurred at 1500 MFs/L. Despite > 98% MF removal in all reactors, treatment performance declined at higher MF loads. Nitrogen removal dropped from 93% to 68%. Phosphate removal slightly increased in reactors with no or low microfiber loads (96–99%), declined in reactors with 70 or 210 MFs/L (92–91%, 89–88%), and dropped significantly in the reactor with1500 MFs/L (86–70%, p < 0.05). COD removal declined with increasing MF load. Paracoccus (denitrifiers) dominated low-MF reactors; Acinetobacter (associated with complex organic degradation) and Nitrospira (nitrite-oxidizing genus) were enriched at 1500 MFs/L. Performance decline likely stemmed from nutrient transport blockage and toxic leachates, highlighting the potential threat of MFs to wastewater treatment and the need for upstream MF control. Full article
(This article belongs to the Special Issue State-of-the-Art Wastewater Treatment Techniques)
Show Figures

Figure 1

14 pages, 4290 KB  
Article
Multifunctional Green-Synthesized Cu2O-Cu(OH)2 Nanocomposites Grown on Cu Microfibers for Water Treatment Applications
by Hala Al-Jawhari, Nuha A. Alhebshi, Roaa Sait, Reem Altuwirqi, Laila Alrehaili, Noorah Al-Ahmadi and Nihal Elbialy
Micro 2025, 5(3), 33; https://doi.org/10.3390/micro5030033 - 5 Jul 2025
Viewed by 427
Abstract
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and [...] Read more.
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and morphology. The resulting Cu2O-Cu(OH)2@Cu mesh exhibited notable hydrophobicity, achieving a contact angle of 137.5° ± 0.6, and demonstrated the ability to separate thick oils, such as HD-40 engine oil, from water with a 90% separation efficiency. Concurrently, its photocatalytic performance was evaluated by the degradation of methylene blue (MB) under a weak light intensity of 5 mW/cm2, achieving 85.5% degradation within 30 min. Although its application as a functional membrane in water treatment may raise safety concerns, the mesh showed significant antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria under both dark and light conditions. Using the disk diffusion method, strong bacterial inhibition was observed after 24 h of exposure in the dark. Upon visible light irradiation, bactericidal efficiency was further enhanced—by 17% for S. aureus and 2% for E. coli. These findings highlight the potential of the Cu2O-Cu(OH)2@Cu microfibers as a multifunctional membrane for industrial wastewater treatment, capable of simultaneously removing oil, degrading organic dyes, and inactivating pathogenic bacteria through photo-assisted processes. Full article
Show Figures

Figure 1

12 pages, 3667 KB  
Article
Research on the Vibration Sensor Based on Microfiber Loop Resonator
by Maciej Mojkowski, Joanna E. Moś, Joanna Korec-Kosturek and Karol A. Stasiewicz
Electronics 2025, 14(13), 2619; https://doi.org/10.3390/electronics14132619 - 28 Jun 2025
Viewed by 280
Abstract
The aim of this article is to present the manufacturing and characterization possibilities of a vibration sensor based on a microfiber loop resonator, chosen in the context of developing low-cost sensor systems. The technological part of the article includes a description of the [...] Read more.
The aim of this article is to present the manufacturing and characterization possibilities of a vibration sensor based on a microfiber loop resonator, chosen in the context of developing low-cost sensor systems. The technological part of the article includes a description of the process for producing a microfiber loop resonator using the Fiber Optic Taper Element Technology setup, and the optimization of parameters, such as the diameter of the tapered optical fiber and the number of loop twists (ranging from 1 to 3). The experiments carried out included testing the sensors’ responses to vibrations and performing spectral analysis, during which the time responses of the proposed sensors were presented and analyzed. The Q-factors were calculated as 2.4 × 103 for one twist, 3.8 × 103 for two twists, and 4.1 × 103 for three twists. The best results for sensing applications were obtained using a microfiber loop produced on a tapered optical fiber with a diameter of approximately 11 μm and two, three twists. The test results confirmed that the sensitivity (the highest power differences) of the microfiber loop resonator to vibrations was higher than a straight tapered optical fiber and increased with the decreasing fiber diameter and a higher number of twists. The main conclusion is that microfiber loop structures have potential in optical fiber sensor applications. Full article
Show Figures

