Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = microstrip technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1606 KB  
Article
Multi-Branch Knowledge-Assisted Proximal Policy Optimization for Design of MS-to-MS Vertical Transition with Multi-Layer Pixel Structures
by Ze-Ming Wu, Zheng Li, Ruo-Yu Liang, Xiao-Chun Li, Ken Ning and Jun-Fa Mao
Electronics 2025, 14(18), 3723; https://doi.org/10.3390/electronics14183723 - 19 Sep 2025
Viewed by 117
Abstract
This article proposes a wideband microstrip-to-microstrip vertical transition with multi-layer pixel structures, alongside a multi-branch knowledge-assisted proximal policy optimization (MB-KPPO) method for its automatic design. The proposed transition consists of the three-layer pixel structures with high design degrees of freedom to realize a [...] Read more.
This article proposes a wideband microstrip-to-microstrip vertical transition with multi-layer pixel structures, alongside a multi-branch knowledge-assisted proximal policy optimization (MB-KPPO) method for its automatic design. The proposed transition consists of the three-layer pixel structures with high design degrees of freedom to realize a wide bandwidth. The MB-KPPO adopts a multi-branch policy network instead of a single-branch policy network in the PPO to improve design efficiency. In addition, the MB-KPPO integrates a fully connected shape generation mechanism to incorporate physical requirements. An MS-to-MS vertical multi-layer pixel transition is designed and fabricated by PCB technology. Measurement results show that the multi-layer transition has a frequency range from 3.5 to 17.8 GHz, with a bandwidth that is 25% higher than the single-layer pixel transition towards higher frequencies. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 5466 KB  
Article
Design of Tri-Mode Frequency Reconfigurable UAV Conformal Antenna Based on Frequency Selection Network
by Teng Bao, Mingmin Zhu, Zhifeng He, Yi Zhang, Guoliang Yu, Yang Qiu, Jiawei Wang, Yan Li, Haibin Zhu and Hao-Miao Zhou
J. Low Power Electron. Appl. 2025, 15(3), 51; https://doi.org/10.3390/jlpea15030051 - 10 Sep 2025
Viewed by 194
Abstract
With the rapid growth of unmanned aerial vehicles (UAVs) and IoT users, spectrum resources are becoming increasingly scarce, making cognitive radio (CR) technology a key approach to improving spectrum utilization. However, traditional antennas are difficult to meet the lightweight, compact, and low-drag requirements [...] Read more.
With the rapid growth of unmanned aerial vehicles (UAVs) and IoT users, spectrum resources are becoming increasingly scarce, making cognitive radio (CR) technology a key approach to improving spectrum utilization. However, traditional antennas are difficult to meet the lightweight, compact, and low-drag requirements of small UAVs due to spatial constraints. This paper proposes a tri-mode frequency reconfigurable flexible antenna that can be conformally integrated onto UAV wing arms to enable CR dynamic frequency communication. The antenna uses a polyimide (PI) substrate and has compact dimensions of 31.4 × 58 × 0.05 mm3. A microstrip line-based frequency-selective network is designed, incorporating PIN and varactor diodes to realize three operation modes, dual-band (2.25~3.55 GHz, 5.6~6.75 GHz), single-band (3.35~5.3 GHz), and continuous tuning (4.3~6.1 GHz), covering WLAN, WiMAX, and 5G NR bands. Test results show that the antenna maintains stable performance under conformal conditions, with frequency shifts less than 4%, gain (3.65~4.77 dBi), and radiation efficiency between 67.2% and 82.9%. The tuning ratio reaches 38.8% in the continuous mode. This design offers a new solution for CR communication in compact UAV platforms and shows promising application potential. Full article
Show Figures

