Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = micronutrients cations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1047 KB  
Article
Sustainable Soybean Production Using Residual Vermicompost Inputs in Corn-Soybean Rotation
by Ivan Oyege and Maruthi Sridhar Balaji Bhaskar
Environments 2025, 12(9), 333; https://doi.org/10.3390/environments12090333 - 18 Sep 2025
Viewed by 442
Abstract
Soybeans (Glycine max L.), a globally significant crop, play a critical role in economic, nutritional, and ecological systems, particularly in rotational farming due to their nitrogen-fixing capacity. This study investigated the residual effects of vermicompost (VC) and vermicompost tea (VCT) applied during [...] Read more.
Soybeans (Glycine max L.), a globally significant crop, play a critical role in economic, nutritional, and ecological systems, particularly in rotational farming due to their nitrogen-fixing capacity. This study investigated the residual effects of vermicompost (VC) and vermicompost tea (VCT) applied during a preceding corn cycle on subsequent soybean growth and productivity in an organic corn–soybean rotation. Soybeans were grown in raised beds previously treated with different VCT concentrations and combinations of VC+VCT, without additional fertilization during the soybean phase. Physiological traits, including leaf chlorophyll content (SPAD values) and stomatal conductance, were measured alongside biomass, yield, and plant leaves nutrient concentrations. VC+VCT treatments significantly increased biomass and yield, with VC1+VCT20 achieving the highest biomass (3.02 tons/ha) and yield (1.68 tons/ha). Leaf nutrient analysis revealed increased uptake of both macro- and micronutrients in amended treatments, while SPAD and stomatal conductance values remained consistently higher than in the control. Soil analyses confirmed improved nutrient retention and cation exchange capacity in amended plots, demonstrating the legacy benefits of organic inputs. Therefore, residual VCT and VC+VCT applications improved soybean productivity, nutrient acquisition, and physiological performance in rotational systems. By reducing reliance on synthetic fertilizers and enhancing soil fertility, this strategy supports climate-smart agriculture principles and contributes to SDG 2 (Zero Hunger), SDG 12 (Responsible Consumption and Production), and SDG 13 (Climate Action). Full article
Show Figures

Graphical abstract

18 pages, 3732 KB  
Article
Neural Network-Based Modeling for Precise Potato Yield Prediction Using Soil Parameters
by Magdalena Piekutowska and Gniewko Niedbała
Agronomy 2025, 15(9), 2156; https://doi.org/10.3390/agronomy15092156 - 9 Sep 2025
Viewed by 452
Abstract
This study analyses the potential of artificial neural networks (ANN) in accurately predicting potato yields based on 11 parameters characterising the soil environment. Accurate yield forecasting is crucial for optimising potato production, especially in the context of potato processing. Due to the significant [...] Read more.
This study analyses the potential of artificial neural networks (ANN) in accurately predicting potato yields based on 11 parameters characterising the soil environment. Accurate yield forecasting is crucial for optimising potato production, especially in the context of potato processing. Due to the significant impact of soil properties on yield, there is a need for comprehensive predictive models that take these factors into account. The field studies (2021–2024) included an analysis of soil parameters determining potato tuber yield. The developed ANN model was highly accurate, as evidenced by the following indicators: R2 = 0.8227, RMSE = 4.19 t∙ha−1, MAE = 3.35 t∙ha−1, MAPE = 7.34%. Global sensitivity analysis showed that cation exchange capacity (CEC), base saturation percentage (V), and sum of exchangeable bases (S) are key parameters influencing tuber yield. The results indicate that neural networks are effective in modelling complex relationships between soil parameters and potato yield, and that soil properties play a fundamental role in increasing yields and improving potato quality. The approach used may contribute to optimizing the nutrient content of potato tubers intended for French fry production. Future studies should incorporate climate data and micronutrients to enhance the accuracy of predictive models, potentially leading to a 10–15% improvement in yield predictions. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

