Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = mining tremors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13464 KB  
Article
Numerical and Field Investigations of Dynamic Failure Caused by Mining-Induced Tremor Based on Asymmetry Seismic Source Characteristics
by Xinke Xiao, Zhilong He and Heng Zhang
Symmetry 2025, 17(9), 1444; https://doi.org/10.3390/sym17091444 - 3 Sep 2025
Viewed by 395
Abstract
The asymmetry of seismic rupture significantly dictates the intensity and spatial distribution of the radiated stress waves during mining-induced tremors, exerting a pivotal influence on the dynamic instability of roadways triggered by mining-induced tremors. In this study, a method for simulating arbitrary rupture [...] Read more.
The asymmetry of seismic rupture significantly dictates the intensity and spatial distribution of the radiated stress waves during mining-induced tremors, exerting a pivotal influence on the dynamic instability of roadways triggered by mining-induced tremors. In this study, a method for simulating arbitrary rupture patterns based on the theory of moment tensors is proposed. Based on the engineering context of strong seismicity-induced roadway dynamic instability at the Xinjulong coal mine, the entire process, from the excitation and propagation of seismic stress waves to the subsequent destabilization and destruction of the roadway, is reproduced. The effects of seismic source, including rupture patterns, seismic energy, fault plane angles, and the dominant frequency of stress waves, on the stability of a roadway are analyzed. Research indicates that a strong mining-induced tremor is characterized by tensile failure, with the radiated P-waves playing a predominant role in the destabilization and collapse of the roadway compared to S-waves. The P-waves exert a repetitive tensile and compressive effect on the perturbed medium, whereas S-waves contribute through compressive shear actions. The stability of a roadway is influenced by various characteristics of the seismic source. The rupture pattern of the seismic source affects the spatial distribution of stress waves. The seismic energy influences the kinetic energy transmitted to the roadway, with an increase in energy leading to a greater contribution of S-waves to roadway destruction. The fault plane angle similarly affects the propagation pattern of stress waves, particularly at 45° and 60° angles, where the maximum radiation of P-waves is directed towards the roadway, causing the most severe damage. The dominant frequency affects the attenuation of stress waves, with lower frequencies resulting in less attenuation and a higher likelihood of roadway damage. Full article
Show Figures

Figure 1

27 pages, 2209 KB  
Article
Variability and Trends in Selected Seismological Parameters During Longwall Mining of a Coal Seam Disrupted by a Rockburst
by Łukasz Wojtecki, Rafał Pakosz, Derek B. Apel and Maciej J. Mendecki
Appl. Sci. 2025, 15(16), 8897; https://doi.org/10.3390/app15168897 - 12 Aug 2025
Cited by 1 | Viewed by 425
Abstract
Seismic tremors provide valuable insights into stress redistribution and accumulation, often serving as indicators of these processes within the rock mass, which can precede or accompany rockburst occurrences. Consequently, seismic monitoring is implemented in mines endangered by rockbursts to systematically assess the hazard [...] Read more.
Seismic tremors provide valuable insights into stress redistribution and accumulation, often serving as indicators of these processes within the rock mass, which can precede or accompany rockburst occurrences. Consequently, seismic monitoring is implemented in mines endangered by rockbursts to systematically assess the hazard conditions of mining openings. This study examines the variability and trends of selected seismological parameters, primarily the seismic energy of tremors observed during the longwall mining of the top layer of thick coal seam under challenging geological and mining conditions in an underground mine located in the Upper Silesian Coal Basin, Poland. The longwall mining operation was interrupted by a rockburst and subsequently discontinued. The analysis highlights both the cyclic variability and trends of seismological parameters, considering their dependence on extraction progress and temporal dynamics. The results indicate that mining progress is a significant factor influencing the stationarity of the seismic energy release process. It has been proposed that cumulative Benioff strain release is evaluated solely as a function of longwall face advancement. This illustrates the correlation between excavation progress and seismic energy accumulation. The trend analysis of this parameter, both over time and in relation to longwall face advancement, has also been conducted. Full article
Show Figures