Figure 1

10 pages, 1977 KB  
Proceeding Paper
Finite-Element and Experimental Analysis of a Slot Line Antenna for NV Quantum Sensing
by Dennis Stiegekötter, Jonas Homrighausen, Ann-Sophie Bülter, Ludwig Horsthemke, Frederik Hoffmann, Jens Pogorzelski, Peter Glösekötter and Markus Gregor
Eng. Proc. 2025, 101(1), 9; https://doi.org/10.3390/engproc2025101009 - 30 Jul 2025
Viewed by 409
Abstract
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by [...] Read more.
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by finite element method (FEM) for magnetic field amplitude and uniformity. A microstrip-to-slot-line converter with a 10 dB bandwidth of 3.2 GHz was implemented. Rabi oscillation measurements with an NV microdiamond on a glass fiber show uniform excitation over 1.5 MHz across the slot, allowing spin manipulation within the coherence time of the NV center. Full article
Show Figures

Figure 1

30 pages, 7092 KB  
Article
Slotted Circular-Patch MIMO Antenna for 5G Applications at Sub-6 GHz
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Telecom 2025, 6(3), 53; https://doi.org/10.3390/telecom6030053 - 28 Jul 2025
Viewed by 825
Abstract
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input [...] Read more.
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input multiple-output (MIMO) systems to achieve adequate channel capacity. In this article, a 2-port MIMO system using two flipped parallel 1 × 2 arrays and a 2-port MIMO system using two opposite 1 × 4 arrays designed and fabricated antennas for 5G wireless communication in the sub-6 GHz band, are presented, overcoming the limitations of previous designs in gain, radiation efficiency and MIMO performance. The designed and fabricated single-element antenna features a circular microstrip patch design based on ROGER 5880 (RT5880) substrate, which has a thickness of 1.57 mm, a permittivity of 2.2, and a tangential loss of 0.0009. The 2-port MIMO of two 1 × 2 arrays and the 2-port MIMO of two 1 × 4 arrays have overall dimensions of 132 × 66 × 1.57 mm3 and 140 × 132 × 1.57 mm3, respectively. The MIMO of two 1 × 2 arrays and MIMO of two 1 × 4 arrays encompass maximum gains of 8.3 dBi and 10.9 dBi, respectively, with maximum radiation efficiency reaching 95% and 97.46%. High MIMO performance outcomes are observed for both the MIMO of two 1 × 2 arrays and the MIMO of two 1 × 4 arrays, with the channel capacity loss (CCL) ˂ 0.4 bit/s/Hz and ˂0.3 bit/s/Hz, respectively, an envelope correlation coefficient (ECC) ˂ 0.006 and ˂0.003, respectively, directivity gain (DG) about 10 dB, and a total active reflection coefficient (TARC) under −10 dB, ensuring impedance matching and effective mutual coupling among neighboring parameters, which confirms their effectiveness for 5G applications. The three fabricated antennas were experimentally tested and implemented using the MIMO Application Framework version 19.5 for 5G systems, demonstrating operational effectiveness in 5G applications. Full article
Show Figures

Figure 1

20 pages, 21323 KB  
Article
C Band 360° Triangular Phase Shift Detector for Precise Vertical Landing RF System
by Víctor Araña-Pulido, B. Pablo Dorta-Naranjo, Francisco Cabrera-Almeida and Eugenio Jiménez-Yguácel
Appl. Sci. 2025, 15(15), 8236; https://doi.org/10.3390/app15158236 - 24 Jul 2025
Viewed by 286
Abstract
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point [...] Read more.
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point arrives with different delays. The circuit increases the aerial tracking volume relative to that achieved by detectors with theoretical unambiguous detection ranges of ±90°. The phase shift measurement circuit uses an analog phase detector (mixer), detecting a maximum range of ±90°and a double multiplication of the input signals, in phase and phase-shifted, without the need to fulfill the quadrature condition. The calibration procedure, phase detector curve modeling, and calculation of the input signal phase shift are significantly simplified by the use of an automatic gain control on each branch, dwhich keeps input amplitudes to the analog phase detectors constant. A simple program to determine phase shifts and guidance instructions is proposed, which could be integrated into the same flight control platform, thus avoiding the need to add additional processing components. A prototype has been manufactured in C band to explain the details of the procedure design. The circuit uses commercial circuits and microstrip technology, avoiding the crossing of lines by means of switches, which allows the design topology to be extrapolated to much higher frequencies. Calibration and measurements at 5.3 GHz show a dynamic range greater than 50 dB and a non-ambiguous detection range of ±180°. These specifications would allow one to track the drone during the landing maneuver in an inverted cone formed by a surface with an 11 m radius at 10 m high and the landing point, when 4 cm between RF inputs is considered. The errors of the phase shifts used in the landing maneuver are less than ±3°, which translates into 1.7% losses over the detector theoretical range in the worst case. The circuit has a frequency bandwidth of 4.8 GHz to 5.6 GHz, considering a 3 dB variation in the input power when the AGC is limiting the output signal to 0 dBm at the circuit reference point of each branch. In addition, the evolution of phases in the landing maneuver is shown by means of a small simulation program in which the drone trajectory is inside and outside the tracking range of ±180°. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