Figure 1

23 pages, 5503 KB  
Article
Removal of PET Microfibers from Simulated Wastewater Using Magnetic Nano-Ferric-Loaded Biochar: High Adsorption and Regeneration Performance
by Beisi Song, Nini Duan, Huaguo Xia, Yuan Li, Hongbin Xu, Ying Geng and Xin Wang
Nanomaterials 2025, 15(12), 905; https://doi.org/10.3390/nano15120905 - 11 Jun 2025
Viewed by 667
Abstract
Polyethylene terephthalate (PET) microfibers in effluent are difficult to remove using technology. In this study, a novel nano-sized iron-oxide-loaded biochar (FBC) with robust magnetic response characteristics was prepared by the impregnation–pyrolysis method and used for the removal of PET microfibers in simulated wastewater. [...] Read more.
Polyethylene terephthalate (PET) microfibers in effluent are difficult to remove using technology. In this study, a novel nano-sized iron-oxide-loaded biochar (FBC) with robust magnetic response characteristics was prepared by the impregnation–pyrolysis method and used for the removal of PET microfibers in simulated wastewater. The results showed that the removal efficiency of FBC on PET exceeded 91.69% over a wide pH range (4~9) and was barely affected by co-existing COD (15~500 mg/L) at an initial PET concentration of 1 g/L and FBC dosage of 3 g/L. The adsorption kinetics and isotherms indicated that the adsorption was more consistent with the pseudo-second-order kinetics (PSO) model and the Langmuir model, suggesting that the adsorption involved both physical and chemical actions. In addition, the maximum PET adsorption capacity expected by the Langmuir model reached 4500 mg/g, confirming the high adsorption performance of FBC. The characterization of FBC before and after adsorption indicated that PET was adsorbed mainly by the formation of Fe–O–PET bonds, π-π interactions, and hydrogen bonding. In addition, the FBC maintained a high PET removal efficiency of over 95.59% after four consecutive regeneration cycles. This study provides new insights into the efficient removal of fibrous microplastics from wastewater. Full article
(This article belongs to the Special Issue Nanoscale Materials for Detection and Remediation of Water Pollutants)
Show Figures

Figure 1

18 pages, 1896 KB  
Review
Fashion to Dysfunction: The Role of Plastic Pollution in Interconnected Systems of the Environment and Human Health
by Adelaide Parks Lovett, Leslie Browning-Samoni and Charles Freeman
Textiles 2025, 5(2), 21; https://doi.org/10.3390/textiles5020021 - 10 Jun 2025
Viewed by 1534
Abstract
The rapid production and disposal of synthetic textiles, driven by fast fashion and overconsumption, contribute significantly to environmental pollution and human health risks. Functional finishes often contain toxic substances that leach into aquatic systems. Laundering and abrasion release microplastic fibers (MPFs), commonly called [...] Read more.
The rapid production and disposal of synthetic textiles, driven by fast fashion and overconsumption, contribute significantly to environmental pollution and human health risks. Functional finishes often contain toxic substances that leach into aquatic systems. Laundering and abrasion release microplastic fibers (MPFs), commonly called microplastics, and anthropogenic microfibers (MFs) which degrade into nanoplastics (NPs) through mechanical stress, heat, and UV radiation. These particles bypass wastewater treatment and accumulate in human organs, including the liver, lungs, and brain. This review highlights the limitations of current waste management systems, the role of textile design in particle release, and the need for further research on airborne emissions and environmental interactions. Mitigating textile-derived plastic pollution will require biodegradable finishes, pre-consumer filtration systems, and circular consumption models supported by interdisciplinary collaboration. Full article
Show Figures

