Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,213)

Search Parameters:
Keywords = mitochondrial respiration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 986 KB  
Article
Control of Neopestalotiopsis zimbabwana Using Origanum vulgare L. Essential Oil: Combined In Vitro, In Vivo and In Silico Approaches
by Héctor Gómez-Yáñez, Ramón Marcos Soto-Hernández, Lucero del Mar Ruiz-Posadas, Guadalupe Valdovinos-Ponce, Irving Israel Ruiz-López, Cecilia Beatriz Peña-Valdivia and Guadalupe Mora-Báez
Horticulturae 2025, 11(10), 1232; https://doi.org/10.3390/horticulturae11101232 - 13 Oct 2025
Abstract
Neopestalotiopsis zimbabwana is an emerging phytopathogen with multiple hosts. Considering the environmental, toxicological, and resistance issues linked to synthetic fungicides, Origanum vulgare L. essential oil (OEO) was evaluated through in vitro, in vivo, and in silico approaches. The pathogen, isolated from [...] Read more.
Neopestalotiopsis zimbabwana is an emerging phytopathogen with multiple hosts. Considering the environmental, toxicological, and resistance issues linked to synthetic fungicides, Origanum vulgare L. essential oil (OEO) was evaluated through in vitro, in vivo, and in silico approaches. The pathogen, isolated from Watsonia borbonica L., was molecularly identified. Gas chromatography–mass spectrometry (GC–MS) analysis showed hexadecanoic acid (15.98%), dodecanoic acid (15.74%), terpinen-4-ol (11.61%), and thymol (7.65%) as the main components. In vitro assays determined a minimum inhibitory concentration (MIC) of 30% OEO and a minimal fungicidal concentration (MFC) of 60% OEO. Growth chamber trials demonstrated that preventive sprays maintained 0% foliar damage—similar to Captan®—while controls reached ≈98%; suspending applications after week 4 resulted in ≈45% damage by week 8. These results confirm that OEO lacks systemic residual activity, acting only as a protectant within preventive integrated pest management (IPM) schemes. Docking to cytochrome b (protein data bank, PDB: 5TL8) indicated strong binding of α-farnesene (−7.638 kcal·mol−1), isoterpinolene (−6.944), and α-terpineol (−6.918), suggesting disruption of mitochondrial respiration via Complex III. OEO represents a promising eco-friendly alternative for managing N. zimbabwana under controlled conditions and reducing reliance on synthetic fungicides. Full article
Show Figures

Figure 1

22 pages, 2890 KB  
Review
Crosstalk Between Allergic Inflammation and Autophagy
by Jaewhoon Jeoung, Wonho Kim and Dooil Jeoung
Int. J. Mol. Sci. 2025, 26(19), 9765; https://doi.org/10.3390/ijms26199765 - 7 Oct 2025
Viewed by 291
Abstract
Autophagy is a conserved process that involves the degradation of damaged proteins and organelles to restore cellular homeostasis. Autophagy plays a critical role in cell differentiation, immune responses, and protection against pathogens, as well as the development and progression of allergic inflammation. Crosstalk [...] Read more.
Autophagy is a conserved process that involves the degradation of damaged proteins and organelles to restore cellular homeostasis. Autophagy plays a critical role in cell differentiation, immune responses, and protection against pathogens, as well as the development and progression of allergic inflammation. Crosstalk between autophagy and signaling pathways modulates immune responses to inflammatory signals. Here, we discuss the regulatory roles of autophagy in allergic inflammation. Autophagy can promote allergic inflammation by enhancing the secretion of inflammatory mediators. Impaired autophagy resulting from the accumulation of autophagosomes can exacerbate allergic inflammation. Mast cell degranulation and activation require energy provided by mitochondrial respiration. Mast cell activation is accompanied by morphological changes and mitochondrial fragmentation. Mitochondrial fragmentation (mitophagy) induced by oxidative stress involves the degradation of defective mitochondria. Therefore, we discuss the relationship between mitophagy and allergic inflammation. Targeting autophagy and oxidative stress can be a strategy for developing anti-allergy therapeutics. In this review, we also discuss future research directions to better understand allergic diseases with respect to autophagy and develop effective anti-allergy drugs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2776 KB  
Article
Atherosclerotic Plaque Crystals Induce Endothelial Dysfunction
by Jishamol Thazhathveettil, Sherin Aloysius Gomez, Deborah Olaoseeji, Rongrong Wu, Allan Sirsjö and Geena Varghese Paramel
Int. J. Mol. Sci. 2025, 26(19), 9758; https://doi.org/10.3390/ijms26199758 - 7 Oct 2025
Viewed by 266
Abstract
Endothelial dysfunction is an early driver of atherosclerosis, yet the direct impact of endogenous crystals such as cholesterol crystals and monosodium urate on endothelial activation remains incompletely understood. In this study, we examine how crystalline stimuli modulate human umbilical vein endothelial cells by [...] Read more.
Endothelial dysfunction is an early driver of atherosclerosis, yet the direct impact of endogenous crystals such as cholesterol crystals and monosodium urate on endothelial activation remains incompletely understood. In this study, we examine how crystalline stimuli modulate human umbilical vein endothelial cells by assessing inflammatory signaling, mitochondrial respiration, and neutrophil recruitment. Using dose- and time-controlled experiments, we show that CC and MSU are internalized by endothelial cells, activating NF-κB and STAT3 signaling pathways and inducing a robust pro-inflammatory cytokine profile. Notably, CC caused marked mitochondrial dysfunction, evidenced by impaired respiratory capacity and loss of membrane potential, revealing a novel bioenergetic vulnerability in endothelial cells. Both direct crystal stimulation and exposure to crystal-primed conditioned media triggered endothelial adhesion molecule expression and promoted neutrophil adhesion, indicating that soluble mediators released upon crystal stimulation can propagate vascular inflammation. These findings demonstrate that crystalline stimuli are potent vascular danger signals capable of driving endothelial inflammation, mitochondrial impairment, and immune cell engagement, which are hallmarks of early atherogenesis. By elucidating these multifaceted endothelial responses, this study provides important mechanistic insights into how crystal-induced signals may contribute to vascular dysfunction and the early stages of atherogenesis. Full article
(This article belongs to the Special Issue Endothelial Dysfunction and Cardiovascular Diseases)
Show Figures