32 pages, 11250 KB  
Article
Novel Dielectric Resonator-Based Microstrip Filters with Adjustable Transmission and Equalization Zeros
by David Espinosa-Adams, Sergio Llorente-Romano, Vicente González-Posadas, José Luis Jiménez-Martín and Daniel Segovia-Vargas
Electronics 2025, 14(13), 2557; https://doi.org/10.3390/electronics14132557 - 24 Jun 2025
Viewed by 718
Abstract
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of [...] Read more.
This work presents a comprehensive technological study of dielectric resonator-based microstrip filters (DRMFs), encompassing the design, fabrication, and rigorous characterization of the TE01δ mode. Through systematic coupling analysis, we demonstrate filters featuring novel input–output coupling techniques and innovative implementations of both transmission zeros (4-2-0 configuration) and equalization zeros (4-0-2 configuration), specifically designed for demanding space and radar receiver applications, while the loaded quality factor (QL) and insertion loss do not match those of dielectric resonator cavity filters (DRCFs), our solution significantly surpasses conventional microstrip filters (MFs), achieving QL> 3000 compared to typical QL≈ 200 for coupled-line MFs in X-band. The fabricated filters exhibit exceptional performance as follows: input reflection (S11) below −18 dB (4-2-0) and −16.5 dB (4-0-2), flat transmission response (S21), and out-of-band rejection exceeding −30 dB. Mechanical tuning enables precise control of input–output coupling, inter-resonator coupling, cross-coupling, and frequency synthesis, while equalization zeros provide tailored group delay characteristics. This study positions DRMFs as a viable intermediate technology for high-performance RF systems, bridging the gap between conventional solutions. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

15 pages, 2714 KB  
Article
A Low-Loss and High-Bandwidth Horizontally Polarized Transition Between Rectangular Polymer Dielectric Waveguide and Microstrip Line for Array Application
by Haibing Zhan, Xiaochun Li, Changsheng Sun and Ken Ning
Electronics 2025, 14(12), 2345; https://doi.org/10.3390/electronics14122345 - 8 Jun 2025
Viewed by 558
Abstract
To achieve interconnects of rectangular polymer dielectric waveguides (PDWs) at the W-band, this paper presents a novel low-loss and high-bandwidth horizontally polarized transition between a rectangular PDW and a microstrip line (ML), which can achieve a rectangular PDW array. The proposed structure consists [...] Read more.
To achieve interconnects of rectangular polymer dielectric waveguides (PDWs) at the W-band, this paper presents a novel low-loss and high-bandwidth horizontally polarized transition between a rectangular PDW and a microstrip line (ML), which can achieve a rectangular PDW array. The proposed structure consists of a patch, a bent ridge waveguide, a tapered ridge waveguide, a dielectric-filled waveguide, and a tapered horn. An equivalent circuit model is established for synthesis design, and the transition is manufactured utilizing printed circuit board (PCB) and computerized numerical control (CNC) technologies. A rectangular PDW interconnect with two designed transitions is constructed and experiments are conducted. The measured results indicate that the rectangular PDW interconnect with two transitions operates within a frequency range (|S11| < −10 dB) of 81.9–108.2 GHz, and the insertion loss of the transition is 0.51–2.01 dB in this frequency range. Then, the designed transition is used to achieve a rectangular PDW array with two rectangular PDWs and two transitions, which has a far-end crosstalk (FEXT) of −55.4 to −21.7 dB in the frequency range of 78.1–110 GHz. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