Figure 1

27 pages, 15440 KB  
Article
Dynamic Performance of a Steel Road Sign with Multi-Material Electronic Signboard Under Mining-Induced Tremors from Different Mining Areas: Experimental and Numerical Research
by Paweł Boroń and Joanna Maria Dulińska
Materials 2025, 18(7), 1451; https://doi.org/10.3390/ma18071451 - 25 Mar 2025
Viewed by 533
Abstract
This study investigates the dynamic performance of a road sign equipped with a multi-material electronic signboard subjected to mining-induced seismic tremors. The key innovative aspect lies in providing new insights into the dynamic performance of multi-material electronic signboards under high-energy mining tremors, enhancing [...] Read more.
This study investigates the dynamic performance of a road sign equipped with a multi-material electronic signboard subjected to mining-induced seismic tremors. The key innovative aspect lies in providing new insights into the dynamic performance of multi-material electronic signboards under high-energy mining tremors, enhancing their safety assessment in mining areas. Experimental modal analysis and finite element analysis were conducted, and the numerical model of the sign was calibrated by adjusting ground stiffness to align experimental and computational data. The fundamental natural frequencies and their corresponding mode shapes were identified as 2.75 Hz, 3.09 Hz, 8.46 Hz, and 13.50 Hz. Numerical results were validated using MAC methods, demonstrating strong agreement with experimental values and confirming the accuracy of the numerical predictions. Damping ratios of 3.79% and 3.71% for the first and second modes, respectively, were measured via hammer tests. To evaluate the sign’s dynamic performance under high-energy mining-induced tremors, two events were applied as kinematic excitation of the structure. These tremors, recorded in different mining regions, exhibited significant variations in peak ground acceleration (PGA) and dominant frequency range. A key finding was that frequency matching between the dominant frequencies of the tremor and the natural frequencies of the sign had a greater impact on the sign’s dynamic response than PGA. The Szombierki tremor, with dominant frequencies of 1.6–4.8 Hz, induced significantly higher stress and displacement compared to the Moskorzyn tremor (5–10 Hz) despite the latter having twice the PGA. These results highlight that a road sign structure can exhibit widely varying dynamic behaviors depending on the seismic characteristics of the mining zone. Therefore, a comprehensive assessment of mining-induced tremors in relation to the seismicity of specific areas is crucial for understanding their potential impact on such structures. The dynamic performance assessment also revealed that the electronic multi-material signboard did not undergo plastic deformation, confirming it as a safe material solution for use in mining areas. Full article
Show Figures

Figure 1

24 pages, 9936 KB  
Article
Research on the Correlation Between Overburden Rock Fracture Development and High-Energy Events During Deep Mining in Extremely Thick and Weakly Consolidated Strata for Regional Coal Mining Safety
by Jingchao Sun, Huaizhan Li, Guangli Guo, Yonghua Hu, Chao Tang, Tiening Wang, Hui Zheng, Liangui Zhang and Hang Sun
Sustainability 2024, 16(23), 10705; https://doi.org/10.3390/su162310705 - 6 Dec 2024
Viewed by 1017
Abstract
The environmental damage and mining accidents caused by water inrush accidents and rock burst are two major problems faced in the safe and sustainable deep mining of extremely thick weakly cemented overlying strata. Mastering the fracture development law of the overlying strata, the [...] Read more.
The environmental damage and mining accidents caused by water inrush accidents and rock burst are two major problems faced in the safe and sustainable deep mining of extremely thick weakly cemented overlying strata. Mastering the fracture development law of the overlying strata, the evolution characteristics of high-energy events, and their correlative relationships in the deep mining of extremely thick weakly cemented overlying strata is the key to solving the above two problems, which is directly related to the sustainable development of regional coal and the protection of underground water resources in mining areas. By integrating the geological characteristics of extremely thick and weakly cemented overburdens in the Shaanxi–Inner Mongolia mining region of China, this study adopts methods such as field measurements, numerical simulations, and theoretical analyses to investigate the energy evolution characteristics of regional mining-induced tremors, as well as the correlation and mutual influence mechanisms between overburden fracture development and high-energy events. The results indicate a positive correlation between high-energy events and the development height of overburden fractures, suggesting that the occurrence of high-energy events can increase the height of overburden fracture development. Furthermore, high-energy events occurring before and after the “parallel joining” of two working faces have a relatively minor impact on the development height of overburden fractures, with an increase in the fracture-to-mining ratio (FMR) ranging from 1.56 to 2.78. In contrast, high-energy events occurring during the “parallel joining” of two working faces significantly affect the development height of overburden fractures, resulting in an FMR increase of 10.33 to 13.44, approximately one-third of the FMR measured through boreholes. The research results can provide a scientific basis for the safe and sustainable coal mining and the protection of underground water resources in similar mining areas with extremely thick weakly cemented overlying strata. Full article
Show Figures