Figure 1

17 pages, 4892 KB  
Article
Enhancing High-Speed Penetration Resistance of Ultra-High-Performance Concrete Through Hybridization of Steel and Glass Fibers
by Mehmet Gesoglu, Guler Fakhraddin Muhyaddin, Yavuz Yardim and Marco Corradi
Materials 2025, 18(12), 2715; https://doi.org/10.3390/ma18122715 - 9 Jun 2025
Viewed by 428
Abstract
Ultra-high-performance concrete (UHPC) is a material with high mechanical properties that requires the use of fibers to overcome its brittleness, but the use of only one type of fiber may not improve UHPC performance enough. This study investigates the hybrid use of steel [...] Read more.
Ultra-high-performance concrete (UHPC) is a material with high mechanical properties that requires the use of fibers to overcome its brittleness, but the use of only one type of fiber may not improve UHPC performance enough. This study investigates the hybrid use of steel and glass fibers to achieve ultra-high strength along with improved ductility and impact resistance. A total of 22 concrete samples, including both plain (unreinforced) and fiber-reinforced types, were produced using micro straight-steel fibers, hooked steel fibers, and micro glass fibers, either individually or in combination. The mechanical properties, ductility, and impact behavior of the concrete samples were evaluated through experimental testing. The inclusion of microfibers had little impact on the compressive strength of concrete, which remained in the range of 130–150 MPa. However, it significantly enhanced the tensile strength, as evidenced by a flexural strength increase of up to 163% compared to the control concrete without microfibers. Numerical simulations were carried out to complement and validate the experimental investigation of projectile penetration. The depth of projectile penetration (DOP) test results were compared with existing empirical models from the literature. The incorporation of hooked steel fibers in hybrid blends significantly improved ductility and enhanced penetration resistance. In addition, previously proposed models from the literature were found to be highly conservative in predicting DOP at high projectile velocities. Full article
Show Figures

Figure 1

41 pages, 5928 KB  
Review
Advances in Optical Microfibers: From Fabrication to Functionalization and Sensing Applications
by Joanna Korec-Kosturek and Joanna E. Moś
Materials 2025, 18(11), 2418; https://doi.org/10.3390/ma18112418 - 22 May 2025
Cited by 1 | Viewed by 847
Abstract
Currently, optical fibers play a leading role in telecommunications, serve as special transmission components for industrial applications, and form the basis of highly sensitive sensor elements. One of the most commonly used modifications is the reduction in the initial dimensions of the cladding [...] Read more.
Currently, optical fibers play a leading role in telecommunications, serve as special transmission components for industrial applications, and form the basis of highly sensitive sensor elements. One of the most commonly used modifications is the reduction in the initial dimensions of the cladding and core to a few or several micrometers, allowing the evanescent wave emerging from the tapered region to interact with the surrounding environment. As a result, the microfiber formed in this way is highly sensitive to any changes in its surroundings, making it an ideal sensing element. This article primarily focuses on reviewing the latest trends in science involving various types of optical microfibers, including tapers, rings, loops, coils, and tapered fiber Bragg gratings. Additionally, it discusses the most commonly used materials for coating fiber optic elements—such as metals, oxides, polymers, organic materials, and graphene—which enhance sensitivity to specific physical factors and enable selectivity in the developed sensors. Full article
(This article belongs to the Special Issue Research on New Optoelectronic Materials and Devices)
Show Figures