15 pages, 1496 KB  
Article
Capacitive-Loaded High-Power Low-Loss 3.0 T Magnetic Resonance Imaging Radio Frequency Combiner Design and Integrated Application
by Yingliang Li and Shouhua Luo
Appl. Sci. 2025, 15(11), 5940; https://doi.org/10.3390/app15115940 - 25 May 2025
Viewed by 544
Abstract
For high-power magnetic resonance imaging (MRI) radio frequency (RF) combiners operating in the frequency range from 60 MHz to 300 MHz, the primary challenges lie in achieving high-power transmission capability while minimizing the insertion loss (IL), reducing the physical dimensions, and meeting application [...] Read more.
For high-power magnetic resonance imaging (MRI) radio frequency (RF) combiners operating in the frequency range from 60 MHz to 300 MHz, the primary challenges lie in achieving high-power transmission capability while minimizing the insertion loss (IL), reducing the physical dimensions, and meeting application bandwidth requirements. This paper presents a high-performance RF power combiner based on capacitor-loaded microstrip technology for 3.0T MRI radio frequency power amplifier (RFPA) systems. The proposed combiner features low loss, high integration, and miniaturization, and it comprises multiple branches, each employing microstrip lines and capacitors in a series–parallel arrangement to achieve an impedance transformation of 50 Ω to 100 Ω. Each branch was designed through theoretical analysis and electromagnetic simulations to achieve a line length 30% shorter than λ/4, a 6.2 mm line width, and 0.08 dB IL at the 3.0T MRI operation frequency band. A two-way to one-way combiner was further designed using this branch structure to achieve 0.2 dB IL through simulation optimization. A four-way to one-way combiner was then constructed by cascading two-way combiners and optimized via ADS-HFSS software(ADS2014 HFSS19) co-simulation. The fabricated combiner module uses an FR4 substrate and achieves a 0.4 dB insertion loss, −25 dB return loss, and 25 dB port isolation at 128 MHz ± 1 MHz, with compact dimensions (320 × 200 × 10 mm). To ensure high power capability, thermal analysis was performed to confirm that the module’s power-handling capacity exceeded 8 kW, and experimental validation with the 8 kW 3.0T RFPA demonstrated a stable temperature rise of approximately 2 °C. In this study, the innovative single-branch topology and the RF high-power four-to-one combiner for 3.0T MRI systems were used, resolving the trade-offs between power-handling capability, insertion loss, structural compactness, and operating bandwidth in MRI power combiners. The combiner was successfully integrated into the 3.0T MRI RFPA system, reducing the overall dimensions of the RFPA system and simplifying its installation, thereby enabling high-quality imaging validation. This solution demonstrates the scalable potential of the design for other high-field MRI systems operating in the MHz range (from tens to hundreds of MHz), including in 1.5T and 7.0T MRI systems. Full article
(This article belongs to the Special Issue Advanced RF/MM-Wave Circuits Design and Applications)
Show Figures

Figure 1

15 pages, 5772 KB  
Article
A Design and Implementation of High-Efficiency Asymmetric Doherty Radio Frequency Power Amplifier for 5G Base Station Applications
by Manlin Xiao and Wenyu Zhang
Electronics 2025, 14(8), 1586; https://doi.org/10.3390/electronics14081586 - 14 Apr 2025
Cited by 1 | Viewed by 780
Abstract
Utilizing asymmetric Doherty technology, this paper designs a high-efficiency radio frequency (RF) power amplifier (PA) for 5G base station applications. To improve the performance of PA and narrow the gap between simulations and practices, we use compatibility methods to design the circuit, which [...] Read more.
Utilizing asymmetric Doherty technology, this paper designs a high-efficiency radio frequency (RF) power amplifier (PA) for 5G base station applications. To improve the performance of PA and narrow the gap between simulations and practices, we use compatibility methods to design the circuit, which keeps the layout dynamically adjustable. By incorporating redundant U-shaped microstrip lines, the impedance matching network can be dynamically fine-tuned during debugging based on real-time hardware conditions. Furthermore, independent debugging paths for both main and auxiliary amplifiers are designed to enable the multi-stage debugging strategy. Performing separate debugging for each branch first, followed by combined debugging ensures both amplifiers achieve optimal operation states. The proposed strategy improves debugging efficiency while achieving precise parameter optimization. To verify the feasibility of the scheme proposed in this paper, we use CGHV40030F transistors to design a Doherty PA worked at 3.5 GHz and complete the hardware implementation and tests. Simulations and practice results prove that the architecture of asymmetric Doherty increases the back-off efficiency, and the compatibility design can make debugging easy and align the practice results closely with the simulations. We observe the saturation drain efficiency of 73.5% and the back-off efficiency of 47.5% from measurements, which confirms the effectiveness of the proposed compatibility design approach. Full article
Show Figures