Figure 1

22 pages, 1526 KB  
Article
Temporal Interactome Mapping of Human Tau in Drosophila Reveals Progressive Mitochondrial Engagement and Porin/VDAC1-Dependent Modulation of Toxicity
by Eleni Tsakiri, Martina Samiotaki, Efthimios M. C. Skoulakis and Katerina Papanikolopoulou
Int. J. Mol. Sci. 2025, 26(19), 9741; https://doi.org/10.3390/ijms26199741 - 7 Oct 2025
Viewed by 245
Abstract
Tau protein misfolding and aggregation are central to Tauopathies, yet the temporal dynamics of Tau interactions in vivo remain poorly understood. Here, we applied quantitative proteomics to demonstrate that the interactome of human Tau in adult Drosophila brains changes dynamically over a 12-day [...] Read more.
Tau protein misfolding and aggregation are central to Tauopathies, yet the temporal dynamics of Tau interactions in vivo remain poorly understood. Here, we applied quantitative proteomics to demonstrate that the interactome of human Tau in adult Drosophila brains changes dynamically over a 12-day time course, revealing a progressive shift from early cytosolic and ribosomal associations to late enrichment of mitochondrial and synaptic partners. Notably, the mitochondrial pore protein Porin/VDAC1 was identified as a late-stage interactor and functional analyses demonstrated that Tau overexpression impairs mitochondrial respiration, elevates oxidative damage, and disrupts carbohydrate homeostasis. To validate this temporally specific interaction, Porin was downregulated, resulting in reduced Tau mitochondrial association, phosphorylation and aggregation. Paradoxically, however, Porin attenuation exacerbated Tau-induced toxicity, including shortened lifespan, locomotor deficits, and impaired learning. These findings indicate that while Porin facilitates pathological Tau modifications, it is also essential for neuronal resilience, highlighting a complex role in modulating Tau toxicity. Our study provides a temporal map of Tau-associated proteome changes in vivo and identifies mitochondria as critical mediators of Tau-driven neurodegeneration. Full article
(This article belongs to the Special Issue Genetic Advances in Neurobiology of Health and Disease)
Show Figures