Figure 1

23 pages, 3751 KB  
Article
Biopolymers of Polycaprolactone Loaded with Caffeic Acid and Trametes versicolor Extract Induced Proliferation in Human Coronary Artery Endothelial Cells and Inhibited Platelet Activity
by Diego Fernando Gualtero, Diana Marcela Buitrago, Ana Delia Pinzón-García, Willy Fernando Cely Veloza, Leydy Tatiana Figueroa-Ariza, Santiago Torres-Morales, Juan David Rodriguez-Navarrete, Victor Junior Jimenez and Gloria Inés Lafaurie
Int. J. Mol. Sci. 2025, 26(10), 4949; https://doi.org/10.3390/ijms26104949 - 21 May 2025
Viewed by 561
Abstract
In atherosclerosis, the proliferation and migration of endothelial and smooth muscle cells (SMCs) and platelet activation alter endothelial function. Naturally occurring substances, such as caffeic acid (CA) and Trametes versicolor extract (TvE), have medicinal properties and are traditionally used for their antiproliferative, antioxidant, [...] Read more.
In atherosclerosis, the proliferation and migration of endothelial and smooth muscle cells (SMCs) and platelet activation alter endothelial function. Naturally occurring substances, such as caffeic acid (CA) and Trametes versicolor extract (TvE), have medicinal properties and are traditionally used for their antiproliferative, antioxidant, and anti-inflammatory effects. Electrospun 5% and 8% polycaprolactone-loaded CA or TvE was developed as a delivery system. Cytocompatibility was evaluated using human coronary artery endothelial cells (HCAECs), coronary artery SMCs (CASMCs), and platelets. Three types of systems (µF-CA, µF-TvE, and µF-CA/TvE) were developed and microscopically characterized. Analysis with scanning electron microscopy showed multidirectional fibers with diameters of 2–4.5 μm. The µF systems were hydrophobic and low cellular adhesion. The viability of CASMCs decreased with microfibers of 8% PCL and high CA concentration. However, the viability of CASMCs and HCAECs improved with 5% PCL and low CA concentration. Treatment with µF-TvE and µF-CA/TvE increased cell viability. HCAEC proliferation was affected by µF-CA, but incorporating TvE improved it. Platelet viability was unaffected by any µF system, but µF-CA and µF-CA/TvE inhibited the activation and adhesion of platelets. The results suggest that microfibers loaded with CA and TvE play a dual role in modifying HCAEC proliferation and blocking human platelet activation and adhesion. These findings have the potential to mitigate the atherosclerotic process. Full article
(This article belongs to the Special Issue Research on Bio-Scaffold for Tissue Engineering)
Show Figures

Figure 1

19 pages, 9914 KB  
Article
Lithium Orthosilicate Solid Porous Membranes for CO2 Capture Obtained from Silica Microfibers
by Joaquín Penide, Efstratios Stavrakakis, Félix Quintero, Danai Poulidi, Antonio Riveiro, Jesús del Val, Rafael Comesaña, Fernando Lusquiños and Juan Pou
Fibers 2025, 13(5), 59; https://doi.org/10.3390/fib13050059 - 7 May 2025
Viewed by 950
Abstract
Lithium orthosilicate (Li4SiO4) has demonstrated a high CO2 adsorption rate and capacity and its suitability to be implemented in industry as CO2 capture technology at high temperatures. The optimum solid adsorbent should present a porous structure to [...] Read more.
Lithium orthosilicate (Li4SiO4) has demonstrated a high CO2 adsorption rate and capacity and its suitability to be implemented in industry as CO2 capture technology at high temperatures. The optimum solid adsorbent should present a porous structure to maximize surface and enable a high sorption rate. In this work, we present an original approach based on the use of a novel architecture of precursors in the form of very thin free-standing solid silica fibers. An original technique called continuous fiberizing by laser melting (Cobiflas) was used to obtain membranes of pure silica fibers with diameters in the micrometer range, forming a porous membrane which offer a high surface and porous connectivity to be used as precursors without any supporting substrate. Then, we employed a method based on the impregnation of the silica fibers within a lithium-containing aqueous solution and subsequent calcination to obtain a porous solid adsorbent with the maximum proportion of lithium orthosilicate. This method is compared with the results obtained using a sol-gel powder method by analyzing their composition using X-Ray Diffraction (XRD), and their adsorption capacity and adsorption kinetics by Thermogravimetric analyses (TGA). As a result, an outstanding type of solid adsorbent is reported with a 31% adsorption capacity and a total regeneration capacity, which is over 0.8 efficiency with regard to the theoretical maximum adsorption of this material. Full article
Show Figures

Figure 1

Back to TopTop