Figure 1

50 pages, 5064 KB  
Systematic Review
Design, Algorithms, and Applications of Microstrip Antennas for Image Acquisition: Systematic Review
by Luis Fernando Guerrero-Vásquez, Nathalia Alexandra Chacón-Reino, Byron Steven Sigüenza-Jiménez, Felipe Tomas Zeas-Loja, Jorge Osmani Ordoñez-Ordoñez and Paúl Andrés Chasi-Pesantez
Electronics 2025, 14(6), 1063; https://doi.org/10.3390/electronics14061063 - 7 Mar 2025
Cited by 3 | Viewed by 2421
Abstract
This systematic literature review investigates microstrip antenna applications in image acquisition, focusing on their design characteristics, reconstruction algorithms, and application areas. We applied the PRISMA methodology for article selection. From selected studies, classifications were identified based on antenna patch geometry, substrate types, and [...] Read more.
This systematic literature review investigates microstrip antenna applications in image acquisition, focusing on their design characteristics, reconstruction algorithms, and application areas. We applied the PRISMA methodology for article selection. From selected studies, classifications were identified based on antenna patch geometry, substrate types, and image reconstruction algorithms. According to inclusion criteria, a significant increase in publications on this topic has been observed since 2013. Considering this trend, our study focuses on a 10-year publication range, including articles up to 2023. Results indicate that medical applications, particularly breast cancer detection, dominate this field. However, emerging areas are gaining attention, including stroke detection, bone fracture monitoring, security surveillance, avalanche radars, and weather monitoring. Our study highlights the need for more efficient algorithms, system miniaturization, and improved models to achieve precise medical imaging. Visual tools such as heatmaps and box plots are used to provide a deeper analysis, identify knowledge gaps, and offer valuable insights for future research and development in this versatile technology. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 2891 KB  
Article
Dual-Band Multi-Layer Antenna Array with Circular Polarization and Gain Enhancement for WLAN and X-Band Applications
by Bal S. Virdee, Tohid Aribi and Tohid Sedghi
Micromachines 2025, 16(2), 203; https://doi.org/10.3390/mi16020203 - 10 Feb 2025
Cited by 1 | Viewed by 1219
Abstract
This paper presents a novel multi-layer, dual-band antenna array designed for WLAN and X-band applications, incorporating several innovative features. The design employs a pentagon-shaped radiating element with parasitic strips to enable dual-band operation. A dual-transformed feed network with chamfered feed strip corners minimizes [...] Read more.
This paper presents a novel multi-layer, dual-band antenna array designed for WLAN and X-band applications, incorporating several innovative features. The design employs a pentagon-shaped radiating element with parasitic strips to enable dual-band operation. A dual-transformed feed network with chamfered feed strip corners minimizes radiation distortion and cross-polarization while introducing orthogonal phase shifts to achieve circular polarization (CP) at the X-band. A Fabry–Pérot structure, strategically placed above the array, enhances gain in the WLAN band. The antenna demonstrates an impedance bandwidth of 1.8 GHz (S11 < −10 dB) at the WLAN band, with 36% fractional bandwidth, and 4.3 GHz at the X-band, with 43% fractional bandwidth. Measured peak gains are 7 dBi for the WLAN band and 6.8 dBi for the X-band, with favourable S11 levels, omni-directional radiation patterns, and consistent gain across both bands. Circular polarization is achieved within 8.5–10.4 GHz. Experimental results confirm the array’s significant advancements in multi-band performance, making it highly suitable for diverse wireless communication applications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