Figure 1

26 pages, 3132 KB  
Article
Revealing the Specific Contributions of Mitochondrial CB1 Receptors to the Overall Function of Skeletal Muscle in Mice
by Zoltán Singlár, Péter Szentesi, Nyamkhuu Ganbat, Barnabás Horváth, László Juhász, Mónika Gönczi, Anikó Keller-Pintér, Attila Oláh, Zoltán Máté, Ferenc Erdélyi, László Csernoch and Mónika Sztretye
Cells 2025, 14(19), 1517; https://doi.org/10.3390/cells14191517 - 28 Sep 2025
Viewed by 477
Abstract
Skeletal muscle, constituting 40–50% of total body mass, is vital for mobility, posture, and systemic homeostasis. Muscle contraction heavily relies on ATP, primarily generated by mitochondrial oxidative phosphorylation. Mitochondria play a key role in decoding intracellular calcium signals. The endocannabinoid system (ECS), including [...] Read more.
Skeletal muscle, constituting 40–50% of total body mass, is vital for mobility, posture, and systemic homeostasis. Muscle contraction heavily relies on ATP, primarily generated by mitochondrial oxidative phosphorylation. Mitochondria play a key role in decoding intracellular calcium signals. The endocannabinoid system (ECS), including CB1 receptors (CB1Rs), broadly influences physiological processes and, in muscles, regulates functions like energy metabolism, development, and repair. While plasma membrane CB1Rs (pCB1Rs) are well-established, a distinct mitochondrial CB1R (mtCB1R) population also exists in muscles, influencing mitochondrial oxidative activity and quality control. We investigated the role of mtCB1Rs in skeletal muscle physiology using a novel systemic mitochondrial CB1 deletion murine model. Our in vivo studies showed no changes in motor function, coordination, or grip strength in mtCB1 knockout mice. However, in vitro force measurements revealed significantly reduced specific force in both fast-twitch (EDL) and slow-twitch (SOL) muscles following mtCB1R ablation. Interestingly, knockout EDL muscles exhibited hypertrophy, suggesting a compensatory response to reduced force quality. Electron microscopy revealed significant mitochondrial morphological abnormalities, including enlargement and irregular shapes, correlating with these functional deficits. High-resolution respirometry further demonstrated impaired mitochondrial respiration, with reduced oxidative phosphorylation and electron transport system capacities in knockout mitochondria. Crucially, mitochondrial membrane potential dissipated faster in mtCB1 knockout muscle fibers, whilst mitochondrial calcium levels were higher at rest. These findings collectively establish that mtCB1Rs are critical for maintaining mitochondrial health and function, directly impacting muscle energy production and contractile performance. Our results provide new insights into ECS-mediated regulation of skeletal muscle function and open therapeutic opportunities for muscle disorders and aging. Full article
(This article belongs to the Special Issue Skeletal Muscle: Structure, Physiology and Diseases)
Show Figures

Figure 1

16 pages, 6045 KB  
Article
Using 0.1 THz Radiation Regulates Collagen Synthesis Through TGF-β/Smad Signaling Pathway in Human Fetal Scleral Fibroblasts
by Wenxia Wang, Liu Sun, Lei Wang, Jinwu Zhao, Shuocheng She, Pandeng Hou and Mingxia He
Cells 2025, 14(19), 1512; https://doi.org/10.3390/cells14191512 - 28 Sep 2025
Viewed by 407
Abstract
Scleral tissue is a connective tissue made up of dense, intertwined collagen fibers that plays a vital part in preserving both the integrity of vision and the shape of the eyeball. Numerous studies have been conducted on the impact of terahertz radiation on [...] Read more.
Scleral tissue is a connective tissue made up of dense, intertwined collagen fibers that plays a vital part in preserving both the integrity of vision and the shape of the eyeball. Numerous studies have been conducted on the impact of terahertz radiation on biological systems. Terahertz radiation can affect cell morphology and function by mediating modifications in protein conformation and gene expression, according to recent research. Though terahertz waves found in the environment directly expose scleral tissue, little is known about how terahertz radiation affects scleral fibroblasts biologically. In this work, we investigated how 0.1 THz radiation affected the global expression levels of proteins and the viability of human fetal scleral fibroblasts (HFSFs). A total of 79.44% of the differentially expressed proteins (DEPs) showed significant downregulation in expression levels after 60 min of exposure to terahertz radiation. Enrichment analysis of DEPs revealed that terahertz radiation enhanced the expression of cytoskeletal keratins, disrupted supercoplexes’ assembly, and impaired mitochondrial respiration. Moreover, terahertz radiation influences the remodeling process of the scleral extracellular matrix by triggering the TGF-β/Smad signaling pathway. Changes in transcriptional activity of several extracellular matrix (ECM)-related genes persisted for 12 h in the absence of terahertz radiation. Research findings indicate that 0.1 THz radiation is capable of disrupting the dynamic balance between collagen synthesis and degradation in scleral fibroblasts. Such an imbalance may induce alterations in the structural integrity and biomechanical properties of the sclera, thereby elevating the potential risk of myopia onset or progression. Full article
Show Figures

