Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = microhydrogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3000 KB  
Article
A Simple Vortex-Based Method for the Generation of High-Throughput Spherical Micro- and Nanohydrogels
by Moussa Boujemaa, Remi Peters, Jiabin Luan, Yieuw Hin Mok, Shauni Keller and Daniela A. Wilson
Int. J. Mol. Sci. 2025, 26(13), 6300; https://doi.org/10.3390/ijms26136300 - 30 Jun 2025
Viewed by 585
Abstract
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol [...] Read more.
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol diacrylate (PEGDA) dispersed in n-hexadecane and squalene yields tunable micro- and nanogels while delineating the parameters that govern particle size and uniformity. Systematic variation in surfactant concentration, vessel volume, continuous phase viscosity, vortex speed and duration, oil-to-polymer ratio, polymer molecular weight, and pulsed vortexing revealed that increases in surfactant level, vortex intensity/duration, vessel volume, and oil-to-polymer ratio each reduced mean diameter and PDI, whereas higher polymer molecular weight and continuous phase viscosity broadened the size distribution. We further investigated how these same parameters can be tuned to shift particle populations between nano- and microscale regimes. Under optimized conditions, microhydrogels achieved a coefficient of variation of 0.26 and a PDI of 0.07, with excellent reproducibility, and nanogels measured 161 nm (PDI = 0.05). This rapid, cost-effective method enables precise and scalable control over hydrogel dimensions using only standard laboratory equipment, without specialized training. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

23 pages, 3762 KB  
Review
From Basic to Breakthroughs: The Journey of Microfluidic Devices in Hydrogel Droplet Generation
by Gabriela Hinojosa-Ventura, José Manuel Acosta-Cuevas, Carlos Arnulfo Velázquez-Carriles, Diego E. Navarro-López, Miguel Ángel López-Alvarez, Néstor D. Ortega-de la Rosa and Jorge Manuel Silva-Jara
Gels 2025, 11(5), 309; https://doi.org/10.3390/gels11050309 - 22 Apr 2025
Cited by 1 | Viewed by 2955
Abstract
Hydrogel particles are essential in biological applications because of their distinctive capacity to retain water and encapsulate active molecules within their three-dimensional structure. Typical particle sizes range from nanometers (10–500 nm) to micrometers (1–500 µm), depending on the specific application and method of [...] Read more.
Hydrogel particles are essential in biological applications because of their distinctive capacity to retain water and encapsulate active molecules within their three-dimensional structure. Typical particle sizes range from nanometers (10–500 nm) to micrometers (1–500 µm), depending on the specific application and method of preparation. These characteristics render them optimal carriers for the administration of active compounds, facilitating the regulated and prolonged release of pharmaceuticals, including anticancer agents, antibiotics, and therapeutic proteins. Hydrogel particles can exhibit various morphologies, including spherical, rod-shaped, disk-shaped, and core–shell structures. Each shape offers distinct advantages, such as improved circulation time, targeted drug delivery, or enhanced cellular uptake. Additionally, hydrogel particles can be engineered to respond to various stimuli, such as temperature, pH, light, magnetic fields, and biochemical signals. Furthermore, their biocompatibility and capacity to acclimate to many biological conditions make them appropriate for sophisticated applications, including gene treatments, tissue regeneration, and cell therapies. Microfluidics has transformed the creation of hydrogel particles, providing precise control over their dimensions, morphology, and stability. This technique facilitates reproducible and highly efficient production, reducing reagent waste and optimizing drug encapsulation. The integration of microfluidics with hydrogels provides opportunities for the advancement of creative and effective solutions in contemporary medicine. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Figure 1