17 pages, 7170 KB  
Article
Additively Manufactured Three-Dimensional Microstrip Balun for Wearable Applications
by Allyanna Rice and Asimina Kiourti
Electronics 2025, 14(3), 432; https://doi.org/10.3390/electronics14030432 - 22 Jan 2025
Viewed by 1037
Abstract
We present a three-dimensional, additively manufactured microstrip balun design for the balanced feeding of wearable antennas. Extensive research has been performed regarding wearable antennas, but the balun design is often ignored. The balun may be omitted, a commercial off-the-shelf balun may be used, [...] Read more.
We present a three-dimensional, additively manufactured microstrip balun design for the balanced feeding of wearable antennas. Extensive research has been performed regarding wearable antennas, but the balun design is often ignored. The balun may be omitted, a commercial off-the-shelf balun may be used, or a bulky microstrip balun may be implemented; however, these options are either incorrect or add a significant size to the antenna that is not acceptable for wearable applications. We propose a three-dimensional, conformal microstrip balun enabled by additive manufacturing (AM) technology, and demonstrate its performance using the wearable High-Contrast Low-Loss Antenna (HCLA) as an example. First, the electromagnetic properties of potential substrate materials are characterized from 0.5 to 3 GHz. Exponential tapered baluns are designed, simulated, and tested in a back-to-back configuration to verify the measured material properties for the substrates. Then, the baluns are integrated with the HCLA using a conformal configuration. The measurement results from 0.5 to 3 GHz on the phantoms agree with the simulation for both the reflection coefficient and transmission loss. Importantly, the proposed balun allows the antenna to be used in wearable applications, where balun size would have previously hindered its implementation. The flexibility of the proposed design also allows for the integration with other antennas aside from the HCLA. Full article
Show Figures

Figure 1

18 pages, 6607 KB  
Article
Research and Application of Microwave Microstrip Transmission Line-Based Icing Detection Methods for Wind Turbine Blades
by Min Meng, Xiangyuan Zheng, Zhonghui Wu, Hanyu Hong and Lei Zhang
Sensors 2025, 25(3), 613; https://doi.org/10.3390/s25030613 - 21 Jan 2025
Viewed by 1049
Abstract
In areas where there is high humidity and freezing rain, there is a tendency of blade icing on wind turbines. It results in energy dissipation and mechanical abrasion and also creates a safety concern due to the risk of having falling ice. Real-time [...] Read more.
In areas where there is high humidity and freezing rain, there is a tendency of blade icing on wind turbines. It results in energy dissipation and mechanical abrasion and also creates a safety concern due to the risk of having falling ice. Real-time online detection of icing is crucial in the enhancement of power generation efficiency and in the safety of wind turbines. The current methods of icing detection that use ultrasound, optics, vibration, and electromagnetics are already studied. But these methods have their drawbacks, including small detection ranges, low accuracy, large size, and challenges in distributed installation, making it hard to capture the real-time dynamics of the icing and de-icing processes on the wind turbine blades. To this end, this paper presents a new blade surface icing detection technique using microstrip lines. This approach uses the impact of icing state and thickness on the effective dielectric constant of the microstrip line surface. This paper presents the analysis of time-domain features of microwave signals, which facilitates the identification of both the icing state and the corresponding thickness. Simulation and experimental measurement of linear and S-shaped microstrip sensors are used in this research in order to compare the response of the sensors to the variation in the thickness of the icing layer. It is seen that for icing thickness ranging from 0 mm to 6 mm, the imaginary part of the S21 parameter of the S-shaped microstrip line has a more significant change than that of the linear microstrip line. The above experiments also confirm that the phase shift value of the S-shaped microstrip line is always higher than that of the linear microstrip line for the same variation of icing thickness, which proves that the S-shaped microstrip line is more sensitive than the linear one. Also, it was possible to establish the relationship between the phase shift values and icing thickness, which makes it possible to predict the icing thickness. The developed microwave microstrip detection technology is intended for usage in the wind turbine blade icing and similar surface detection areas. This method saves the size and thickness of icing sensors, which makes it possible to conduct measurements at various points. This is especially beneficial for usage in wind turbine blades and can be further applied in aerospace, automotive, and construction, especially the bridges. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