Graphical abstract

17 pages, 5697 KB  
Article
Mitogenomic Insights into Phylogeny, Biogeography and Adaptive Evolution of the Genus Typhlomys (Rodentia: Platacanthomyidae)
by Chao Na, Xiaohan Wang, Yaxin Cheng, Yixin Huang, Shuiwang He, Laxman Khanal, Shunde Chen, Xuelong Jiang and Zhongzheng Chen
Animals 2025, 15(19), 2823; https://doi.org/10.3390/ani15192823 - 27 Sep 2025
Viewed by 238
Abstract
Soft-furred tree mice (genus Typhlomys), which are native to southern China and northern Vietnam, are unique rodents capable of echolocation. Little is known about their taxonomy, ecology, and natural history. In this study, we generated the complete mitochondrial genomes of seven species/putative [...] Read more.
Soft-furred tree mice (genus Typhlomys), which are native to southern China and northern Vietnam, are unique rodents capable of echolocation. Little is known about their taxonomy, ecology, and natural history. In this study, we generated the complete mitochondrial genomes of seven species/putative species of Typhlomys. We conducted a comprehensive comparative analysis of these mitochondrial genomes focusing on sequence length, A+T content, A/T bias, A+T-rich regions, overlapping and intergenic spacer regions, nucleotide composition, relative synonymous codon usage, ancestral distributions, and the non-synonymous/synonymous substitution ratio (Ka/Ks). Additionally, we analyzed the phylogeny and adaptive evolution of these species/putative species. The mitogenomes of Typhlomys ranged from 16,487 to 17,380 bp in length, encoding the complete set of 37 genes typically found in mammalian mitogenomes. The base composition exhibited an A+T bias. The most frequently used codons were CUA (Leu), AGC (Ser), GGA (Gly) and UUA (Leu), UUG, CUG, CGU and GCG were the less frequently used codons. Ancestral distribution reconstruction suggests that Typhlomys originated in Central or Southwestern China. Notably, we found that the Ka/Ks ratio of the ND5 gene in T. huangshanensis was greater than 1, indicating that this gene has undergone positive selection for efficient respiration in higher elevations and colder climates. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

22 pages, 5306 KB  
Article
TRPC6 Deficiency Attenuates Mitochondrial and Cardiac Dysfunction in Heart Failure with Preserved Ejection Fraction Induced by High-Fat Diet Plus L-NAME
by Xuan Li, Yiling Fu, Xuemei Dai, Jussara M. do Carmo, Alexandre A. da Silva, Alan J. Mouton, Ana C. M. Omoto, Robert W. Spitz, Lucas Wang, John E. Hall and Zhen Wang
Int. J. Mol. Sci. 2025, 26(19), 9383; https://doi.org/10.3390/ijms26199383 - 25 Sep 2025
Viewed by 271
Abstract
Transient receptor potential canonical channel type 6 (TRPC6), a non-selective cation channel that mediates Ca2+ influx, is expressed in the heart and implicated in pathological cardiac hypertrophy. However, the role of TRPC6 in regulating cardiac mitochondrial metabolism and contributing to development of [...] Read more.
Transient receptor potential canonical channel type 6 (TRPC6), a non-selective cation channel that mediates Ca2+ influx, is expressed in the heart and implicated in pathological cardiac hypertrophy. However, the role of TRPC6 in regulating cardiac mitochondrial metabolism and contributing to development of HFpEF remains unclear. We examined whether TRPC6 deficiency prevents mitochondrial dysfunction and offers cardiac protection in a mouse model of HFpEF induced by high-fat diet (HFD) for 12 weeks combined with L-NAME administration during the final 8 weeks in TRPC6 knockout (KO) and wild-type (WT) control mice. Cardiac systolic and diastolic functions were assessed at baseline, 4 and 8 weeks after HFD+L-NAME. Dobutamine-induced stress test and treadmill exercise test were performed at the end of the protocol to evaluate cardiac reserve capacity and exercise tolerance. Mitochondrial oxygen consumption rate (OCR) and mitochondrial-derived reactive oxygen species (ROS) generation were examined in isolated cardiac fibers. WT mice subjected to HFD+L-NAME developed cardiac hypertrophy, diastolic dysfunction, and exercise intolerance, whereas TRPC6 KO mice, under the same conditions, maintained preserved diastolic function, exercise tolerance, and cardiac reserve. We also observed increased TRPC6 in mitochondria, as well as caspase-9 activation and impaired mitochondrial respiration in WT mice. In contrast, TRPC6 KO mice exhibited preserved mitochondrial OCR and attenuated mitochondrial ROS generation. In summary, TRPC6 deficiency prevents the development of HFpEF by mitigating diastolic dysfunction, preserving cardiac reserve capacity, and attenuating mitochondrial dysfunction. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Cardiovascular Conditions)
Show Figures