14 pages, 2267 KB  
Article
Acidification and Nutrient Imbalances Drive Fusarium Wilt Severity in Banana (Musa spp.) Grown on Tropical Latosols
by Tao Jing, Kai Li, Lixia Wang, Mamdouh A. Eissa, Bingyu Cai, Tianyan Yun, Yingdui He, Ahmed A. El Baroudy, Zheli Ding, Yongzan Wei, Yufeng Chen, Wei Wang, Dengbo Zhou, Xiaoping Zang and Jianghui Xie
J. Fungi 2025, 11(9), 611; https://doi.org/10.3390/jof11090611 - 22 Aug 2025
Viewed by 1563
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (FOC), remains a major constraint to global banana (Musa spp.) production, especially in tropical regions. Although soil conditions are known to modulate disease expression, the specific physicochemical drivers of FOC prevalence under field [...] Read more.
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (FOC), remains a major constraint to global banana (Musa spp.) production, especially in tropical regions. Although soil conditions are known to modulate disease expression, the specific physicochemical drivers of FOC prevalence under field conditions are not well understood. This study investigated the relationships between soil properties and the Fusarium wilt incidence across 47 banana farms on Hainan Island, China, a tropical region dominated by highly weathered tropical soil (latosols). The disease incidence (%PDI) and FOC abundance were quantified, alongside key soil parameters, including the pH, organic carbon, cation exchange capacity, and macro- and micronutrient availability. The soils were predominantly acidic (mean pH 4.93), with low levels of organic carbon and exchangeable calcium (Ca) and elevated levels of available phosphorus (P), potassium (K), and magnesium (Mg). The Fusarium wilt incidence ranged from 1% to 78%, with significantly higher levels observed in younger plantations (<5 years old). Statistical analyses revealed strong negative correlations between the PDI and the soil pH, exchangeable Ca and Mg, and available K. Principal component analysis further confirmed the suppressive role of the pH and base cations in the disease dynamics. Farms older than five years exhibited better soil fertility indices and lower disease pressure, suggesting a temporal improvement in soil-mediated disease suppression. These findings underscore the critical role of soil acidification and nutrient imbalances, particularly Ca, Mg, and K deficiencies, in promoting FOC pathogenicity. Enhancing soil health offers a promising and sustainable strategy for managing Fusarium wilt in tropical banana production systems. Full article
(This article belongs to the Special Issue Current Research in Soil Borne Plant Pathogens)
Show Figures

Figure 1

17 pages, 1001 KB  
Article
A Preliminary Evaluation of the Use of Solid Residues from the Distillation of Medicinal and Aromatic Plants as Fertilizers in Mediterranean Soils
by Anastasia-Garyfallia Karagianni, Anastasia Paraschou and Theodora Matsi
Agronomy 2025, 15(8), 1903; https://doi.org/10.3390/agronomy15081903 - 7 Aug 2025
Viewed by 567
Abstract
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum [...] Read more.
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum (Roth) G. Don), lavender (Lavandula angustifolia Mill.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) were added in an alkaline and calcareous soil at the rates of 0 (control), 1, 2, 4 and 8%, in three replications (treatments), and the treated soils were analyzed. The results showed that upon application of the residues, soil electrical conductivity (EC), organic C, total N and the C/N ratio significantly increased, especially at the 4 and 8% rates. The same was found for soil available P, K, B, Cu and Mn. The effects of the residues on soil pH, cation exchange capacity (CEC) and available Zn and Fe were rather inconclusive, whereas soil available N significantly decreased, which was somewhat unexpected. From the different application rates tested, it seems that all residues could improve soil fertility (except N?) when they were applied to soil at rates of 2% and above, without exceeding the 8% rate. The reasons for the latter statement are soil EC and available Mn: the doubling of EC upon application of the residues and the excessive increase in soil available Mn in treatments with 8% residues raise concerns of soil salinization and Mn phytotoxicity risks, respectively. This work provides the first step towards the potential agronomic use of solid residues from MAP distillation in alkaline soils. However, for the establishment of such a perspective, further research is needed in respect to the effect of residues on plant growth and soil properties, by means of at least pot experiments. Based on the results of the current study, the undesirable effect of residues on soil available N should be investigated in depth, since N is the most important essential element for plant growth, and possible risks of micronutrient phytotoxicities should also be studied. In addition, application rates between 2 and 4% should be studied extensively in order to recommend optimum application rates of residues to producers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 1471 KB  
Article
Impact of Basalt Rock Powder on Ryegrass Growth and Nutrition on Sandy and Loamy Acid Soils
by Charles Desmalles, Lionel Jordan-Meille, Javier Hernandez, Cathy L. Thomas, Sarah Dunham, Feifei Deng, Steve P. McGrath and Stephan M. Haefele
Agronomy 2025, 15(8), 1791; https://doi.org/10.3390/agronomy15081791 - 25 Jul 2025
Viewed by 1588
Abstract
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt [...] Read more.
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt (80 and 160 t ha−1) were applied to two types of slightly acid soils (sandy or silty clayey), derived from long-term trials at Bordeaux (INRAE, France) and Rothamsted Research (England), respectively. For each soil, half of the pots were planted with ryegrass; the other half were left bare. Thus, the experiment had twelve treatments with four replications per treatment. Soil pH increased with the addition of basalt (+0.8 unit), with a 5% equivalence of that of reactive chalk. The basalt contained macro- and micronutrients. Some cations extractable in the basalt before being mixed to the soil became more extractable with increased weathering, independent of plant cover. Plant uptake generally increased for macronutrients and decreased for micronutrients, due to increased stock (macro) and reduced availability (micronutrients and P), related to pH increases. K supplied in the basalt was responsible for a significant increase in plant yield on the sandy soil, linked to an average basalt K utilisation efficiency of 33%. Our general conclusion is that rock dust applications have to be re-evaluated at each site with differing soil characteristics. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