25 pages, 15082 KB  
Article
A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Electronics 2025, 14(3), 411; https://doi.org/10.3390/electronics14030411 - 21 Jan 2025
Cited by 3 | Viewed by 1839
Abstract
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, [...] Read more.
The fifth generation of wireless communication (5G) technology is becoming more innovative with the increasing need for high data rates because of the incremental rapidity of mobile data growth. In 5G systems, enhancing device-to-device communication, ultra-low latency (1 ms), outstanding dependability, significant flexibility, and data throughput (up to 20 Gbps) is considered one of the most essential factors for wireless networks. To meet these objectives, a sub-6 5G wideband multiple-input multiple-output (MIMO) array microstrip antenna for 5G Worldwide Interoperability for Microwave Access (WiMAX) applications on hotspot devices has been proposed in this research. The 1 × 4 MIMO array radiating element antenna with a partial ground proposed in this research complies with the 5G application standard set out by the Federal Communications Commission. The planned antenna configuration consists of a hollow, regular circular stub patch antenna shaped like a crescent with a rectangular defect at the top of the patch. The suggested structure is mounted on an FR-4 substrate with a thickness “h” of 1.6, a permittivity “εr” of 4.4, and a tangential loss of 0.02. The proposed antenna achieves a high radiation gain and offers a frequency spectrum bandwidth of 3.01 GHz to 6.5 GHz, covering two 5G resonant frequencies “fr” of 3.5 and 5.8 GHz as the mid-band, which yields a gain of 7.66 dBi and 7.84 dBi, respectively. MIMO antenna parameters are examined and introduced to assess the system’s performance. Beneficial results are obtained, with the channel capacity loss (CCL) tending to 0.2 bit/s/Hz throughout the operating frequency band, the envelope correlation coefficient (ECC) yielding 0.02, a mean effective gain (MEG) of less than −6 dB over the operating frequency band, and a total active reflection coefficient (TARC) of less than −10 dB; the radiation efficiency is equal to 71.5%, maintaining impedance matching as well as good mutual coupling among the adjacent parameters. The suggested antenna has been implemented and experimentally tested using the 5G system Open Air Interface (OAI) platform, which operates at sub-6 GHz, yielding −67 dBm for the received signal strength indicator (RSSI), and superior frequency stability, precision, and reproducibility for the signal-to-interference-plus-noise ratio (SINR) and a high level of positivity in the power headroom report (PHR) 5G system performance report, confirming its operational effectiveness in 5G WiMAX (Worldwide Interoperability for Microwave Access) application. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

15 pages, 8654 KB  
Article
Design of Microstrip Antenna Integrating 24 GHz and 77 GHz Compact High-Gain Arrays
by Junli Zhu and Jingping Liu
Sensors 2025, 25(2), 481; https://doi.org/10.3390/s25020481 - 16 Jan 2025
Cited by 2 | Viewed by 2261
Abstract
The swift advancement of contemporary communication technology, along with the development of radar systems, has raised the requirements for antenna systems. In this work, an integrated array antenna operating in the 24 GHz and 77 GHz frequency bands is proposed. The microstrip antenna [...] Read more.
The swift advancement of contemporary communication technology, along with the development of radar systems, has raised the requirements for antenna systems. In this work, an integrated array antenna operating in the 24 GHz and 77 GHz frequency bands is proposed. The microstrip antenna array element uses a width reduction approach to reduce its volume by 39.82%. By using corner series feeding, a 3 × 3 planar array is created. The arrays operating at 77 GHz and 24 GHz can produce gains of 14.19 dBi and 15.34 dBi, respectively, with sidelobe levels of less than −9.14 dB and −12.85 dB and cross-polarization levels of −29.26 dB and −40.52 dB. This design reduces the volume of the array, eliminates the need for a complex feeding network, minimizes feeding losses, and enhances the antenna’s gain, all while maintaining good sidelobe levels and cross-polarization performance. These improvements hold significant potential for broader application. Moreover, the simulation and measurement results are in close agreement. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop