Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = microplasma jet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2359 KB  
Review
Changes in Flavor and Volatile Composition of Meat and Meat Products Observed after Exposure to Atmospheric Pressure Cold Plasma (ACP)
by Kathrine H. Bak and Peter Paulsen
Foods 2023, 12(17), 3295; https://doi.org/10.3390/foods12173295 - 2 Sep 2023
Cited by 5 | Viewed by 2778
Abstract
Studies on the atmospheric pressure cold plasma (ACP) exposure of meat and meat products mainly determine microbial inactivation, lipid oxidation, and meat color. Some studies include sensory evaluation, but only a few determine the changes in volatile composition due to ACP treatment. The [...] Read more.
Studies on the atmospheric pressure cold plasma (ACP) exposure of meat and meat products mainly determine microbial inactivation, lipid oxidation, and meat color. Some studies include sensory evaluation, but only a few determine the changes in volatile composition due to ACP treatment. The results of sensory evaluation are inconclusive and range from “improvement” to “off-odor”. This could be due to differences in the food matrix, especially in processed foods, or different experimental settings, including inadvertent effects such as sample heating. The few studies analyzing volatile composition report changes in alcohols, esters, aldehydes, and other compounds, but not necessarily changes that are novel for meat and meat products. Most studies do not actually measure the formation of reactive species, although this is needed to determine the exact reactions taking place in the meat during ACP treatment. This is a prerequisite for an adjustment of the plasma conditions to achieve antimicrobial effects without compromising sensory quality. Likewise, such knowledge is necessary to clarify if ACP-exposed meat and products thereof require regulatory approval. Full article
Show Figures

Figure 1

11 pages, 4101 KB  
Article
Precise Control of Glioma Cell Apoptosis Induced by Micro-Plasma-Activated Water (μ-PAW)
by Yuhan Zhang, Xiaoxia Du, Qihao Shi, Wenxiang Xiao and Hua Li
Micromachines 2022, 13(12), 2145; https://doi.org/10.3390/mi13122145 - 4 Dec 2022
Cited by 3 | Viewed by 2103
Abstract
To verify the existence of plasma with the potential to kill tumor cells, this paper designed a novel helium (He) micro-plasma jet array device and detected the concentration of typical long-lived reactive oxygen and nitrogen species (RONS) with oxidative activity generated by it. [...] Read more.
To verify the existence of plasma with the potential to kill tumor cells, this paper designed a novel helium (He) micro-plasma jet array device and detected the concentration of typical long-lived reactive oxygen and nitrogen species (RONS) with oxidative activity generated by it. The paper described a new He micro-plasma jet array device consisting of nine flexible quartz capillaries with an inner diameter of 75 μm arranged in a 3 × 3 array. Sterilized ultrapure water (up water) was first treated with the He micro-plasma jet array device to activate it to form enriched RONS micro-plasma-activated water (μ-PAW), and then μ-PAW was added to the cell culture medium (with cells) to observe the proliferation of human glioma cells. The concentration of long-lived RONS, such as nitrate (NO3), was detected according to Beer–Lambert’s law in combination with UV spectrophotometry as well as a color development method. The MTT Cell Proliferation and Cytotoxicity Assay Kit combined with the Hoechst Staining Kit were used to assess the proliferation status of the cells. The results showed that the range of RONS concentration variation could be controlled in the order of micromoles (µmol), while plasma-induced tumor cell death is apoptosis that does not affect the surrounding environment. Full article
(This article belongs to the Special Issue Intelligent Biomedical Devices and Systems)
Show Figures

