Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = migalastat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
79 pages, 1083 KB  
Systematic Review
Clinical Efficacy and Real-World Effectiveness of Fabry Disease Treatments: A Systematic Literature Review
by Ana Jovanovic, Eve Miller-Hodges, Felicia Castriota, Obaro Evuarherhe, Olulade Ayodele, Derralynn Hughes, Guillem Pintos-Morell, Roberto Giugliani, Sandro Feriozzi and Csaba Siffel
J. Clin. Med. 2025, 14(14), 5131; https://doi.org/10.3390/jcm14145131 - 18 Jul 2025
Viewed by 1448
Abstract
Objectives: This systematic literature review aimed to identify studies assessing the clinical efficacy and real-world effectiveness of current and emerging treatments for Fabry disease. Methods: Searches of the MEDLINE, EMBASE, and Cochrane library databases, as well as relevant congress proceedings, were conducted to [...] Read more.
Objectives: This systematic literature review aimed to identify studies assessing the clinical efficacy and real-world effectiveness of current and emerging treatments for Fabry disease. Methods: Searches of the MEDLINE, EMBASE, and Cochrane library databases, as well as relevant congress proceedings, were conducted to identify publications reporting on studies in patients of any age, sex, race, or ethnicity who received any approved or experimental treatment for Fabry disease, published before 17 June 2024. Results: Of 1881 publications screened, 234 reported data on renal, cardiac, cerebrovascular, and disease severity outcomes from 225 studies. The majority of reported studies were observational in nature (n = 150; 67%) and involved only adults (n = 172; 74%). Study designs and patient populations were highly heterogeneous, and cross-study conclusions about the effectiveness of different therapies could not be made. Enzyme replacement therapy (ERT) with agalsidase alfa or agalsidase beta stabilized renal function and cardiac structure in patients with Fabry disease. Early initiation of ERT in childhood or young adulthood was associated with better renal and cardiac outcomes than treatment initiation at a later age. The small number of comparator studies of agalsidase alfa and agalsidase beta suggested similar efficacy. Patients treated with migalastat and pegunigalsidase alfa also maintained stable renal function and cardiac structure. Conclusions: Overall, current treatments slow the progression of renal and cardiac decline in patients with Fabry disease. Large cohort studies with long-term follow-up and baseline stratification based on clinical phenotype are needed to address evidence gaps and provide clinicians with robust data to inform treatment decisions. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

20 pages, 1641 KB  
Review
Hypertrophic Cardiomyopathy and Phenocopies: New Therapies for Old Diseases—Current Evidence and Future Perspectives
by Maria Alfarano, Federico Ciccarelli, Giulia Marchionni, Federico Ballatore, Jacopo Costantino, Antonio Lattanzio, Giulia Pecci, Silvia Stavagna, Leonardo Iannelli, Gioacchino Galardo, Carlo Lavalle, Fabio Miraldi, Carmine Dario Vizza and Cristina Chimenti
J. Clin. Med. 2025, 14(12), 4228; https://doi.org/10.3390/jcm14124228 - 13 Jun 2025
Viewed by 916
Abstract
The hypertrophic cardiomyopathy (HCM) clinical phenotype includes sarcomeric HCM, which is the most common form of inherited cardiomyopathy with a population prevalence of 1:500, and phenocopies such as cardiac amyloidosis and Anderson–Fabry disease, which are considered rare diseases. Identification of cardiac and non-cardiac [...] Read more.
The hypertrophic cardiomyopathy (HCM) clinical phenotype includes sarcomeric HCM, which is the most common form of inherited cardiomyopathy with a population prevalence of 1:500, and phenocopies such as cardiac amyloidosis and Anderson–Fabry disease, which are considered rare diseases. Identification of cardiac and non-cardiac red flags in the context of multi-organ syndrome, multimodality imaging, including echocardiography, cardiac magnetic resonance, and genetic testing, has a central role in the diagnostic pathway. Identifying the specific disease underlying the hypertrophic phenotype is very important since many disease-modifying therapies are currently available, and phase 3 trials for new treatments have been completed or are ongoing. In particular, many chemotherapy agents (alkylating agents, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies targeting clonal cells) allowing one to treat AL amyloidosis, transthyretin stabilizers (tafamidis and acoramidis), and gene silencers (patisiran and vutrisiran) are available in transthyretin cardiac amyloidosis, and enzyme replacement therapies (agalsidase-alpha, agalsidase-beta, and pegunigalsidase-alpha) or oral chaperone therapy (migalastat) can be used in Anderson–Fabry disease. In addition, the introduction of cardiac myosin inhibitors (mavacamten and aficamten) has deeply modified the treatment of hypertrophic obstructive cardiomyopathy. The aim of this review is to describe the new disease-modifying treatments available in HCM and phenocopies in light of current scientific evidence. Full article
(This article belongs to the Special Issue What’s New in Cardiomyopathies: Diagnosis, Treatment and Management)
Show Figures