16 pages, 8049 KB  
Article
TLR Agonist Immunoadjuvants Provide Effective Protection Against PCV2 and PRV Infections in a Bivalent Subunit Vaccine for PCV2 and PRV
by Fulai Yu, Wei Xiang, Weiye Ou, Yang Li, Xinbiao Shu and Xiaoliang Li
Vet. Sci. 2025, 12(1), 25; https://doi.org/10.3390/vetsci12010025 - 7 Jan 2025
Viewed by 1329
Abstract
Diseases associated with porcine circovirus type 2 (PCV2) and pseudorabies virus (PRV) significantly affect the economy of pig farms, particularly when combined infections lead to bacterial co-infections. Antigens from the pseudorabies variant strain gB and gD proteins and PCV2 (genotyped) Cap protein were [...] Read more.
Diseases associated with porcine circovirus type 2 (PCV2) and pseudorabies virus (PRV) significantly affect the economy of pig farms, particularly when combined infections lead to bacterial co-infections. Antigens from the pseudorabies variant strain gB and gD proteins and PCV2 (genotyped) Cap protein were mixed with the pattern recognition receptor (PRR) agonist FLICd as adjuvants and formulated with a micro-hydrogel adjuvant into PCV2 and PRV bivalent subunit vaccines. Twenty pigs, aged 30–35 days, were divided into groups A (received bivalent subunit vaccine) and B (received bivalent subunit vaccines with recombinant FLICd adjuvant), as well as C (non-vaccinated challenge control) and D (blank control). Groups A and B showed no significant difference in average daily weight gain compared to the unvaccinated controls. Fourteen days post-second vaccination, groups A and B exhibited significantly higher levels of PRV and PCV2 antibodies than groups C and D. Group B showed significantly higher average titers of PRV-specific neutralizing antibodies than group A. Fourteen days post-second vaccination, a PRV (ZJM-1 strain) challenge test was conducted. The vaccinated group achieved 100% protection. Vaccination effectively reduced virus load post-challenge and shortened the PRV shedding period. Vaccination with PCV2 and PRV bivalent subunit vaccines effectively prevents the onset of PCV2-related diseases and infections by wild pseudorabies strains. Full article
Show Figures

Figure 1

11 pages, 2697 KB  
Article
Injectable Micro-Hydrogel for DNA Delivery: A Promising Therapeutic Platform
by Sunghyun Moon and Jong Bum Lee
J. Funct. Biomater. 2024, 15(3), 59; https://doi.org/10.3390/jfb15030059 - 1 Mar 2024
Cited by 3 | Viewed by 2627
Abstract
Utilizing the immune system as a strategy for disease prevention and treatment is promising, especially with dendritic cells (DCs) playing a central role in adaptive immune responses. The unique properties of DCs drive interest in developing materials for cell-based therapy and immune modulation. [...] Read more.
Utilizing the immune system as a strategy for disease prevention and treatment is promising, especially with dendritic cells (DCs) playing a central role in adaptive immune responses. The unique properties of DCs drive interest in developing materials for cell-based therapy and immune modulation. Injectable systems require syringe-compatible scaffolds, while hydrogels, like alginate, known for their programmability and biocompatibility, offer a versatile platform for immune medicine enhancement through easy preparation and room-temperature cross-linking. In this study, we synthesized alginate balls loaded with DCs or cytosine–phosphorothioate–guanine deoxyribonucleotide (CpG DNA) microparticles, aiming for long-term immune cell culture with potential immune stimulation effects. Encapsulated DCs exhibited proliferation within the alginate balls for up to 7 days, and CpG MPs were uniformly dispersed, which can facilitate uptake by DCs. This was supported by the result that DCs effectively phagocytosed CpG microparticles in a 2D environment. After the uptake of CpG MPs, the alginate balls with CpG-MP-uptaken DCs were synthesized successfully. The injectable properties of the alginate balls were easily modulated by adjusting the syringe needle gauges. This innovative strategy holds substantial promise for advancing medical treatments, offering effective and comfortable solutions for controlled immune modulation. Full article
(This article belongs to the Special Issue Injectable and Biodegradable Hydrogels for Biomedical Applications)
Show Figures