Figure 1

12 pages, 4365 KB  
Article
Localized Surface Hydrophilicity Tailoring of Polyimide Film for Flexible Electronics Manufacturing Using an Atmospheric Pressure Ar/H2O Microplasma Jet
by Bowen Ji, Tao Wang, Meng Li, Liping Shi, Xiaoli You, Fanqi Sun and Haiwen Luan
Micromachines 2022, 13(11), 1853; https://doi.org/10.3390/mi13111853 - 29 Oct 2022
Cited by 6 | Viewed by 2715
Abstract
The poor hydrophilicity of polyimide (PI) films limits their applications in flexible electronics, such as in wearable and implantable bio-MEMS devices. In this paper, an atmospheric pressure Ar/H2O microplasma jet (μAPPJ) with a nozzle diameter of 100 μm was utilized to [...] Read more.
The poor hydrophilicity of polyimide (PI) films limits their applications in flexible electronics, such as in wearable and implantable bio-MEMS devices. In this paper, an atmospheric pressure Ar/H2O microplasma jet (μAPPJ) with a nozzle diameter of 100 μm was utilized to site-selectively tune the surface hydrophilicity of a PI film. The electrical and optical characteristics of the μAPPJ were firstly investigated, and the results showed that multi-spikes occurred during the plasma discharge and that diverse reactive species, such as O atoms and OH radicals, were generated in the plasma plume. The physical and chemical properties of pristine and microplasma-modified PI surfaces were characterized by the water contact angle (WCA), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The wettability of the PI surface was significantly enhanced after microplasma modification, and the WCA could be adjusted by varying the applied voltage, water vapor content, plasma treatment time and storage time. The AFM images indicated that the surface roughness increased after the plasma treatment, which partially contributed to an improvement in the surface hydrophilicity. The XPS results showed a reduction in the C content and an increase in the O content, and abundant hydrophilic polar oxygen-containing functional groups were also grafted onto the PI film surface. Finally, the interaction mechanism between the PI molecular chains and the microplasma is discussed. The breaking of C-N and C-O bonds and the grafting of OH radicals were the key pathways to dominate the reaction process. Full article
(This article belongs to the Special Issue Wearable and Implantable Bio-MEMS Devices and Applications)
Show Figures

Figure 1

10 pages, 2449 KB  
Article
Direct and Indirect Bactericidal Effects of Cold Atmospheric-Pressure Microplasma and Plasma Jet
by Ahmad Guji Yahaya, Tomohiro Okuyama, Jaroslav Kristof, Marius Gabriel Blajan and Kazuo Shimizu
Molecules 2021, 26(9), 2523; https://doi.org/10.3390/molecules26092523 - 26 Apr 2021
Cited by 43 | Viewed by 4613
Abstract
The direct and indirect bactericidal effects of dielectric barrier discharge (DBD) cold atmospheric-pressure microplasma in an air and plasma jet generated in an argon-oxygen gas mixture was investigated on Staphylococcus aureus and Cutibacterium acnes. An AC power supply was used to generate [...] Read more.
The direct and indirect bactericidal effects of dielectric barrier discharge (DBD) cold atmospheric-pressure microplasma in an air and plasma jet generated in an argon-oxygen gas mixture was investigated on Staphylococcus aureus and Cutibacterium acnes. An AC power supply was used to generate plasma at relatively low discharge voltages (0.9–2.4 kV) and frequency (27–30 kHz). Cultured bacteria were cultivated at a serial dilution of 10−5, then exposed to direct microplasma treatment and indirect treatment through plasma-activated water (PAW). The obtained results revealed that these methods of bacterial inactivation showed a 2 and 1 log reduction in the number of survived CFU/mL with direct treatment being the most effective means of treatment at just 3 min using air. UV–Vis spectroscopy confirmed that an increase in treatment time at 1.2% O2, 98.8% Ar caused a decrease in O2 concentration in the water as well as a decrease in absorbance of the peaks at 210 nm, which are attributed NO2 and NO3 concentration in the water, termed denitratification and denitritification in the treated water, respectively. Full article
Show Figures

Figure 1

18 pages, 2958 KB  
Article
GSH Modification as a Marker for Plasma Source and Biological Response Comparison to Plasma Treatment
by Pietro Ranieri, Hager Mohamed, Brayden Myers, Leah Dobossy, Keely Beyries, Duncan Trosan, Fred C. Krebs, Vandana Miller and Katharina Stapelmann
Appl. Sci. 2020, 10(6), 2025; https://doi.org/10.3390/app10062025 - 17 Mar 2020
Cited by 22 | Viewed by 4427
Abstract
This study investigated the use of glutathione as a marker to establish a correlation between plasma parameters and the resultant liquid chemistry from two distinct sources to predefined biological outcomes. Two different plasma sources were operated at parameters that resulted in similar biological [...] Read more.
This study investigated the use of glutathione as a marker to establish a correlation between plasma parameters and the resultant liquid chemistry from two distinct sources to predefined biological outcomes. Two different plasma sources were operated at parameters that resulted in similar biological responses: cell viability, mitochondrial activity, and the cell surface display of calreticulin. Specific glutathione modifications appeared to be associated with biological responses elicited by plasma. These modifications were more pronounced with increased treatment time for the European Cooperation in Science and Technology Reference Microplasma Jet (COST-Jet) and increased frequency for the dielectric barrier discharge and were correlated with more potent biological responses. No correlations were found when cells or glutathione were exposed to exogenously added long-lived species alone. This implied that short-lived species and other plasma components were required for the induction of cellular responses, as well as glutathione modifications. These results showed that comparisons of medical plasma sources could not rely on measurements of long-lived chemical species; rather, modifications of biomolecules (such as glutathione) might be better predictors of cellular responses to plasma exposure. Full article
(This article belongs to the Special Issue Application of Plasma Technology in Bioscience and Biomedicine)
Show Figures

Figure 1

12 pages, 6518 KB  
Review
Applications of the COST Plasma Jet: More than a Reference Standard
by Yury Gorbanev, Judith Golda, Volker Schulz-von der Gathen and Annemie Bogaerts
Plasma 2019, 2(3), 316-327; https://doi.org/10.3390/plasma2030023 - 12 Jul 2019
Cited by 41 | Viewed by 8203
Abstract
The rapid advances in the field of cold plasma research led to the development of many plasma jets for various purposes. The COST plasma jet was created to set a comparison standard between different groups in Europe and the world. Its physical and [...] Read more.
The rapid advances in the field of cold plasma research led to the development of many plasma jets for various purposes. The COST plasma jet was created to set a comparison standard between different groups in Europe and the world. Its physical and chemical properties are well studied, and diagnostics procedures are developed and benchmarked using this jet. In recent years, it has been used for various research purposes. Here, we present a brief overview of the reported applications of the COST plasma jet. Additionally, we discuss the chemistry of the plasma-liquid systems with this plasma jet, and the properties that make it an indispensable system for plasma research. Full article
(This article belongs to the Special Issue Low Temperature Plasma Jets: Physics, Diagnostics and Applications)
Show Figures

Graphical abstract

12 pages, 6166 KB  
Article
DC Microplasma Jet for Local a:C-H Deposition Operated in SEM Chamber
by Khanit Matra, Hiroshi Furuta and Akimitsu Hatta
Micromachines 2017, 8(7), 211; https://doi.org/10.3390/mi8070211 - 3 Jul 2017
Cited by 6 | Viewed by 5087
Abstract
A DC micro plasma jet for local micro deposition of a:C-H film in the ambient vacuum of scanning electron microscope (SEM) chamber is proposed. Acetylene (C2H2) gas was locally fed into the chamber through an orifice shaped gas nozzle [...] Read more.
A DC micro plasma jet for local micro deposition of a:C-H film in the ambient vacuum of scanning electron microscope (SEM) chamber is proposed. Acetylene (C2H2) gas was locally fed into the chamber through an orifice shaped gas nozzle (OGN) at 6.6 sccm in flow rate by applying 80 kPa-inlet pressure with an additional direct pumping system equipped on the SEM chamber. As a cathode, a cut of n-type silicon (Si) wafer was placed right in front of the OGN at 200 μm gap distance. By applying a positive DC voltage to the OGN, C2H2 plasma was generated locally between the electrodes. During discharge, the voltage increased and the current decreased due to deposition of insulating film on the Si wafer with resulting in automatic termination of discharge at the constant source voltage. A symmetric mountain-shaped a:C-H film of 5 μm height was deposited at the center by operation for 15 s. Films were deposited with variation of gas flow rate, gap distance, voltage and current, and deposition time. The films were directly observed by SEM and analyzed by surface profiler and by Raman spectroscopy. Full article
(This article belongs to the Special Issue Microplasma Devices)
Show Figures

Figure 1

Back to TopTop