Graphical abstract

21 pages, 2536 KB  
Review
Establishing Treatment Effectiveness in Fabry Disease: Observation-Based Recommendations for Improvement
by Bram C. F. Veldman, Daphne H. Schoenmakers, Laura van Dussen, Mareen R. Datema and Mirjam Langeveld
Int. J. Mol. Sci. 2024, 25(17), 9752; https://doi.org/10.3390/ijms25179752 - 9 Sep 2024
Cited by 4 | Viewed by 3353
Abstract
Fabry disease (FD, OMIM #301500) is caused by pathogenic GLA gene (OMIM #300644) variants, resulting in a deficiency of the α-galactosidase A enzyme with accumulation of its substrate globotriaosylceramide and its derivatives. The phenotype of FD is highly variable, with distinctive disease features [...] Read more.
Fabry disease (FD, OMIM #301500) is caused by pathogenic GLA gene (OMIM #300644) variants, resulting in a deficiency of the α-galactosidase A enzyme with accumulation of its substrate globotriaosylceramide and its derivatives. The phenotype of FD is highly variable, with distinctive disease features and course in classical male patients but more diverse and often nonspecific features in non-classical and female patients. FD-specific therapies have been available for approximately two decades, yet establishing robust evidence for long-term effectiveness remains challenging. This review aims to identify the factors contributing to this lack of robust evidence for the treatment of FD with enzyme replacement therapy (ERT) (agalsidase-alfa and -beta and pegunigalsidase alfa) and chaperone therapy (migalastat). Major factors that have been identified are study population heterogeneity (concerning sex, age, phenotype, disease stage) and differences in study design (control groups, outcomes assessed), as well as the short duration of studies. To address these challenges, we advocate for patient matching to improve control group compatibility in future FD therapy studies. We recommend international collaboration and harmonization, facilitated by an independent FD registry. We propose a stepwise approach for evaluating the effectiveness of novel treatments, including recommendations for surrogate outcomes and required study duration. Full article
Show Figures