20 pages, 2296 KB  
Article
Enhancing Soil Health and Corn Productivity with a Co-Fermented Microbial Inoculant (CFMI-8): A Field-Based Evaluation
by Raul De Jesus Cano, Judith M. Daniels, Martha Carlin and Don Huber
Microorganisms 2025, 13(7), 1638; https://doi.org/10.3390/microorganisms13071638 - 11 Jul 2025
Viewed by 705
Abstract
Soil degradation and declining fertility threaten sustainable agriculture and crop productivity. This study evaluates the effects of CFMI-8, a co-fermented microbial inoculant comprising eight bacterial strains selected through genomic and metabolic modeling, on soil health, nutrient availability, and corn performance. Conducted in a [...] Read more.
Soil degradation and declining fertility threaten sustainable agriculture and crop productivity. This study evaluates the effects of CFMI-8, a co-fermented microbial inoculant comprising eight bacterial strains selected through genomic and metabolic modeling, on soil health, nutrient availability, and corn performance. Conducted in a randomized complete block design at Findlay Farm, Wisconsin, the field trial assessed soil biological activity, nutrient cycling, and crop yield responses to CFMI-8 treatment. Treated soils exhibited significant increases in microbial organic carbon (+224.1%) and CO2 respiration (+167.1%), indicating enhanced microbial activity and organic matter decomposition. Improvements in nitrate nitrogen (+20.2%), cation exchange capacity (+23.1%), and potassium (+27.3%) were also observed. Corn yield increased by 28.6%, with corresponding gains in silage yield (+9.6%) and nutritional quality. Leaf micronutrient concentrations, particularly iron, manganese, boron, and zinc, were significantly higher in treated plants. Correlation and Random Forest analyses identified microbial activity and nitrogen availability as key predictors of yield and nutrient uptake. These results demonstrate CFMI-8’s potential to enhance soil fertility, promote nutrient cycling, and improve crop productivity under field conditions. The findings support microbial inoculants as viable tools for regenerative agriculture and emphasize the need for long-term studies to assess sustainability impacts. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

19 pages, 1254 KB  
Article
A Sustainable Approach to Phosphorus Nutrition in Banana Plantations
by Hebert Teixeira Cândido, Magali Leonel, Sarita Leonel, Adalton Mazetti Fernandes, Jackson Myrellis Azevêdo Souza, Lucas Felipe dos Ouros and Paulo Ricardo Rodrigues de Jesus
Plants 2025, 14(13), 1923; https://doi.org/10.3390/plants14131923 - 23 Jun 2025
Viewed by 864
Abstract
The genetic diversity of banana plants (Musa spp.) can result in different phosphorus requirements, highlighting the importance of studies performed to optimize phosphate fertilization in order to improve the productivity and sustainability of banana plantations. This study assessed the effects of phosphate [...] Read more.
The genetic diversity of banana plants (Musa spp.) can result in different phosphorus requirements, highlighting the importance of studies performed to optimize phosphate fertilization in order to improve the productivity and sustainability of banana plantations. This study assessed the effects of phosphate fertilization on the duration of the harvest season, bunch mass, soil fertility and foliar nutrition of BRS SCS Belluna banana plants. A replicated trial was performed in two consecutive harvests, with different phosphorus levels, i.e., 25, 50, 75, 100, 125 and 150% of the recommended level for the crop. Soil analyses included macro- and micronutrients, silicon, acidity, organic matter, cation exchange capacity and base saturation. Leaf tissue was analyzed for mineral content. Thermophosphate had different effects on soil fertility and leaf nutrients. Calcium and phosphorus in the soil increased linearly. In the leaf, a reduction in zinc content was mainly observed. The lower temperatures and accumulated rainfall that occurred during the second harvest season are related to a greater number of days between flowering and harvest and a lower bunch mass. These results could support fertilization programs aimed at ensuring the long-term sustainability of phosphorus nutrition in banana plantations. Full article
(This article belongs to the Special Issue Soil Ecology and Nutrients' Cycling in Crops and Fruits)
Show Figures