Figure 1

4 pages, 904 KB  
Abstract
Synthesis of Silver Nanoparticles Embedded in Micro-Hydrogel Particles by Electron Beam Irradiation
by Ioana Ion, Elena Stancu, Ciprian Mihai Mitu, Virgil Marinescu, Eduard Marius Lungulescu and Nicoleta Oana Nicula
Chem. Proc. 2022, 7(1), 22; https://doi.org/10.3390/chemproc2022007022 - 3 Mar 2022
Cited by 3 | Viewed by 1688
Abstract
This study focuses on synthesizing a hybrid micro-hydrogel with antibacterial properties by electron beam irradiation. The micro-hydrogel matrix is based on biocompatible polymer poly(vinyl)alcohol functionalized with antibacterial compounds: graphene oxide and silver nanoparticles The polymer composites were synthesized by irradiation with an electron [...] Read more.
This study focuses on synthesizing a hybrid micro-hydrogel with antibacterial properties by electron beam irradiation. The micro-hydrogel matrix is based on biocompatible polymer poly(vinyl)alcohol functionalized with antibacterial compounds: graphene oxide and silver nanoparticles The polymer composites were synthesized by irradiation with an electron beam at 10, 25, 50 kGy absorbed dose to form silver nanoparticles. Full article
Show Figures

Figure 1

11 pages, 2333 KB  
Article
Controlled Construction of Stable Network Structure Composed of Honeycomb-Shaped Microhydrogels
by Masayuki Hayakawa, Satoshi Umeyama, Ken H. Nagai, Hiroaki Onoe and Masahiro Takinoue
Life 2018, 8(4), 38; https://doi.org/10.3390/life8040038 - 20 Sep 2018
Cited by 4 | Viewed by 5109
Abstract
Recently, the construction of models for multicellular systems such as tissues has been attracting great interest. These model systems are expected to reproduce a cell communication network and provide insight into complicated functions in living systems./Such network structures have mainly been modelled using [...] Read more.
Recently, the construction of models for multicellular systems such as tissues has been attracting great interest. These model systems are expected to reproduce a cell communication network and provide insight into complicated functions in living systems./Such network structures have mainly been modelled using a droplet and a vesicle. However, in the droplet and vesicle network, there are difficulties attributed to structural instabilities due to external stimuli and perturbations. Thus, the fabrication of a network composed of a stable component such as hydrogel is desired. In this article, the construction of a stable network composed of honeycomb-shaped microhydrogels is described. We produced the microhydrogel network using a centrifugal microfluidic technique and a photosensitive polymer. In the network, densely packed honeycomb-shaped microhydrogels were observed. Additionally, we successfully controlled the degree of packing of microhydrogels in the network by changing the centrifugal force. We believe that our stable network will contribute to the study of cell communication in multicellular systems. Full article
(This article belongs to the Special Issue Approaches toward Artificial Cell Construction and Applications)
Show Figures

Graphical abstract

10 pages, 4217 KB  
Article
Fluorescent Dendritic Micro-Hydrogels: Synthesis, Analysis and Use in Single-Cell Detection
by Lisa Christadore, Mark W. Grinstaff and Scott E. Schaus
Molecules 2018, 23(4), 936; https://doi.org/10.3390/molecules23040936 - 18 Apr 2018
Cited by 4 | Viewed by 4421
Abstract
Hydrogels are of keen interest for a wide range of medical and biotechnological applications including as 3D substrate structures for the detection of proteins, nucleic acids, and cells. Hydrogel parameters such as polymer wt % and crosslink density are typically altered for a [...] Read more.
Hydrogels are of keen interest for a wide range of medical and biotechnological applications including as 3D substrate structures for the detection of proteins, nucleic acids, and cells. Hydrogel parameters such as polymer wt % and crosslink density are typically altered for a specific application; now, fluorescence can be incorporated into such criteria by specific macromonomer selection. Intrinsic fluorescence was observed at λmax 445 nm from hydrogels polymerized from lysine and aldehyde- terminated poly(ethylene glycol) macromonomers upon excitation with visible light. The hydrogel’s photochemical properties are consistent with formation of a nitrone functionality. Printed hydrogels of 150 μm were used to detect individual cell adherence via a decreased in fluorescence. The use of such intrinsically fluorescent hydrogels as a platform for cell sorting and detection expands the current repertoire of tools available. Full article
Show Figures

Graphical abstract

Back to TopTop