Figure 1

10 pages, 3377 KB  
Case Report
Anderson–Fabry Disease Homozygosity: Rare Case of Late-Onset Variant
by Gabriela Dostalova, Jaroslav Januska, Michaela Veselá, Petra Reková, Anna Taborska, Martin Pleva, David Zemanek and Aleš Linhart
Cardiogenetics 2024, 14(2), 74-83; https://doi.org/10.3390/cardiogenetics14020006 - 7 Apr 2024
Cited by 1 | Viewed by 3236
Abstract
Anderson–Fabry Disease (AFD) is a rare, X-linked lysosomal storage disorder caused by a mutation in the α-Galactosidase A gene resulting in α-Galactosidase A enzyme (α-Gal A) deficiency. The metabolic defect leads to the progressive accumulation of glycosphingolipids and the structural and functional impairment [...] Read more.
Anderson–Fabry Disease (AFD) is a rare, X-linked lysosomal storage disorder caused by a mutation in the α-Galactosidase A gene resulting in α-Galactosidase A enzyme (α-Gal A) deficiency. The metabolic defect leads to the progressive accumulation of glycosphingolipids and the structural and functional impairment of affected organs. Due to the inheritance pattern, male patients are hemizygous with more severe manifestations of the disease as compared to females who, in most cases, are heterozygous with delayed and variable clinical presentation caused by uneven X-chromosome inactivation. Fabry disease cases are often identified by targeted screening programs in high-risk groups, such as in patients with end-stage renal disease, premature stroke, or unexplained cardiomyopathy. Here, we describe a unique case of a homozygous female patient identified by a nationwide screening program in hypertrophic cardiomyopathy patients. Before the systematic screening, the patient had a diagnosis of hypertrophic obstructive cardiomyopathy and was treated accordingly, including with alcohol septal ablation to reduce the obstructive gradient. The confirmation of Fabry disease led to the discovery of the same variant in several members of her family. The identified variant was c.644A>G, p.Asn215Ser (p.N215S), which is known to cause predominant cardiac involvement with late onset of the disease. This variant is amenable to oral therapy with the small-molecule chaperone migalastat, which was started and then interrupted due to the recurrence of the patient’s migraine and then re-initiated again after two years. During this period, the patient received enzyme replacement therapy with agalsidase beta but developed progressively worsening venous access. Our case illustrates the importance of the systematic screening of patients with clinical evidence of hypertrophic cardiomyopathy in whom the routine diagnostic process fails to discover Fabry disease, in particular variants with late-onset cardiac manifestations. Many of the late-onset variants are amenable to orally active therapy with migalastat, which significantly improves the comfort of the treatment. Its long-term results are being analyzed by a large international “Follow-me” registry, which was designed to verify the validity of pivotal trials with migalastat in Fabry disease. Full article
(This article belongs to the Special Issue Metabolic and Genetic Bases of Cardiovascular Diseases)
Show Figures

Figure 1

12 pages, 323 KB  
Review
Treatment of Fabry Nephropathy: A Literature Review
by Homare Shimohata, Marina Yamashita, Kota Yamada, Kouichi Hirayama and Masaki Kobayashi
Medicina 2023, 59(8), 1478; https://doi.org/10.3390/medicina59081478 - 17 Aug 2023
Cited by 6 | Viewed by 3175
Abstract
Fabry disease is an X-linked inherited lysosomal storage disorder with a deficiency of α-galactosidase A activity, which results in the intracellular accumulation of globotriaosylceramide (Gb3) and related glycosphingolipids in various organs. Fabry nephropathy is one of the major complications of Fabry disease, and [...] Read more.
Fabry disease is an X-linked inherited lysosomal storage disorder with a deficiency of α-galactosidase A activity, which results in the intracellular accumulation of globotriaosylceramide (Gb3) and related glycosphingolipids in various organs. Fabry nephropathy is one of the major complications of Fabry disease, and kidney damage is often related to cardiovascular disease and mortality. The treatment of Fabry nephropathy thus helps prolong life expectancy. Two treatment options for Fabry nephropathy and cardiopathy are now commercially available: enzyme replacement therapy (agalsidase α agalsidase β, and a biosimilar of agalsidase β) and pharmacological chaperone therapy (migalastat). In this review, we summarize the efficacy of these treatment options for Fabry nephropathy with respect to renal function, proteinuria, and renal pathological findings. We also describe the importance of adjunctive therapy for Fabry nephropathy. Full article
(This article belongs to the Special Issue Treatment of Refractory Glomerular Diseases: Challenges and Solutions)
23 pages, 1098 KB  
Systematic Review
Therapeutic Role of Pharmacological Chaperones in Lysosomal Storage Disorders: A Review of the Evidence and Informed Approach to Reclassification
by Ian Keyzor, Simon Shohet, Jeff Castelli, Sheela Sitaraman, Biliana Veleva-Rotse, Jill M. Weimer, Brian Fox, Tobias Willer, Steve Tuske, Louise Crathorne and Klara J. Belzar
Biomolecules 2023, 13(8), 1227; https://doi.org/10.3390/biom13081227 - 7 Aug 2023
Cited by 14 | Viewed by 5733
Abstract
The treatment landscape for lysosomal storage disorders (LSDs) is rapidly evolving. An increase in the number of preclinical and clinical studies in the last decade has demonstrated that pharmacological chaperones are a feasible alternative to enzyme replacement therapy (ERT) for individuals with LSDs. [...] Read more.
The treatment landscape for lysosomal storage disorders (LSDs) is rapidly evolving. An increase in the number of preclinical and clinical studies in the last decade has demonstrated that pharmacological chaperones are a feasible alternative to enzyme replacement therapy (ERT) for individuals with LSDs. A systematic search was performed to retrieve and critically assess the evidence from preclinical and clinical applications of pharmacological chaperones in the treatment of LSDs and to elucidate the mechanisms by which they could be effective in clinical practice. Publications were screened according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) reporting guidelines. Fifty-two articles evaluating 12 small molecules for the treatment of seven LSDs are included in this review. Overall, a substantial amount of preclinical and clinical data support the potential of pharmacological chaperones as treatments for Fabry disease, Gaucher disease, and Pompe disease. Most of the available clinical evidence evaluated migalastat for the treatment of Fabry disease. There was a lack of consistency in the terminology used to describe pharmacological chaperones in the literature. Therefore, the new small molecule chaperone (SMC) classification system is proposed to inform a standardized approach for new, emerging small molecule therapies in LSDs. Full article
(This article belongs to the Special Issue Lysosomal Diseases: From Molecular Features to Precision Medicine)
Show Figures

Figure 1

6 pages, 231 KB  
Brief Report
Dapaglifozin on Albuminuria in Chronic Kidney Disease Patients with FabrY Disease: The DEFY Study Design and Protocol
by Yuri Battaglia, Francesca Bulighin, Luigi Zerbinati, Nicola Vitturi, Giacomo Marchi and Gianni Carraro
J. Clin. Med. 2023, 12(11), 3689; https://doi.org/10.3390/jcm12113689 - 26 May 2023
Cited by 15 | Viewed by 2764
Abstract
Fabry disease (FD) is a rare genetic disorder caused by a deficiency in the α-galactosidase A enzyme, which results in the globotriaosylceramide accumulation in many organs, including the kidneys. Nephropathy is a major FD complication that can progress to end-stage renal disease if [...] Read more.
Fabry disease (FD) is a rare genetic disorder caused by a deficiency in the α-galactosidase A enzyme, which results in the globotriaosylceramide accumulation in many organs, including the kidneys. Nephropathy is a major FD complication that can progress to end-stage renal disease if not treated early. Although enzyme replacement therapy and chaperone therapy are effective, other treatments such as ACE inhibitors and angiotensin receptor blockers can also provide nephroprotective effects when renal damage is also established. Recently, SGLT2 inhibitors have been approved as innovative drugs for treating chronic kidney disease. Thus, we plan a multicenter observational prospective cohort study to assess the effect of Dapagliflozin, a SGLT2 inhibitor, in FD patients with chronic kidney disease (CKD) stages 1–3. The objectives are to evaluate the effect of Dapagliflozin primarily on albuminuria and secondarily on kidney disease progression and clinical FD stability. Thirdly, any association between SGT2i and cardiac pathology, exercise capacity, kidney and inflammatory biomarkers, quality of life, and psychosocial factors will also be evaluated. The inclusion criteria are age ≥ 18; CKD stages 1–3; and albuminuria despite stable treatment with ERT/Migalastat and ACEi/ARB. The exclusion criteria are immunosuppressive therapy, type 1 diabetes, eGFR < 30 mL/min/1.73 m2, and recurrent UTIs. Baseline, 12-month, and 24-month visits will be scheduled to collect demographic, clinical, biochemical, and urinary data. Additionally, an exercise capacity and psychosocial assessment will be performed. The study could provide new insights into using SGLT2 inhibitors for treating kidney manifestations in Fabry disease. Full article
11 pages, 965 KB  
Article
Long-Term Monitoring of Cardiac Involvement under Migalastat Treatment Using Magnetic Resonance Tomography in Fabry Disease
by Constantin Gatterer, Dietrich Beitzke, Senta Graf, Max Lenz, Gere Sunder-Plassmann, Christopher Mann, Markus Ponleitner, Robert Manka, Daniel Fritschi, Pierre-Alexandre Krayenbuehl, Philipp Kamm, Olivier Dormond, Frédéric Barbey, Pierre Monney and Albina Nowak
Life 2023, 13(5), 1213; https://doi.org/10.3390/life13051213 - 19 May 2023
Cited by 9 | Viewed by 3137
Abstract
Background: Fabry cardiomyopathy is characterized by left ventricular hypertrophy, myocardial fibrosis, arrhythmia, and premature death. Treatment with migalastat, an oral pharmacological chaperone, was associated with a stabilization of cardiac biomarkers and a reduction in left ventricular mass index, as measured by echocardiography. A [...] Read more.
Background: Fabry cardiomyopathy is characterized by left ventricular hypertrophy, myocardial fibrosis, arrhythmia, and premature death. Treatment with migalastat, an oral pharmacological chaperone, was associated with a stabilization of cardiac biomarkers and a reduction in left ventricular mass index, as measured by echocardiography. A recent study, using cardiac magnetic resonance (CMR) as the gold standard, found a stable course of myocardial involvement after 18 months of treatment with migalastat. Our study aimed to provide long-term CMR data for the treatment with migalastat. Methods: A total of 11 females and four males with pathogenic amenable GLA mutations were treated with migalastat and underwent 1.5T CMR imaging for routine treatment effect monitoring. The main outcome was a long-term myocardial structural change, reflected by CMR. Results: After migalastat treatment initiation, left ventricular mass index, end diastolic volume, interventricular septal thickness, posterior wall thickness, estimated glomerular filtration rate, and plasma lyso-Gb3 remained stable during the median follow-up time of 34 months (min.: 25; max.: 47). The T1 relaxation times, reflecting glycosphingolipid accumulation and subsequent processes up to fibrosis, fluctuated over the time without a clear trend. No new onset of late gadolinium enhancement (LGE) areas, reflecting local fibrosis or scar formation of the myocardium, could be detected. However, patients with initially present LGE showed an increase in LGE as a percentage of left ventricular mass. The median α-galactosidase A enzymatic activity increased from 37.3% (IQR 5.88–89.3) to 105% (IQR 37.2–177) of the lower limit of the respective reference level (p = 0.005). Conclusion: Our study confirms an overall stable course of LVMi in patients with FD, treated with migalastat. However, individual patients may experience disease progression, especially those who present with fibrosis of the myocardium already at the time of therapy initiation. Thus, a regular treatment re-evaluation including CMR is needed to provide the optimal management for each patient. Full article
(This article belongs to the Special Issue New Advances in Cardiac Imaging)
Show Figures

Figure 1

8 pages, 266 KB  
Perspective
Fabry Disease: Switch from Enzyme Replacement Therapy to Oral Chaperone Migalastat: What Do We Know Today?
by Fernando Perretta and Sebastián Jaurretche
Healthcare 2023, 11(4), 449; https://doi.org/10.3390/healthcare11040449 - 4 Feb 2023
Cited by 15 | Viewed by 4650
Abstract
Fabry disease is a lysosomal storage disorder caused by the deficiency of the α-galactosidase-A enzyme. The result is the progressive accumulation of complex glycosphingolipids and cellular dysfunction. Cardiac, renal, and neurological involvement significantly reduces life expectancy. Currently, there is increasing evidence that clinical [...] Read more.
Fabry disease is a lysosomal storage disorder caused by the deficiency of the α-galactosidase-A enzyme. The result is the progressive accumulation of complex glycosphingolipids and cellular dysfunction. Cardiac, renal, and neurological involvement significantly reduces life expectancy. Currently, there is increasing evidence that clinical response to treatment improves with early and timely initiation. Until a few years ago, treatment options for Fabry disease were limited to enzyme replacement therapy with agalsidase alfa or beta administered by intravenous infusion every 2 weeks. Migalastat (Galafold®) is an oral pharmacological chaperone that increases the enzyme activity of “amenable” mutations. The safety and efficacy of migalastat were supported in the phase III FACETS and ATTRACT studies, compared to available enzyme replacement therapies, showing a reduction in left ventricular mass, and stabilization of kidney function and plasma Lyso-Gb3. Similar results were confirmed in subsequent extension publications, both in patients who started migalastat as their first treatment and in patients who were previously on enzyme replacement therapy and switched to migalastat. In this review we describe the safety and efficacy of switching from enzyme replacement therapy to migalastat in patients with Fabry disease and “amenable” mutations, referring to publications available to date. Full article
(This article belongs to the Special Issue Exploring the Link between Cardiorenal and Metabolic Diseases)
10 pages, 1356 KB  
Review
Biomarkers for Monitoring Renal Damage Due to Fabry Disease in Patients Treated with Migalastat: A Review for Nephrologists
by Sebastián Jaurretche, Hernan Conde, Ana Gonzalez Schain, Franco Ruiz, Maria Victoria Sgro and Graciela Venera
Genes 2022, 13(10), 1751; https://doi.org/10.3390/genes13101751 - 28 Sep 2022
Cited by 6 | Viewed by 2793
Abstract
Nephropathy is a major Fabry disease complication. Kidney biopsies reveal glomerulosclerosis even in pediatric patients. The main manifestations of Fabry nephropathy include reduced glomerular filtration rate and proteinuria. In 2016, an oral pharmacological Chaperone was approved to treat Fabry patients with “amenable” mutations. [...] Read more.
Nephropathy is a major Fabry disease complication. Kidney biopsies reveal glomerulosclerosis even in pediatric patients. The main manifestations of Fabry nephropathy include reduced glomerular filtration rate and proteinuria. In 2016, an oral pharmacological Chaperone was approved to treat Fabry patients with “amenable” mutations. Because (i) Fabry disease is a rare disorder that frequently causes kidney damage, and (ii) a new therapeutic is currently available, it is necessary to review wich biomarkers are useful for nephropathy follow-up among Fabry “amenable” patients receiving migalastat. The literature search was conducted in MEDLINE, EMBASE, SCOPUS, Cochrane, and Google academic. Prospective studies in which renal biomarkers were the dependent variable or criterion, with at least 6 months of follow-up, were included. Finally, we recorded relevant information in an ad hoc database and summarized the main results. To date, the main useful biomarker for nephropathy monitoring among Fabry “amenable” patients receiving migalastat is glomerular filtration rate estimated by equations that include serum creatinine. Full article
(This article belongs to the Collection Genetics and Genomics of Rare Disorders)
Show Figures

Figure 1

7 pages, 3114 KB  
Case Report
Diagnosis of Fabry Disease in a Patient with a Surgically Repaired Congenital Heart Defect: When Clinical History and Genetics Make the Difference
by Marta Rubino, Emanuele Monda, Martina Caiazza, Giuseppe Palmiero, Michele Lioncino, Annapaola Cirillo, Adelaide Fusco, Federica Verrillo, Alessia Perna, Gaetano Diana, Federica Amodio, Arturo Cesaro, Giovanni Duro, Berardo Sarubbi, Maria Giovanna Russo, Paolo Calabrò and Giuseppe Limongelli
Cardiogenetics 2022, 12(1), 102-108; https://doi.org/10.3390/cardiogenetics12010010 - 25 Feb 2022
Cited by 1 | Viewed by 3704
Abstract
Fabry disease (FD) is a multiorgan disease, which can potentially affect any organ or tissue, with the heart, kidneys, and central nervous system representing the major disease targets. FD can be suspected based on the presence of specific red flags, and the subsequent [...] Read more.
Fabry disease (FD) is a multiorgan disease, which can potentially affect any organ or tissue, with the heart, kidneys, and central nervous system representing the major disease targets. FD can be suspected based on the presence of specific red flags, and the subsequent evaluation of the α-Gal A activity and GLA sequencing, are required to confirm the diagnosis, to evaluate the presence of amenable GLA mutation, and to perform a cascade program screening in family members. An early diagnosis is required to start an etiological treatment and to prevent irreversible organ damage. Here, we describe a case of a 37-years-old patient, with a surgically repaired congenital heart defect in his childhood, who had a late diagnosis of FD based on the clinical history and targeted genetic evaluation. This case highlights the importance to perform a correct phenotyping and definite diagnosis of FD, to start an early and appropriate treatment in the index patient, and a cascade clinical and genetic screening to identify other family members at risk, which may benefit from specific treatment and/or a close follow-up. Full article
(This article belongs to the Section Rare Disease-Genetic Syndromes)
Show Figures

Figure 1

12 pages, 711 KB  
Article
Sphingosine-1-Phosphate Levels Are Higher in Male Patients with Non-Classic Fabry Disease
by Wladimir Mauhin, Abdellah Tebani, Damien Amelin, Lenaig Abily-Donval, Foudil Lamari, Jonathan London, Claire Douillard, Bertrand Dussol, Vanessa Leguy-Seguin, Esther Noel, Agathe Masseau, Didier Lacombe, Hélène Maillard, Soumeya Bekri, Olivier Lidove and Olivier Benveniste
J. Clin. Med. 2022, 11(5), 1233; https://doi.org/10.3390/jcm11051233 - 24 Feb 2022
Cited by 1 | Viewed by 2442
Abstract
Fabry disease is an X-linked lysosomal disease in which defects in the alpha-galactosidase A enzyme activity lead to the ubiquitous accumulation of glycosphingolipids. Whereas the classic disease is characterized by neuropathic pain, progressive renal failure, white matter lesions, cerebral stroke, and hypertrophic cardiomyopathy [...] Read more.
Fabry disease is an X-linked lysosomal disease in which defects in the alpha-galactosidase A enzyme activity lead to the ubiquitous accumulation of glycosphingolipids. Whereas the classic disease is characterized by neuropathic pain, progressive renal failure, white matter lesions, cerebral stroke, and hypertrophic cardiomyopathy (HCM), the non-classic phenotype, also known as cardiac variant, is almost exclusively characterized by HCM. Circulating sphingosine-1-phosphate (S1P) has controversially been associated with the Fabry cardiomyopathy. We measured serum S1P levels in 41 patients of the FFABRY cohort. S1P levels were higher in patients with a non-classic phenotype compared to those with a classic phenotype (200.3 [189.6–227.9] vs. 169.4 ng/mL [121.1–203.3], p = 0.02). In a multivariate logistic regression model, elevated S1P concentration remained statistically associated with the non-classic phenotype (OR = 1.03; p < 0.02), and elevated lysoGb3 concentration with the classic phenotype (OR = 0.95; p < 0.03). S1P levels were correlated with interventricular septum thickness (r = 0.46; p = 0.02). In a logistic regression model including S1P serum levels, phenotype, and age, age remained the only variable significantly associated with the risk of HCM (OR = 1.25; p = 0.001). S1P alone was not associated with cardiac hypertrophy but with the cardiac variant. The significantly higher S1P levels in patients with the cardiac variant compared to those with classic Fabry suggest the involvement of distinct pathophysiological pathways in the two phenotypes. S1P dosage could allow the personalization of patient management. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

7 pages, 1319 KB  
Case Report
Migalastat Treatment in a Kidney-Transplanted Patient with Fabry Disease and N215S Mutation: The First Case Report
by Valeria Di Stefano, Marta Mancarella, Antonia Camporeale, Anna Regalia, Marta Ferraresi, Marco Pisaniello, Elena Cassinerio, Federico Pieruzzi and Irene Motta
Pharmaceuticals 2021, 14(12), 1304; https://doi.org/10.3390/ph14121304 - 14 Dec 2021
Cited by 5 | Viewed by 3123
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the GLA gene, leading to deficient α-galactosidase A activity and, consequently, to glycosphingolipid accumulation in a wide variety of cells. Fabry disease due to N215S (c.644A>G, p.Asn215Ser) missense mutation usually [...] Read more.
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the GLA gene, leading to deficient α-galactosidase A activity and, consequently, to glycosphingolipid accumulation in a wide variety of cells. Fabry disease due to N215S (c.644A>G, p.Asn215Ser) missense mutation usually results in a late-onset phenotype presenting with isolated cardiac involvement. We herein present the case of a patient with N215S mutation with cardiac involvement, namely left ventricular hypertrophy and ventricular arrhythmias, and end-stage renal disease requiring kidney transplantation. To the best of our knowledge, this is the first report of a kidney-transplanted Fabry patient treated with oral pharmacologic chaperone migalastat. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 4407 KB  
Article
The New Pharmacological Chaperones PBXs Increase α-Galactosidase A Activity in Fabry Disease Cellular Models
by Pedro Besada, María Gallardo-Gómez, Tania Pérez-Márquez, Lucía Patiño-Álvarez, Sergio Pantano, Carlos Silva-López, Carmen Terán, Ana Arévalo-Gómez, Aurora Ruz-Zafra, Julián Fernández-Martín and Saida Ortolano
Biomolecules 2021, 11(12), 1856; https://doi.org/10.3390/biom11121856 - 10 Dec 2021
Cited by 1 | Viewed by 3865
Abstract
Fabry disease is an X-linked multisystemic disorder caused by the impairment of lysosomal α-Galactosidase A, which leads to the progressive accumulation of glycosphingolipids and to defective lysosomal metabolism. Currently, Fabry disease is treated by enzyme replacement therapy or the orally administrated pharmacological chaperone [...] Read more.
Fabry disease is an X-linked multisystemic disorder caused by the impairment of lysosomal α-Galactosidase A, which leads to the progressive accumulation of glycosphingolipids and to defective lysosomal metabolism. Currently, Fabry disease is treated by enzyme replacement therapy or the orally administrated pharmacological chaperone Migalastat. Both therapeutic strategies present limitations, since enzyme replacement therapy has shown low half-life and bioavailability, while Migalastat is only approved for patients with specific mutations. The aim of this work was to assess the efficacy of PBX galactose analogues to stabilize α-Galactosidase A and therefore evaluate their potential use in Fabry patients with mutations that are not amenable to the treatment with Migalastat. We demonstrated that PBX compounds are safe and effective concerning stabilization of α-Galactosidase A in relevant cellular models of the disease, as assessed by enzymatic activity measurements, molecular modelling, and cell viability assays. This experimental evidence suggests that PBX compounds are promising candidates for the treatment of Fabry disease caused by mutations which affect the folding of α-Galactosidase A, even for GLA variants that are not amenable to the treatment with Migalastat. Full article
(This article belongs to the Special Issue Rare Diseases: From Molecular Pathways to Therapeutic Strategies)
Show Figures

Figure 1

12 pages, 671 KB  
Opinion
Considerations for Home-Based Treatment of Fabry Disease in Poland during the COVID-19 Pandemic and Beyond
by Michał Nowicki, Stanisława Bazan-Socha, Mariusz Kłopotowski, Beata Błażejewska-Hyżorek, Mariusz Kusztal, Krzysztof Pawlaczyk, Jarosław Sławek, Andrzej Oko and Zofia Oko-Sarnowska
Int. J. Environ. Res. Public Health 2021, 18(16), 8242; https://doi.org/10.3390/ijerph18168242 - 4 Aug 2021
Cited by 7 | Viewed by 3357
Abstract
Current therapy for Anderson–Fabry disease in Poland includes hospital or clinic-based intravenous enzyme replacement therapy with recombinant agalsidase alpha or beta, or oral pharmacological chaperone therapy with migalastat. Some countries around the world offer such treatment to patients in the comfort of their [...] Read more.
Current therapy for Anderson–Fabry disease in Poland includes hospital or clinic-based intravenous enzyme replacement therapy with recombinant agalsidase alpha or beta, or oral pharmacological chaperone therapy with migalastat. Some countries around the world offer such treatment to patients in the comfort of their own homes. The 2020–2021 COVID-19 pandemic has pushed global healthcare providers to evolve their services so as to minimize the risk of COVID-19 exposure to both patients and providers; this has led to advances in telemedicine services and the increasing availability of at-home treatment for various procedures including parenteral drug administration. A total of 80% of surveyed Anderson–Fabry disease patients in Poland would prefer home-based treatment, which would be a safe and convenient alternative to clinic-based treatment if patient selection is based on our proposed algorithm. Our recommendations for home-based treatments appear feasible for the long term care of Anderson–Fabry disease patients during the COVID-19 pandemic and beyond. This may also serve as a basis for home-based treatment programs in other rare and ultra-rare genetic diseases. Full article
Show Figures

Figure 1

Back to TopTop