Figure 1

18 pages, 6883 KB  
Article
Treating Tropical Soils with Composted Sewage Sludge Reduces the Mineral Fertilizer Requirements in Sugarcane Production
by Rafael dos Santos Silva, Marcelo Carvalho Minhoto Teixeira Filho, Arshad Jalal, Rodrigo Silva Alves, Nathércia Castro Elias, Raimunda Eliane Nascimento do Nascimento, Cassio Hamilton Abreu-Junior, Arun Dilipkumar Jani, Gian Franco Capra and Thiago Assis Rodrigues Nogueira
Land 2024, 13(11), 1820; https://doi.org/10.3390/land13111820 - 2 Nov 2024
Cited by 1 | Viewed by 2191
Abstract
Conventional mineral fertilization (CMF) is a common practice in infertile sugarcane-cultivated tropical soils, increasing production costs and environmental concerns. Combining CMF with composted sewage sludge (CSS) could be a sustainable strategy. We aim to evaluate changes in soil chemical properties, macro- and micronutrient [...] Read more.
Conventional mineral fertilization (CMF) is a common practice in infertile sugarcane-cultivated tropical soils, increasing production costs and environmental concerns. Combining CMF with composted sewage sludge (CSS) could be a sustainable strategy. We aim to evaluate changes in soil chemical properties, macro- and micronutrient concentrations in the soil surface (Ap1; 0–25 cm) and subsurface (Ap2; 25–50 cm) horizons, after CSS application with or without CMF in sugarcane cultivation (first and second ratoon cane). Eleven treatments, featured by CSS increase rates and mixed with CMF at different concentrations, were tested in the first ratoon; during the second, the CSS residual effect was evaluated. Applying CSS in sugarcane-cultivated soils, improved the following: (i) soil organic matter, pH, the sum of bases, cation-exchange capacity, and base saturation; (ii) overall nutrient concentrations (P, K, Ca, Mg, B, Cu, and Zn). The treatments showing the best performances were those with 5.0 Mg ha−1 of CSS. Composted sewage sludge has the potential for use as an organic natural fertilizer reducing the need for CMF. When applied in infertile tropical soils, additional positive effects can be achieved, such as decreasing production costs and providing socio-economic benefits. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

15 pages, 2407 KB  
Article
Salinity Tolerance Mechanism of Crithmum maritimum L.: Implications for Sustainable Agriculture in Saline Soils
by Bihter Colak Esetlili, Lale Yildiz Aktas, M. Tolga Esetlili, Tugba Oztekin, Cenk Ceyhun Kılıc and Yusuf Kurucu
Sustainability 2024, 16(18), 8165; https://doi.org/10.3390/su16188165 - 19 Sep 2024
Cited by 2 | Viewed by 1643
Abstract
Edible halophytes are attracting attention due to their potential for agriculture in saline and marginal areas. The salt tolerance mechanism was analyzed in Crithmum maritimum L., based on ionic, osmotic, and redox homeostasis strategies under salt stress. The methodology involved growing C. maritimum [...] Read more.
Edible halophytes are attracting attention due to their potential for agriculture in saline and marginal areas. The salt tolerance mechanism was analyzed in Crithmum maritimum L., based on ionic, osmotic, and redox homeostasis strategies under salt stress. The methodology involved growing C. maritimum seeds in pots under controlled greenhouse conditions and exposing them to different NaCl concentrations (0, 100, 200, and 300 mM) for five months. High salinity levels decreased plant length and biomass, but the shoot-to-root length and biomass ratio increased significantly. Photosynthetic pigments (chlorophyll and carotenoids) were quantified using spectrophotometric analysis, while macro- and micro-nutrient contents were determined via the Kjeldahl method, flame photometry, and atomic absorption spectrophotometry. Osmolyte accumulation, including proline and glycine betaine, was analyzed using specific biochemical assays, and antioxidant enzyme activities (SOD, CAT, and POX) were measured to assess redox homeostasis. Photosynthetic pigments in C. maritimum leaves slightly increased at 100 mM NaCl, but significantly declined at 200 and 300 mM NaCl. A high Na content in the shoots indicated no restriction in mineral uptake in the roots. Nitrogen and phosphorus slightly decreased under high salinity. The cation content in the shoots varied: potassium decreased, while calcium and magnesium increased with salinity, although the Mg+2/Na+ and K+/Na+ ratios showed similar declining patterns. The micro-nutrients iron and manganese increased in the shoots, while copper remained unchanged. The content of osmolytes proline and glycine betaine significantly increased under the 200 and 300 mM NaCl treatments. Antioxidant enzyme activities (SOD, CAT, and POX) decreased at 100 and 200 mM NaCl, but were strongly induced at 300 mM NaCl. The total antiradical activity of the leaves increased with higher salinity levels. Our results indicated that the facultative halophyte characteristics of C. maritimum emerged after exposure to 200 mM NaCl. Increased calcium content may be a key factor in salinity tolerance. We concluded that C. maritimum employs strong osmotic adjustment and redox homeostasis mechanisms, making it a promising candidate for cultivation in saline environments. Full article
(This article belongs to the Special Issue Advances in Sustainable Agricultural Crop Production)
Show Figures

Figure 1

15 pages, 4869 KB  
Article
Performance Evaluation of Compost of Windrow Turner Machine Using Agriculture Waste Materials
by Sarfraz Hashim, Rehan Bashir, Alamgir Akhtar Khan, Asif Ali Mirani, Muhammad Shoaib, Abdul Razzaq, Farrukh Ehsan and Faseeha Munir
Sustainability 2024, 16(17), 7779; https://doi.org/10.3390/su16177779 - 6 Sep 2024
Cited by 5 | Viewed by 3032
Abstract
Composting is the decomposition of organic matter in an aerobic environment. The windrow turner machine is used to turn the compost piles for efficient composting. It effectively addresses important issues such as managing crop leftovers and disposing of animal waste. This paper evaluates [...] Read more.
Composting is the decomposition of organic matter in an aerobic environment. The windrow turner machine is used to turn the compost piles for efficient composting. It effectively addresses important issues such as managing crop leftovers and disposing of animal waste. This paper evaluates a comparison between mechanized (pile 1) and conventional (pile 2) compost-turning processes and the need for windrow turner machines to manage waste effectively and turn it into nutrient-dense material. This approach not only delivers a practical solution, it also points out the potential for a significant increase in soil fertility and agricultural sustainability. Five samples were taken from each pile at 10 feet intervals for chemical analysis. A total 13,768 kg of the compost yield was collected from pile one and 11,512 kg from pile 2. The study’s findings show that the machine turned a greater cation exchange capacity (CEC) value than the compost manually turned. Pile 1 was turned using a compost windrow turner machine, and pile 2 was turned manually. The CEC values in pile 1 varied from 21.23 meq/100 g dry weight to 68.87 meq/100 g dry weight after eight weeks, while the CEC values in pile 2 increased from 21.23 meq/100 g dry weight to 33.28 meq/100 g dry weight. The value of electrical conductivity (EC) in pile 1 increased from 1.98 ds/m to 11.34 ds/m, whereas in pile 2 it climbed from 1.98 ds/m to 7.86 ds/m after 8 weeks. The C/N ratio of pile 1 dropped to approximately 15 and the concentration of micronutrients increased during the composting process, which indicate mature composted material. The outcomes of this research contribute that mechanical composting emerges as a highly suitable method for efficiently managing the composting process, ensuring uniform decomposition, enhanced aeration, and the production of high-quality compost. Full article
(This article belongs to the Special Issue Recycling Biomass for Agriculture and Bioenergy Production)
Show Figures

Figure 1

16 pages, 2982 KB  
Article
Analyzing Cooking Efficiency of Gradoli Purgatory Beans: Effects of Dehulling, Malting, and Monovalent Carbonates
by Alessio Cimini, Lorenzo Morgante and Mauro Moresi
Foods 2024, 13(16), 2505; https://doi.org/10.3390/foods13162505 - 9 Aug 2024
Cited by 4 | Viewed by 2750
Abstract
Legumes, rich in protein, fiber, and micronutrients, are increasingly popular in pulse-based and gluten-free foods despite global consumption stagnating at 21 g/day due to taste, low protein digestibility, anti-nutrients, and long cooking times. Bean resistance to cooking causes textural defects like the hardshell [...] Read more.
Legumes, rich in protein, fiber, and micronutrients, are increasingly popular in pulse-based and gluten-free foods despite global consumption stagnating at 21 g/day due to taste, low protein digestibility, anti-nutrients, and long cooking times. Bean resistance to cooking causes textural defects like the hardshell and hard-to-cook phenomena. The pectin–cation–phytate hypothesis explains why soaking beans in sodium salts reduces cooking time by enhancing pectin solubility in water. Gradoli Purgatory beans (GPB), from Italy′s Latium region, were malted, reducing phytic acid by 32% and oligosaccharides by 63%. This study evaluated the hardness of cooked GPB seeds in various conditions, including decorticated or malted states, using a modified standard method. Cooking at 98 °C for 7–75 min on an induction hob with a water-to-seed ratio of 4 g/g was tested. Soaking was applied before cooking for conventional seeds only, followed by texture analysis. Conventional GPBs were adequately cooked if their cotyledons disintegrated upon pressing, requiring a force peak of 250 to 220 N and cooking times of 52 to 57 min. Malted, decorticated, and split GPBs cooked similarly to raw decorticated and split ones, with times of 32 and 25 min, respectively. Faster cooking was due to bean coat removal and splitting, not chemical changes. Sodium or potassium carbonate/bicarbonate at 1–2 g/L improved cooking efficiency, with 2 g/L of sodium carbonate reducing cooking time to 13 min. Higher concentrations caused non-uniform cooking. Cooking malted, decorticated, and split GPBs in sodium-carbonated water reduced greenhouse gas emissions from 561 to 368 g CO2e/kg, meeting the demand for eco-friendly and nutritionally enhanced plant protein sources. Full article
Show Figures

Graphical abstract

18 pages, 3757 KB  
Article
Sustainability of Organic Fertilizers Use in Dryland Mediterranean Agriculture
by Carlos Ortiz, María Rosa Yagüe, Alcira Sunilda Valdez, María Gabriela Molina and Àngela Dolores Bosch-Serra
Agriculture 2024, 14(8), 1301; https://doi.org/10.3390/agriculture14081301 - 7 Aug 2024
Cited by 4 | Viewed by 1819
Abstract
Organic fertilization is a key issue in European Union (EU) regulations, particularly in the context of promoting a circular nutrient economy, maintaining soil quality, and sequestering carbon to face climate change. In a rainfed system in Northeastern Spain, an experiment was set up [...] Read more.
Organic fertilization is a key issue in European Union (EU) regulations, particularly in the context of promoting a circular nutrient economy, maintaining soil quality, and sequestering carbon to face climate change. In a rainfed system in Northeastern Spain, an experiment was set up (split-plot design). It included five pre-sowing N fertilization treatments: control, mineral, pig slurry, and composted sewage sludge (two rates). The average N rates were 0, 30, 141, 176, and 351 kg N ha−1, respectively. They were combined with mineral N topdressings (0, 50, and 100 kg N ha−1). Three crops were grown: barley (nine years), wheat (three years), and rapeseed (one year). In the driest years (c. 350 mm rainfall), the yields averaged 2.5, 2.0, and 1.9 Mg ha−1, respectively. The maximum yields were for barley (6.5 Mg ha−1) and wheat (5.5 Mg ha−1). The avoidance of a significant increase in soil residual NO3-N, plus the control of soil build up of available P, micronutrients, and Cd, defines the fertilization strategies. (i) With a previous spring drought season, no fertilization is needed in the following year, if devoted to winter cereals. (ii) In rainier seasons, pig slurry or composted sewage sludge (lowest rate) applied at sowing is sufficient; however, 50 kg of mineral-N ha−1 at the topdressing can be applied. The study found that pig slurry favors K, Mg, Cu, and Zn availability, while composted sewage sludge enhances Fe availability. Although it is possible to reduce N inputs from organic fertilizers, organic C build-up will be constrained. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 1342 KB  
Article
Sewage Sludge Increased Lettuce Yields by Releasing Valuable Nutrients While Keeping Heavy Metals in Soil and Plants at Levels Well below International Legislative Limits
by Manuel Ângelo Rodrigues, Almeida Sawimbo, Julieta Moreira da Silva, Carlos Manuel Correia and Margarida Arrobas
Horticulturae 2024, 10(7), 706; https://doi.org/10.3390/horticulturae10070706 - 3 Jul 2024
Cited by 6 | Viewed by 1872
Abstract
Sewage sludge can be used as an organic amendment as long as it is ensured that there is no risk of environmental contamination or risk to public health. In this study, sewage sludge from two wastewater treatment plants (WWTPs) subjected to two disinfection [...] Read more.
Sewage sludge can be used as an organic amendment as long as it is ensured that there is no risk of environmental contamination or risk to public health. In this study, sewage sludge from two wastewater treatment plants (WWTPs) subjected to two disinfection and stabilization treatments [40% (mass/mass), calcium oxide, and calcium hydroxide] and their respective untreated sewage sludge were used. Three control treatments were also added: conventional farmyard manure (FYM), a nitrogen (N) mineral fertilizer (ammonium nitrate 34.5% N) applied at a rate of 50 kg N ha−1 (N50) (the same rate of all organic amendments), and an unfertilized control (N0), totaling nine treatments. Lettuce (Lactuca sativa L.) was cultivated in pots for two growing cycles. The dry matter yield (DMY) was higher in the N50 treatment (13.5 and 10.6 g plant−1 in the first and second growing cycles, respectively), followed by sewage sludge (10.8 to 12.4 and 8.4 to 8.7 g plant−1), FYM (8.5 and 7.2 g plant−1), and the control (7.7 and 6.0 g plant−1). The DMY was related to the N provided by the different treatments, assessed by the N and nitrate concentrations in tissues, N uptake, and apparent N recovery (ANR). Sewage sludge, due to its high N concentration and low carbon (C)/N ratio, mineralized rapidly, providing a significant amount of N to plants, as well as other nutrients, such as phosphorus (P) and boron (B). FYM, with a higher C/N ratio, provided less N to plants, also due to the short duration of the lettuce growing cycle. Alkalized sewage sludge increased soil pH and calcium (Ca) availability for plants. Fertilizer treatments minimally influenced cationic micronutrients. Heavy metals in the initial sewage sludge were below the threshold values established in international legislation, and the levels in soil and lettuce tissues were generally not higher than those in other treatments. Both of the sewage sludges used in this study showed high fertilizing value and very reactive behavior, making nutrients available much more quickly than FYM. This information is relevant to consider in defining their agricultural use. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

19 pages, 23334 KB  
Article
Lime and Gypsum Rates Effects in New Soybean Areas in the Cerrado of Matopiba, Brazil
by Doze Batista de Oliveira, Julian Junio de Jesus Lacerda, Adenilson Pereira Cavalcante, Karmem Guimarães Bezerra, Allana Pereira Moura da Silva, Ana Caroline Guimarães Miranda, Tiago Pieta Rambo, Rafael Maschio, Hosana Aguiar Freitas de Andrade, Paula Muniz Costa, Carlos Antonio Ferreira de Sousa, José Oscar Lustosa de Oliveira Júnior, Edvaldo Sagrilo and Henrique Antunes de Souza
Agriculture 2024, 14(7), 1034; https://doi.org/10.3390/agriculture14071034 - 28 Jun 2024
Viewed by 2281
Abstract
High rates of limestone have been increasingly utilized in newly converted areas for grain production in agricultural frontier regions to expedite the short-term correction of soil fertility, leading to compensatory yields. However, there is a lack of information about different doses of lime [...] Read more.
High rates of limestone have been increasingly utilized in newly converted areas for grain production in agricultural frontier regions to expedite the short-term correction of soil fertility, leading to compensatory yields. However, there is a lack of information about different doses of lime and gypsum for soils in the Cerrado of Matopiba, especially in the state of Piauí, Brazil. The aim of this study was to evaluate the effects of doses of lime and gypsum in newly converted areas for soybean production in the Cerrado of Southwest Piauí. The study was carried out in the 2019/2020 and 2020/2021 crop years, on yellow Oxisol soil, in a randomized block design and treatments following a 5 × 4 factorial: five lime rates (0, 5, 10, 15, and 20 t ha−1) and four gypsum rates (0, 1, 2 and 4 t ha−1), with four replicates. The standard lime and gypsum rates were 5 t ha−1 and 1 t ha−1, respectively. Soil fertility attributes (0.0–0.2, 0.2–0.4, and 0.4–0.6 m), nutritional status of plants, and soybean yield were measured. The increases in grain yield using a lime rate of 10 t ha−1 were 18% and 12% in the 2019/2020 and 2020/2021 crop years, respectively. High lime rates provide a reduction in the concentrations of P, K, and cationic micronutrients in soil, thereby reducing leaf contents of macro- and micronutrients in soybean plants. Concentrations of Ca, Mg, and S in subsurface layers were raised to proper levels, similar to those recommended for topsoil (0.0–0.2 m). The use of gypsum and lime in newly converted areas for soybean cultivation provides quick improvement in soil chemical conditions and reduction in acidity components. The application of 10 t ha−1 of lime improved the soil chemical environment in the Matopiba region the short time available for chemical reactions to occur, allowing soybean cultivation in newly converted areas of Cerrado into agriculture. Full article
Show Figures

Figure 1

17 pages, 930 KB  
Article
Nitrogen-Rich Sewage Sludge Mineralized Quickly, Improving Lettuce Nutrition and Yield, with Reduced Risk of Heavy Metal Contamination of Soil and Plant Tissues
by Margarida Arrobas, Ramily Meneses, Andressa Gribler Gusmão, Julieta Moreira da Silva, Carlos Manuel Correia and Manuel Ângelo Rodrigues
Agronomy 2024, 14(5), 924; https://doi.org/10.3390/agronomy14050924 - 27 Apr 2024
Cited by 10 | Viewed by 2517
Abstract
Sewage sludge should primarily find use in agriculture, reducing the quantity directed towards alternative disposal methods like incineration or deposition in municipal landfills. This study evaluated the agronomic value and the risk of soil and plant tissue contamination with heavy metals in sewage [...] Read more.
Sewage sludge should primarily find use in agriculture, reducing the quantity directed towards alternative disposal methods like incineration or deposition in municipal landfills. This study evaluated the agronomic value and the risk of soil and plant tissue contamination with heavy metals in sewage sludge obtained from two wastewater treatment plants (WWTP). The experiment was arranged as a 2 × 5 factorial (two sewage sludges, five sanitation treatments), involving lettuce cultivation in pots over two growing cycles. The two sewage sludges were sourced from the WWTPs of Gelfa and Viana do Castelo and underwent five sanitation and stabilization treatments (40% and 20% calcium oxide, 40% and 20% calcium hydroxide, and untreated sewage sludge). The Gelfa sewage sludge, characterized by a higher initial nitrogen (N) concentration, resulted in greater dry-matter yield (DMY) (12.4 and 8.6 g plant−1 for the first and second growing cycles, respectively) compared to that from Viana do Castelo (11.0 and 8.1 g plant−1), with N release likely being a major factor influencing crop productivity. The high N concentration and the low carbon (C)/N ratio of sewage sludge led to rapid mineralization of the organic substrate, which additionally led to a higher release of other important nutrients, such as phosphorus (P) and boron (B), making them available for plant uptake. Alkalizing treatments further stimulated sewage sludge mineralization, increasing soil pH and exchangeable calcium (Ca), thereby enhancing Ca availability for plants, and indicating a preference for use in acidic soils. Cationic micronutrients were minimally affected by the sewage sludge and their treatments. The concentrations of heavy metals in the sewage sludge, soils, and lettuce tissues were all below internationally established threshold limits. This study highlighted the high fertilizing value of these sewage sludges, supplying N, P, and B to plants, while demonstrating a low risk of environmental contamination with heavy metals. Nevertheless, the safe use of sewage sludge by farmers depends on monitoring other risks, such as toxic organic compounds, which were not evaluated in this study. Full article
Show Figures

Figure 1

Back to TopTop