Graphical abstract

18 pages, 3816 KB  
Article
The HMGB1-RAGE Axis Drives the Proneural-to-Mesenchymal Transition and Aggressiveness in Glioblastoma
by Hao-Chien Yang, Yu-Kai Su, Vijesh Kumar Yadav, Iat-Hang Fong, Heng-Wei Liu and Chien-Min Lin
Int. J. Mol. Sci. 2025, 26(19), 9352; https://doi.org/10.3390/ijms26199352 - 25 Sep 2025
Viewed by 340
Abstract
Glioblastoma (GBM) remains the most lethal primary brain tumor, owing to profound intratumoral heterogeneity and the limited efficacy of standard treatments. The mesenchymal (MES) molecular subtype is particularly aggressive, exhibiting heightened invasiveness, therapy resistance, and dismal patient survival compared with the proneural (PN) [...] Read more.
Glioblastoma (GBM) remains the most lethal primary brain tumor, owing to profound intratumoral heterogeneity and the limited efficacy of standard treatments. The mesenchymal (MES) molecular subtype is particularly aggressive, exhibiting heightened invasiveness, therapy resistance, and dismal patient survival compared with the proneural (PN) subtype. Emerging evidence implicates the High Mobility Group Box 1 (HMGB1) protein and its cognate receptor, the Receptor for Advanced Glycation End Products (RAGE), as drivers of malignant progression, yet their contribution to the PN-to-MES transition is incompletely defined. We integrated transcriptomic analyses of TCGA-GBM and TCGA-LGG cohorts with immunohistochemistry on in-house patient specimens. Functional studies in patient-derived and established GBM cell lines included migration and invasion assays, tumorsphere formation assays, shRNA knockdowns, and Seahorse XF metabolic profiling to interrogate the HMGB1-RAGE axis. HMGB1 and RAGE expression was markedly elevated in MES GBM tissues and cell lines. Importantly, higher HMGB1 expression correlated with shortened overall survival (p < 0.009). HMGB1 silencing curtailed cell motility and downregulated core epithelial-to-mesenchymal transition markers (N-cadherin, Snail). RAGE knockdown diminished tumorsphere formation efficiency and reduced transcription of stemness genes (OCT4), underscoring its role in sustaining tumor-initiating capacity. Metabolically, HMGB1/RAGE activation boosted both mitochondrial respiration and glycolysis, conferring the bioenergetic flexibility characteristic of MES GBM. The HMGB1-RAGE signaling axis orchestrates mesenchymal identity, invasiveness, stem cell-like properties, and metabolic reprogramming in GBM. Targeting this pathway may disrupt the PN-to-MES transition, mitigate therapeutic resistance, and ultimately improve outcomes for glioblastoma patients. Full article
(This article belongs to the Special Issue Advanced Molecular Research in Brain Tumors)
Show Figures

Graphical abstract

23 pages, 2820 KB  
Article
Mitochondrial Translation Inhibition Triggers an Rst2-Controlled Transcriptional Reprogramming of Carbon Metabolism in Stationary-Phase Cells of Fission Yeast
by Ying Luo, Shaimaa Hassan, Saniya Raut and Jürg Bähler
Biomolecules 2025, 15(10), 1354; https://doi.org/10.3390/biom15101354 - 24 Sep 2025
Viewed by 359
Abstract
Mitochondria possess their own genome, which encodes subunits of the electron transport chain, rendering mitochondrial protein translation essential for cellular energy metabolism. Mitochondrial dysfunction affects nuclear transcription through the retrograde response. We applied RNA-seq to investigate whether and how the inhibition of mitochondrial [...] Read more.
Mitochondria possess their own genome, which encodes subunits of the electron transport chain, rendering mitochondrial protein translation essential for cellular energy metabolism. Mitochondrial dysfunction affects nuclear transcription through the retrograde response. We applied RNA-seq to investigate whether and how the inhibition of mitochondrial translation by chloramphenicol (CAP) affects transcriptome regulation in proliferating or stationary-phase cells of Schizosaccharomyces pombe growing in fermentative or respiratory media. Stationary-phase cells in glucose medium exhibited the strongest transcriptome response to CAP, characterized by expression signatures similar to those observed under other stresses, including the retrograde response. The induced genes were also significantly enriched in cytoplasmic carbon metabolism pathways, reflecting a transcriptional reprogramming from respiration to fermentation. The transcription factors Scr1 and Rst2, regulators of carbon catabolite repression (CCR), controlled a common set of carbon metabolism genes in CAP-treated stationary-phase cells, and they showed opposing effects on the lifespan of these cells. Rst2 was required for the induction of carbon metabolism genes and maintained nuclear localization in CAP-treated stationary-phase cells. A systematic genetic interaction screen revealed functional relationships of Rst2 with processes related to stress and starvation responses. These findings uncover a complex transcriptional program in stationary-phase cells that adapt to inhibited mitochondrial translation, including stress- and retrograde-like responses, contributions of the CCR factors Scr1 and Rst2, and adjustment of carbon metabolism to deal with mitochondrial dysfunction. Full article
(This article belongs to the Special Issue Cellular Quiescence and Dormancy)
Show Figures

Figure 1

20 pages, 1346 KB  
Review
Copper, Cuproptosis, and Neurodegenerative Diseases
by Giuseppe Genchi, Alessia Catalano, Alessia Carocci, Maria Stefania Sinicropi and Graziantonio Lauria
Int. J. Mol. Sci. 2025, 26(18), 9173; https://doi.org/10.3390/ijms26189173 - 19 Sep 2025
Viewed by 640
Abstract
Copper is a vital micronutrient for animals and plants acting as a crucial cofactor in the synthesis of numerous metabolic enzymes and contributing to mitochondrial respiration, metabolism, oxido-reductive reactions, signal transmission, and oxidative and nitrosative damage. In the cells, copper may exist in [...] Read more.
Copper is a vital micronutrient for animals and plants acting as a crucial cofactor in the synthesis of numerous metabolic enzymes and contributing to mitochondrial respiration, metabolism, oxido-reductive reactions, signal transmission, and oxidative and nitrosative damage. In the cells, copper may exist in the Cu+ and Cu++ oxidation states and the interconversion between these two states may occur via various redox reactions regulating cellular respiration, energy metabolism, and cell growth. The human body maintains a low level of copper, and copper deficiency or copper excess may adversely affect cellular functions; therefore, regulation of copper levels within a narrow range is important for maintaining metabolic homeostasis. Recent studies identified a new copper-dependent form of cell death called cuproptosis. Cuproptosis occurs due to copper binding to lipoylated enzymes (for instance, pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the tricarboxylic acid Krebs cycle. In recent years, extensive studies on copper homeostasis and copper-induced cell death in degenerative disorders, like Menkes, Wilson, Alzheimer, Parkinson’s, Huntington’s diseases, and Amyotrophic Lateral Sclerosis, have discussed the therapeutic potential of targeting cuproptosis. Copper contamination in the environment, which has increased in recent years due to the expansion of agricultural and industrial activities, is associated with a wide range of human health risks. Soil used for the cultivation of grapes has a long history of copper-based fungicide application (the Bordeaux mixture is rich in copper) resulting in copper accumulation at levels capable of causing toxicity in plants that co-inhabit the vineyards. Phytoremediation, which uses plants and biological solutions to remove toxic heavy metals and pesticides and other contaminants from soil and water, is an environmentally friendly and cost-effective technology used for the removal of copper. It requires plants to be tolerant of high levels of copper and capable of accumulating metal copper in plants’ aerial organs and roots. This review aims at highlighting the importance of copper as an essential metal, as well as its involvement in cuproptosis and neurodegenerative diseases. Full article
Show Figures

Figure 1

19 pages, 8065 KB  
Article
SERCA Silencing Alleviates Aß(1-42)-Induced Toxicity in a C. elegans Model
by Elena Caldero-Escudero, Silvia Romero-Sanz, Pilar Álvarez-Illera, Silvia Fernandez-Martinez, Sergio De la Fuente, Paloma García-Casas, Rosalba I. Fonteriz, Mayte Montero, Javier Alvarez and Jaime Santo-Domingo
Int. J. Mol. Sci. 2025, 26(18), 9126; https://doi.org/10.3390/ijms26189126 - 18 Sep 2025
Viewed by 428
Abstract
The Sarco Endoplasmic Reticulum Ca2+-ATPase (SERCA) pumps cytosolic Ca2+ into the endoplasmic reticulum lumen (ER) to maintain cytosolic and ER Ca2+ levels under physiological conditions. Previous reports suggest that cellular Ca2+ homeostasis is compromised in Alzheimer’s Disease (AD) [...] Read more.
The Sarco Endoplasmic Reticulum Ca2+-ATPase (SERCA) pumps cytosolic Ca2+ into the endoplasmic reticulum lumen (ER) to maintain cytosolic and ER Ca2+ levels under physiological conditions. Previous reports suggest that cellular Ca2+ homeostasis is compromised in Alzheimer’s Disease (AD) and that SERCA activity can modulate the phenotype of AD mouse models. Here, we used a C. elegans strain that overexpresses the most toxic human ß-amyloid peptide (Aß(1-42)) in body-wall muscle cells to study the effects of SERCA (sca-1) silencing on Aß(1-42)-induced body-wall muscle dysfunction. sca-1 knockdown reduced the percentage of paralyzed worms, improved locomotion in free-mobility assays, and restored pharynx pumping in Aß(1-42)-overexpressing worms. At the cellular level, sca-1 silencing partially prevented Aß(1-42)-induced exacerbated mitochondrial respiration and mitochondrial ROS production and restored mitochondrial organization around sarcomeres. sca-1 knockdown reduced the number and size of Aß(1-42) aggregates in body–wall muscle cells and prevented the formation of Aß(1-42) oligomers. Aß(1-42) expression induced a slower kinetics of spontaneous cytosolic Ca2+ transients in muscle cells and sca-1 partially restored these changes. We propose that partial sca-1 loss of function prevents the toxicity associated with beta-amyloid accumulation by reducing the formation of Aß(1-42) oligomers and improving mitochondrial function, in a mechanism that requires remodeling of cytosolic Ca2+ dynamics and partial ER Ca2+ depletion. Full article
(This article belongs to the Special Issue The Role of Amyloid in Neurological Diseases)
Show Figures

Figure 1

22 pages, 5289 KB  
Article
The DNA Minor Groove Binders Trabectedin and Lurbinectedin Are Potent Antitumor Agents in Human Intrahepatic Cholangiocarcinoma
by Erwin Gäbele, Isabella Gigante, Mirella Pastore, Antonio Cigliano, Grazia Galleri, Thea Bauer, Elena Pizzuto, Serena Mancarella, Martina Müller, Fabio Marra, Heiko Siegmund, Gianluigi Giannelli, Matthias Evert, Chiara Raggi, Diego F. Calvisi and Sara M. Steinmann
Int. J. Mol. Sci. 2025, 26(18), 9085; https://doi.org/10.3390/ijms26189085 - 18 Sep 2025
Viewed by 1048
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor. Due to its aggressive nature and resistance to conventional treatments, there is a pressing need to develop novel and more effective therapies for this deadly malignancy. Here, we explored the therapeutic potential [...] Read more.
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor. Due to its aggressive nature and resistance to conventional treatments, there is a pressing need to develop novel and more effective therapies for this deadly malignancy. Here, we explored the therapeutic potential of the DNA minor groove binders trabectedin (TRB) and lurbinectedin (LUR) for the treatment of iCCA using cell lines, spheroids, cancer-associated fibroblasts (CAFs), patient-derived tumor organoids (PDOs), and the chicken chorioallantoic membrane (CAM) in vivo model. TRB and, more substantially, LUR, significantly inhibited cell growth in iCCA cell lines, spheroids, CAFs, and PDOs at very low nanomolar concentrations. Specifically, the two drugs significantly reduced proliferation, triggered apoptosis, and caused DNA damage in iCCA cells. At the metabolic level, TRB and LUR decreased mitochondrial respiration and glycolysis. At the molecular level, the two compounds effectively downregulated the mammalian target of rapamycin complex 1 (mTORC1) and Hippo/YAP pathways and suppressed the expression of yes-associated protein 1 (YAP1), cellular myelocytomatosis oncogene (c-Myc), E2F transcription factor 1 (E2F1), Bromodomain-containing protein 4 (BRD4), TEA domain transcription factor 4 (TEAD4), and cluster of differentiation 7 (CD7) proto-oncogenes. Furthermore, LUR significantly restrained the in vivo growth of iCCA cells in the CAM model. Our data indicate that TRB and LUR possess strong anti-proliferative and pro-apoptotic activities and could represent promising therapeutic agents for the treatment of iCCA. Full article
(This article belongs to the Special Issue Advanced Research on Cholangiocarcinoma: From Bench to Bedside)
Show Figures

Graphical abstract

23 pages, 2703 KB  
Article
Ametryn and Clomazone Disrupt Mitochondrial Bioenergetics in Rat Liver: Evidence for Inhibition of Complexes I and II and ATP Synthase
by Heberth Paulo dos Santos Silva, Camila Ortiz, Camila Araújo Miranda, Paulo Francisco Veiga Bizerra, Carlos Manuel Palmeira and Fábio Erminio Mingatto
Toxics 2025, 13(9), 784; https://doi.org/10.3390/toxics13090784 (registering DOI) - 16 Sep 2025
Viewed by 377
Abstract
Ametryn (AMT) and clomazone (CLZ) are commonly used herbicides frequently detected in food and water, raising concerns about potential health risks. This study investigated whether AMT and CLZ impair mitochondrial bioenergetics, a key mechanism linked to hepatotoxicity. Mitochondria were isolated from rat liver [...] Read more.
Ametryn (AMT) and clomazone (CLZ) are commonly used herbicides frequently detected in food and water, raising concerns about potential health risks. This study investigated whether AMT and CLZ impair mitochondrial bioenergetics, a key mechanism linked to hepatotoxicity. Mitochondria were isolated from rat liver and incubated with AMT or CLZ (50–200 µM) to assess respiration, membrane potential (Δψ), ATP production, and the activities of respiratory chain complexes and ATP synthase. Both herbicides significantly inhibited state 3 (ADP-stimulated) respiration with glutamate plus malate, without altering state 4 (basal) respiration. Concentrations above 100 µM reduced Δψ and ATP synthesis in glutamate plus malate or succinate-energized mitochondria. Enzymatic assays revealed inhibition of complex I by both herbicides, complex II by CLZ, and ATP synthase by both. These results highlight mitochondrial oxidative phosphorylation disruption by AMT and CLZ; however, further in situ and in vivo studies are necessary to fully understand their hepatotoxic potential. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

35 pages, 3238 KB  
Review
The Ketogenic Diet Through a Metabolomic Lens: Biochemical Pathways, Therapeutic Applications, and Analytical Challenges
by Katarzyna Idzikowska, Paulina Gątarek, Anna Gajda, Piotr Safiński, Lukasz Przyslo and Joanna Kałużna-Czaplińska
Nutrients 2025, 17(18), 2969; https://doi.org/10.3390/nu17182969 - 16 Sep 2025
Viewed by 980
Abstract
Background: The ketogenic diet (KD), a high-fat and low-carbohydrate dietary approach, has been used therapeutically in drug-resistant epilepsy and other neurological and metabolic disorders. Recent interest has shifted toward understanding its broader metabolic effects through metabolomics. This review aims to summarize current knowledge [...] Read more.
Background: The ketogenic diet (KD), a high-fat and low-carbohydrate dietary approach, has been used therapeutically in drug-resistant epilepsy and other neurological and metabolic disorders. Recent interest has shifted toward understanding its broader metabolic effects through metabolomics. This review aims to summarize current knowledge on the biochemical mechanisms and therapeutic implications of the KD, with a particular focus on metabolomic profiling and neurological health. Methods: This narrative review synthesizes findings from the last five years of metabolomic studies investigating the biochemical consequences of the KD and its variants, including the classical KD, modified Atkins diet (MAD), medium-chain triglyceride diet (MCT), and low glycemic index treatment (LGIT). The review integrates data on analytical techniques, such as liquid chromatography–mass spectrometry (LC-MS) and gas chromatography–mass spectrometry (GC-MS), and evaluates alterations in key metabolic pathways. Results: The KD significantly modulates energy metabolism, shifting adenosine triphosphate (ATP) production from glycolysis to fatty acid oxidation and ketone body utilization. It affects mitochondrial function, one-carbon metabolism, redox balance, neurotransmitter regulation, and gut–brain axis signaling. Metabolomic profiling has identified β-hydroxybutyrate (βHB) as a key regulatory metabolite influencing mitochondrial respiration. Long-term KD use may impact renal and hepatic function, necessitating clinical caution and individualized nutritional monitoring. Conclusions: Metabolomic analysis provides critical insights into the multifaceted effects of the KD, supporting its role as a targeted metabolic therapy in neurological diseases. However, potential risks linked to prolonged ketosis warrant further investigation. Future studies should focus on personalized applications and long-term safety profiles of KD variants across patient populations. Full article
(This article belongs to the Special Issue Neurological Disorders: Diets and Nutrition)
Show Figures

Figure 1

Back to TopTop