Figure 1

17 pages, 16509 KB  
Article
Processes Turning Saline Settling Basins into Freshwater Bodies (Selected Examples from the Upper Silesian Coal Basin)
by Tadeusz Molenda, Gabriela Woźniak, Artur Dyczko, Barbara Bacler-Żbikowska and Joanna Kidawa
Appl. Sci. 2024, 14(23), 10814; https://doi.org/10.3390/app142310814 - 22 Nov 2024
Viewed by 823
Abstract
There are numerous deep coal mines in the Upper Silesian Coal Basin. Ensuring their proper exploitation requires constant drainage of the rock mass and the transfer of mine waters to rivers. Several technical solutions are used to prevent the adverse effects of saltwater [...] Read more.
There are numerous deep coal mines in the Upper Silesian Coal Basin. Ensuring their proper exploitation requires constant drainage of the rock mass and the transfer of mine waters to rivers. Several technical solutions are used to prevent the adverse effects of saltwater discharge on the river ecosystem. One such solution is adapting the post-mining reservoirs into mine water settling basins. This article characterises two such facilities—the “Gliniok” and “Hubertus I” reservoirs. The physicochemical properties of their waters were analysed both when they served as settling basins and after their decommissioning. During their exploitation, the waters of the settling basins showed high salinity (>10 g/L). It was revealed that these basins turned into freshwater reservoirs very quickly after decommissioning. A sudden decrease in the electrolytic conductivity and the concentration of main cations and anions in the water was observed. The mixing processes also changed. The reservoirs were transformed from meromictic to polymictic. The processes that led to them turning into freshwater basins differed in the studied settling basins. The transformation of the Gliniok settling basin into a freshwater reservoir was a unique process, draining brines into the rock mass through cracks and crevices. The formation of cracks and crevices was a consequence of high-energy mining tremors. It is the first known case of this type in the world. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

18 pages, 24371 KB  
Article
Research on Occurrence Law and the Prevention of Rockbursts in Main Roadways Affected by Mining Activities: Two Case Studies from Gaojiapu and Cuimu Coal Mines, Shaanxi, China
by Yinfeng Zhang, Guifeng Wang, Lihai Tan, Ruizhi Wang, Zonglong Mu, Anye Cao and Linming Dou
Appl. Sci. 2024, 14(22), 10172; https://doi.org/10.3390/app142210172 - 6 Nov 2024
Viewed by 848
Abstract
Rockburst, one of the leading types of disaster in mining and rock engineering causing serious injuries and the loss of property, frequently occurs, involving various features and complex evolutionary mechanisms. Compared to rockbursts occurring at mining faces, those occurring in main roadways cause [...] Read more.
Rockburst, one of the leading types of disaster in mining and rock engineering causing serious injuries and the loss of property, frequently occurs, involving various features and complex evolutionary mechanisms. Compared to rockbursts occurring at mining faces, those occurring in main roadways cause more serious problems for mine production. This paper first analyzes the characteristics of rockbursts in main roadways using two case studies involving the Gaojiapu and Cuimu coal mines. The causes of rockbursts in main roadways were studied using microseismic monitoring, energy density cloud maps, and seismic velocity tomography. During the mining of the 22306 working face in the Cuimu coal mine, targeted measures, such as deep-hole blasting of the roof strata and deep-hole blasting of the coal seam, were implemented to prevent rockbursts in the main roadways. The effectiveness of these measures was verified through long-term analysis of tremor activities. The study found that the influence of mining at two working faces on both sides of main roadways was significantly greater than that from a single-sided working face. The intensity of the tremor activities occurring near the main roadways was correlated with the distance from the working face to the main roadways. The closer the working face was to the main roadways, the stronger the tremor activities were near the main roadways. According to the distribution range of the tremors, the influence area of working face mining exceeded 800 m, with tremors distributed linearly along the main roadways. Even five months after the completion of working face mining, there were still a large number of tremors near the main roadways, which gradually disappeared after another five months. Mining activities were the main reason for the occurrence of main roadway rockbursts and the stress concentration within the main roadways themselves was another reason for the occurrence of rockbursts. The influence of working face mining could be reduced by deep-hole blasting of roof strata and the stress concentration within main roadways themselves could be reduced by large-diameter drilling. Those joint preventive measures effectively prevented the occurrence of rockbursts in main roadways. This study is of important theoretical and practical significance for further studies of rockburst mechanisms and prevention in regard to main roadways in coal mines, and the findings are significant in terms of the enhancement of safety in coal mines. Full article
Show Figures

Figure 1

25 pages, 10266 KB  
Article
Random Forest—Based Identification of Factors Influencing Ground Deformation Due to Mining Seismicity
by Karolina Owczarz and Jan Blachowski
Remote Sens. 2024, 16(15), 2742; https://doi.org/10.3390/rs16152742 - 26 Jul 2024
Cited by 1 | Viewed by 1758
Abstract
The goal of this study was to develop a model describing the relationship between the ground-displacement-caused tremors induced by underground mining, and mining and geological factors using the Random Forest Regression machine learning method. The Rudna mine (Poland) was selected as the research [...] Read more.
The goal of this study was to develop a model describing the relationship between the ground-displacement-caused tremors induced by underground mining, and mining and geological factors using the Random Forest Regression machine learning method. The Rudna mine (Poland) was selected as the research area, which is one of the largest deep copper ore mines in the world. The SAR Interferometry methods, Differential Interferometric Synthetic Aperture Radar (DInSAR) and Small Baseline Subset (SBAS), were used in the first case to detect line-of-sight (LOS) displacements, and in the second case to detect cumulative LOS displacements caused by mining tremors. The best-prediction LOS displacement model was characterized by R2 = 0.93 and RMSE = 5 mm, which proved the high effectiveness and a high degree of explanation of the variation of the dependent variable. The identified statistically significant driving variables included duration of exploitation, the area of the exploitation field, energy, goaf area, and the average depth of field exploitation. The results of the research indicate the great potential of the proposed solutions due to the availability of data (found in the resources of each mine), and the effectiveness of the methods used. Full article
(This article belongs to the Special Issue Machine Learning and Remote Sensing for Geohazards)
Show Figures

Figure 1

20 pages, 18944 KB  
Article
The Detectability of Post-Seismic Ground Displacement Using DInSAR and SBAS in Longwall Coal Mining: A Case Study in the Upper Silesian Coal Basin, Poland
by K. Pawłuszek-Filipiak, N. Wielgocka and Ł. Rudziński
Remote Sens. 2024, 16(14), 2533; https://doi.org/10.3390/rs16142533 - 10 Jul 2024
Cited by 3 | Viewed by 1808
Abstract
The Upper Silesian coal basin (USCB) in Poland faces significant ground deformation issues resulting from mining activities conducted without backfill, which can persist for years. These activities can cause damage to surface structures and phenomena such as induced seismicity. Ground deformations can be [...] Read more.
The Upper Silesian coal basin (USCB) in Poland faces significant ground deformation issues resulting from mining activities conducted without backfill, which can persist for years. These activities can cause damage to surface structures and phenomena such as induced seismicity. Ground deformations can be monitored using differential synthetic aperture radar interferometry (DInSAR). However, various DInSAR approaches have their own advantages and limitations, particularly regarding accuracy and atmospheric filtering. This is especially important for high-frequency displacement signals associated with seismic activity, which can be filtered out. Therefore, this study aims to assess the detectability of mining-induced seismic events using interferometric techniques, focusing on the USCB area. In this experiment, we tested two InSAR approaches: conventional DInSAR without atmospheric filtering and the small baseline subset (SBAS) approach, where the atmospheric phase screen was estimated and removed using high-pass and low-pass filtering. The results indicate that, in most cases, post-seismic ground displacement is not detectable using both methods. This suggests that mining-related seismic events typically do not cause significant post-seismic ground displacement. Out of the 17 selected seismic events, only two were clearly visible in the DInSAR estimated deformation, while for four other events, some displacement signals could neither be definitively confirmed nor negated. Conversely, only one seismic event was clearly detectable in the SBAS displacement time series, with no evidence of induced tremors found for the other events. DInSAR proved to be more effective in capturing displacement signals compared to SBAS. This could be attributed to the small magnitude of the tremors and, consequently, the small size of the seismic sources. Throughout the investigated period, all registered events had magnitudes less than 4.0. This highlights the challenge of identifying any significant influence of low-magnitude tremors on ground deformation, necessitating further investigations. Moreover, SBAS techniques tend to underestimate mining displacement rates, leading to smoothed deformation estimates, which may render post-seismic effects invisible for events with low magnitudes. However, after an in-depth analysis of the 17 seismic events in the USCB, DInSAR was found to be more effective in capturing displacement signals compared to SBAS. This indicates the need for significant caution when applying atmospheric filtering to high-frequency displacement signals. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

17 pages, 11808 KB  
Article
Geomechanical Analysis of the Main Roof Deformation in Room-and-Pillar Ore Mining Systems in Relation to Real Induced Seismicity
by Dariusz Chlebowski and Zbigniew Burtan
Appl. Sci. 2024, 14(13), 5710; https://doi.org/10.3390/app14135710 - 29 Jun 2024
Viewed by 1203
Abstract
Rockbursts represent one of the most serious and severe natural hazards emerging in underground copper mines within the Legnica–Glogow Copper District (LGCD) in Poland. The contributing factor determining the scale of this event is mining-induced seismicity of the rock strata. Extensive expertise of [...] Read more.
Rockbursts represent one of the most serious and severe natural hazards emerging in underground copper mines within the Legnica–Glogow Copper District (LGCD) in Poland. The contributing factor determining the scale of this event is mining-induced seismicity of the rock strata. Extensive expertise of the copper mining practitioners clearly indicates that high-energy tremors are the consequence of tectonic disturbances or can be attributed to stress/strain behaviour within the burst-prone roof strata. Apparently, seismic activity is a triggering factor; hence, attempts are made by mine operators to mitigate and control that risk. Underlying the effective rockburst control strategy is a reliable seismicity forecast, taking into account the causes of the registered phenomena. The paper summarises the geomechanics analyses aimed to verify the actual seismic and rockburst hazard levels in one of the panels within the copper mine Rudna (LGCD). Two traverses were designated at the face range and comparative analyses were conducted to establish correlations between the locations of epicentres of registered tremors and anomaly zones obtained via analytical modelling of changes in stress/strain behaviours within the rock strata. The main objective of this study was to evaluate the likelihood of activating carbonate/anhydrite layers within the main roof over the excavation being mined, with an aim to verify the potential causes and conditions which might have triggered the registered high-energy events. Special attention is given to two seismic events giving rise to rockbursts in mine workings. Results seem to confirm the adequacy and effectiveness of solutions provided by mechanics of deformable bodies in the context of forecasting the scale and risk of dynamic phenomena and selecting the appropriate mitigation and control measures in copper mines employing the room-and-pillar mining system. Full article
Show Figures

Figure 1

22 pages, 2239 KB  
Article
Machine Learning-Based Classification of Rock Bursts in an Active Coal Mine Dominated by Non-Destructive Tremors
by Łukasz Wojtecki, Mirosława Bukowska, Sebastian Iwaszenko and Derek B. Apel
Appl. Sci. 2024, 14(12), 5209; https://doi.org/10.3390/app14125209 - 15 Jun 2024
Cited by 4 | Viewed by 1495
Abstract
Rock bursts are dynamic phenomena in underground openings, causing damage to support and infrastructure, and are one of the main natural hazards in underground coal mines. The prediction of rock bursts is important for improving safety in mine openings. The hazard of rock [...] Read more.
Rock bursts are dynamic phenomena in underground openings, causing damage to support and infrastructure, and are one of the main natural hazards in underground coal mines. The prediction of rock bursts is important for improving safety in mine openings. The hazard of rock bursts is correlated with seismic activity, but rock bursts are rare compared to non-destructive tremors. The five machine learning classifiers (multilayer perceptron, adaptive boosting, gradient boosting, K-nearest neighbors, and Gaussian naïve Bayes), along with an ensemble hard-voting classifier composed of these classifiers, were used to recognize rock bursts among the dominant non-destructive tremors. Machine learning models were trained and tested on ten sets of randomly selected data obtained from one of the active hard coal mines in the Upper Silesian Coal Basin, Poland. For each of the 627 cases in the database, 15 features representing geological, geomechanical, mining, and technical conditions in the opening as well as tremor energy and correlated peak particle velocity were determined. Geological and geomechanical parameters of the coal seams and surrounding rocks were aggregated into a single GEO index. The share of rock bursts in the database was only about 8.5%; therefore, the ADASYN balancing method, which addresses imbalanced datasets, was used. The ensemble hard-voting classifier most effectively classified rock bursts, with an average recall of 0.74. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

20 pages, 6631 KB  
Article
The Influence of Vibrations Induced by Blasting Works in an Open-Pit Mine and Seismic Events in an Underground Mine on Building Structures—A Case Study
by Anna Sołtys and Józef Pyra
Appl. Sci. 2024, 14(11), 4414; https://doi.org/10.3390/app14114414 - 23 May 2024
Cited by 3 | Viewed by 1391
Abstract
Monitoring induced vibrations caused by blasting works is becoming an increasingly common form of preventive activity conducted in open-pit mines. Measurement stations also record other events unrelated to blasting works. This article presents a comparison of the intensity of vibrations induced by blasting [...] Read more.
Monitoring induced vibrations caused by blasting works is becoming an increasingly common form of preventive activity conducted in open-pit mines. Measurement stations also record other events unrelated to blasting works. This article presents a comparison of the intensity of vibrations induced by blasting works in an open-pit mine and mining tremors in an underground mine. The recorded data and conducted analyses of vibration intensity and frequency structure also allowed for a comparison of the impact of vibrations on a building structure. Calculations and analyses, conducted in accordance with the procedures provided in the standard PN-B-02170:2016-12 and the rules for applying the Mining Seismic Intensity Scale MSIS-2017, demonstrated a stronger impact on the building from induced vibrations in an underground mine located 10 km away compared to vibrations induced by blasting operations conducted in an open-pit mine, which is approximately 600 m away from the building. The presented material constitutes a unique set of data that can be used to introduce any necessary corrections in the methodology of analyzing vibrations regarding their harmfulness to building structures. The velocity value of vibrations correlated with frequency alone, without taking into account the vibration duration, can lead to incorrect interpretation. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

21 pages, 19031 KB  
Article
Interlayer Shear Sliding Behaviors during the Fracture Process of Thick Sandstone Roof and Its Mechanism Leading to Coal Mine Tremors
by Xuepeng Gao, Yishan Pan, Tongbin Zhao, Wei Wang, Yonghui Xiao, Yimin Song and Lianpeng Dai
Appl. Sci. 2024, 14(10), 4323; https://doi.org/10.3390/app14104323 - 20 May 2024
Cited by 2 | Viewed by 1377
Abstract
To explore the causes of mine tremors in coal mines with sandstone roofs, a three-point bending loading experiment was designed for composite sandstone layers, and the fracture and interlayer shear slip characteristics of the composite sandstone layers were studied using optical measurement and [...] Read more.
To explore the causes of mine tremors in coal mines with sandstone roofs, a three-point bending loading experiment was designed for composite sandstone layers, and the fracture and interlayer shear slip characteristics of the composite sandstone layers were studied using optical measurement and acoustic emission techniques. The results show that the bending of the rock layers led to interlayer sliding deformation, while the fracturing greatly promoted interlayer sliding. The maximum interlayer slip accelerations during bending deformation and fracturing were 0.6 mm/s2 and 3.8 mm/s2, respectively. During the fracturing of the rock layers, the proportion of acoustic emission shear fracture events increased with the continuous occurrence of long-lasting and high-amplitude acoustic emission events. The mechanism of mine tremors in thick sandstone roofs is as follows: the increase in the area of the goaf causes rock bending deformation and fracturing, accompanied by interlayer shear slip, fracturing of the sandstone layer, and friction dislocation at the cementation surface of the adjacent sandstone layers, which jointly cause vibration of the roof. Full article
Show Figures

Figure 1

27 pages, 10902 KB  
Article
Influence of Subsoil and Building Material Properties on Mine-Induced Soil–Structure Interaction Effect
by Maciej Zajac, Krystyna Kuzniar and Tadeusz Tatara
Appl. Sci. 2024, 14(10), 4164; https://doi.org/10.3390/app14104164 - 14 May 2024
Cited by 3 | Viewed by 1520
Abstract
Soil–structure interaction (SSI) refers to the dynamic interaction between a structure and the surrounding soil on which it rests. The behavior of the soil can significantly affect the response of the building structure. In the context of civil engineering and structural analysis, SSI [...] Read more.
Soil–structure interaction (SSI) refers to the dynamic interaction between a structure and the surrounding soil on which it rests. The behavior of the soil can significantly affect the response of the building structure. In the context of civil engineering and structural analysis, SSI becomes particularly important when considering the response of structures to dynamic loads such as earthquakes or so-called paraseismic loads, e.g., mining tremors. Several factors contribute to SSI. Soil and building structure material properties, foundation type, and loading conditions are the most important parameters. The article concerns SSI in the case of mining rock bursts in Poland. The influence of changes in site material conditions and building material properties on the SSI phenomenon was investigated. A few variants of different properties of typical construction materials (brick, reinforced concrete, and cellular concrete) in the case of selected representative building structure were considered. The subsoil material properties from the wide range were also taken into account. Numerical three-dimensional finite element method (FEM) analysis was applied. The adopted models of the soil-structure system were verified by data from in situ experimental vibration measurements. A significant influence of the subgrade material and the building structure material on the SSI was demonstrated. Full article
Show Figures

Figure 1

18 pages, 7780 KB  
Article
Geomechanical and Technical Aspects of Torpedo Blasting under Seismic and Rockburst Hazard Conditions in Legnica–Glogow Copper District Mines
by Zbigniew Burtan, Jerzy Cieślik, Dariusz Chlebowski, Paweł Piasecki and Krzysztof Gzik
Energies 2024, 17(5), 1174; https://doi.org/10.3390/en17051174 - 1 Mar 2024
Cited by 2 | Viewed by 1267
Abstract
The dominant hazard in the Polish copper ore mining industry (LGCD mines—Legnica–Glogow Copper District) is the occurrence of mining tremors and rockbursts. One of the effective active methods of preventing this threat is torpedo blasting, which results in disturbing the structure of roof [...] Read more.
The dominant hazard in the Polish copper ore mining industry (LGCD mines—Legnica–Glogow Copper District) is the occurrence of mining tremors and rockbursts. One of the effective active methods of preventing this threat is torpedo blasting, which results in disturbing the structure of roof rocks. A change in the integrity of a roof, especially in the tremor-generating layer or in the contact between stiff rock layers, reduces the possibility of an elastic energy concentration and may also be a kind of stress concentrator, provoking the destruction of rocks. This article presents original solutions for determining the areas of rock mass within a mining area where it is advisable to conduct torpedo blasting, and the experience of blasting in the Rudna copper mine in the LGCD is described. The first part of this article presents the results and experiences of using torpedo blasting prevention in the LGCD mine conditions in the Rudna mine. Assuming that due to the stress of the rocks, torpedo blasting brings the greatest benefits in the areas of elastic energy concentration, the second part of this article presents the results of numerical modeling, on the basis of which the zones of elastic energy concentration in the form of total, shear and volume deformation were determined in the vicinity of mining activities for typical geological and mining conditions in the LGCD. The importance of methods for the verification of the proposed solutions based on the analysis of seismic activity and geophysical mechanisms of events’ foci and seismo-acoustic emissions was also emphasized. The numerical simulations performed and conclusions from in situ observations allowed the formulation of general principles for the selection of torpedo blasting parameters. Full article
(This article belongs to the Special Issue Mining Innovation: Volume III)
Show Figures

Figure 1

14 pages, 2075 KB  
Article
Predicting the Distribution of Ground Vibration Acceleration Induced by Mining Activities Taking into Account the Directionality of Vibration Attenuation
by Piotr Bańka, Łukasz Szuła and Małgorzata Wyganowska
Appl. Sci. 2024, 14(4), 1574; https://doi.org/10.3390/app14041574 - 16 Feb 2024
Cited by 1 | Viewed by 1165
Abstract
Entrepreneurs carrying out mining works under seismic hazard conditions are obliged to conduct studies in the field of engineering geophysics, including measuring, interpreting and evaluating the effects of rock mass tremors on ground vibration parameters, and thus the occurrence of harmful impacts on [...] Read more.
Entrepreneurs carrying out mining works under seismic hazard conditions are obliged to conduct studies in the field of engineering geophysics, including measuring, interpreting and evaluating the effects of rock mass tremors on ground vibration parameters, and thus the occurrence of harmful impacts on surface objects. However, for technical reasons, this is a difficult task to implement at all points subject to the influence of mining activities. Therefore, it becomes expedient to look for solutions that would provide greater accuracy in forecasting the distribution of ground vibration parameters. This paper proposes a method for forecasting the distribution of peak ground accelerations (PGAs) induced by mining activities, taking into account the directionality of vibration attenuation. In many cases, the explanation of the variation in the magnitude of recorded ground surface vibrations after a rock mass tremor cannot always be explained by only the variation of epicentral distances and the value of the vibration amplification factor by quaternary formations. Therefore, it is reasonable to take into account the directionality of vibration attenuation. The authors analyzed and evaluated the accuracy of predicting the distribution of ground vibration accelerations induced by mining activities, taking into account the directionality of vibration attenuation, using three models: the first, a classical model assuming isotropic vibration attenuation; the second, a model taking into account the anisotropy of vibration attenuation with elliptical isolines; the third, a model without assuming the shape of the isolines of vibration intensity parameters. For both models that took into account anisotropy of vibration attenuation, better results (more accurate descriptions of observed ground vibration accelerations) were obtained than for the model assuming isotropy. The most accurate estimates of vibration magnitude were obtained using the latter model. Full article
Show Figures

Figure 1

Back to TopTop