Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = mitochondrial thiols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1346 KiB  
Review
Targeted Redox Regulation α-Ketoglutarate Dehydrogenase Complex for the Treatment of Human Diseases
by Ryan J. Mailloux
Cells 2025, 14(9), 653; https://doi.org/10.3390/cells14090653 - 29 Apr 2025
Viewed by 126
Abstract
α-ketoglutarate dehydrogenase complex (KGDHc) is a crucial enzyme in the tricarboxylic acid (TCA) cycle that intersects monosaccharides, amino acids, and fatty acid catabolism with oxidative phosphorylation (OxPhos). A key feature of KGDHc is its ability to sense changes in the redox environment through [...] Read more.
α-ketoglutarate dehydrogenase complex (KGDHc) is a crucial enzyme in the tricarboxylic acid (TCA) cycle that intersects monosaccharides, amino acids, and fatty acid catabolism with oxidative phosphorylation (OxPhos). A key feature of KGDHc is its ability to sense changes in the redox environment through the reversible oxidation of the vicinal lipoic acid thiols of its dihydrolipoamide succinyltransferase (DLST; E2) subunit, which controls its activity and, by extension, OxPhos. This characteristic inculcates KGDHc with redox regulatory properties for the modulation of metabolism and mediating of intra- and intercellular signals. The innate capacity of KGDHc to participate in the regulation of cell redox homeodynamics also occurs through the production of mitochondrial hydrogen peroxide (mtH2O2), which is generated by the dihydrolipoamide dehydrogenase (DLD; E3) downstream from the E2 subunit. Reversible covalent redox modification of the E2 subunit controls this mtH2O2 production by KGDHc, which not only protects from oxidative distress but also modulates oxidative eustress pathways. The importance of KGDHc in modulating redox homeodynamics is underscored by the pathogenesis of neurological and metabolic disorders that occur due to the hyper-generation of mtH2O2 by this enzyme complex. This also implies that the targeted redox modification of the E2 subunit could be a potential therapeutic strategy for limiting the oxidative distress triggered by KGDHc mtH2O2 hyper-generation. In this short article, I will discuss recent findings demonstrating KGDHc is a potent mtH2O2 source that can trigger the manifestation of several neurological and metabolic diseases, including non-alcoholic fatty liver disease (NAFLD), inflammation, and cancer, and the targeted redox modification of the E2 subunit could alleviate these syndromes. Full article
(This article belongs to the Special Issue Charming Micro-Insights into Health and Diseases)
Show Figures

Figure 1

15 pages, 3532 KiB  
Article
Carbon Monoxide Stimulates Chondrocyte Mitochondria and Protects Mitochondria During Cartilage Injury
by Suryamin Liman, Madeline R. Hines, Piedad C. Gómez-Contreras, Emily Witt, Jacob S. Fisher, Kevin J. Lu, Lauren D. McNally, Alicia T. Cotoia, Maxwell Y. Sakyi, Brett A. Wagner, Michael S. Tift, Douglas Fredericks, Jessica E. Goetz, James D. Byrne and Mitchell C. Coleman
Antioxidants 2025, 14(5), 514; https://doi.org/10.3390/antiox14050514 - 25 Apr 2025
Viewed by 203
Abstract
Objective: Joint injury precipitates post-traumatic osteoarthritis (PTOA) via chondrocyte mitochondrial oxidative damage. Carbon monoxide (CO) is a small molecule with potent antioxidant and mitochondrial benefits in other tissues that have not been explored in healthy chondrocytes. We hypothesized that CO would subvert the [...] Read more.
Objective: Joint injury precipitates post-traumatic osteoarthritis (PTOA) via chondrocyte mitochondrial oxidative damage. Carbon monoxide (CO) is a small molecule with potent antioxidant and mitochondrial benefits in other tissues that have not been explored in healthy chondrocytes. We hypothesized that CO would subvert the mitochondrial effects of articular cartilage injuries upon resident chondrocytes. Design: We evaluated intra-articular delivery of a novel carbon monoxide-containing foam (COF). We used in vitro impact injuries to explore mitochondrial and redox endpoints after CO exposure. We then applied intra-articular injections of COF or control room air foam (RAF) to assess safety, efficacy, and other intra-articular responses. Results: COF increased the expression of HO1 and mitofusin-1 within 1 h and this increase was sustained for 12 h in vitro. COF increased chondrocyte mitochondrial respiration by 40% and increased reduced (not oxidized) thiols by 50% following in vitro injury to osteochondral explants. After cartilage injury, COF prevented the formation of 3-nitrotyrosine and the loss of articular chondrocyte mitochondria. When injected intra-articularly, COF was retained for 24 h post-injection in mouse stifle joints. It increased HO1 in those joints, enhanced reduced thiol levels in rabbit stifle joints, and exhibited no toxicity 1 and 4 weeks after injection. Conclusions: This study supports the hypothesis that CO functions as an antioxidant for articular chondrocytes by supporting mitochondria and intracellular GSH in the presence or absence of cartilage injury. Challenges in delivering exogenous CO have limited its preclinical development, but new CO-releasing materials like COF may enable new examinations of this promising small molecule. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

19 pages, 2232 KiB  
Article
Redox Mechanisms Driving Skin Fibroblast-to-Myofibroblast Differentiation
by Marzieh Aminzadehanboohi, Manousos Makridakis, Delphine Rasti, Yves Cambet, Karl-Heinz Krause, Antonia Vlahou and Vincent Jaquet
Antioxidants 2025, 14(4), 486; https://doi.org/10.3390/antiox14040486 - 18 Apr 2025
Viewed by 232
Abstract
Transforming Growth Factor-Beta 1 (TGF-β1) plays a pivotal role in the differentiation of fibroblasts into myofibroblasts, which is a critical process in tissue repair, fibrosis, and wound healing. Upon exposure to TGF-β1, fibroblasts acquire a contractile phenotype and secrete collagen and extracellular matrix [...] Read more.
Transforming Growth Factor-Beta 1 (TGF-β1) plays a pivotal role in the differentiation of fibroblasts into myofibroblasts, which is a critical process in tissue repair, fibrosis, and wound healing. Upon exposure to TGF-β1, fibroblasts acquire a contractile phenotype and secrete collagen and extracellular matrix components. Numerous studies have identified hydrogen peroxide (H2O2) as a key downstream effector of TGF-β1 in this pathway. H2O2 functions as a signalling molecule, regulating various cellular processes mostly through post-translational redox modifications of cysteine thiol groups of specific proteins. In this study, we used primary human skin fibroblast cultures to investigate the oxidative mechanisms triggered by TGF-β1. We analyzed the expression of redox-related genes, evaluated the effects of the genetic and pharmacological inhibition of H2O2-producing enzymes, and employed an unbiased redox proteomics approach (OxICAT) to identify proteins undergoing reversible cysteine oxidation. Our findings revealed that TGF-β1 treatment upregulated the expression of oxidant-generating genes while downregulating antioxidant genes. Low concentrations of diphenyleneiodonium mitigated myofibroblast differentiation and mitochondrial oxygen consumption, suggesting the involvement of a flavoenzyme in this process. Furthermore, we identified the increased oxidation of highly conserved cysteine residues in key proteins such as the epidermal growth factor receptor, filamin A, fibulin-2, and endosialin during the differentiation process. Collectively, this study provides insights into the sources of H2O2 in fibroblasts and highlights the novel redox mechanisms underpinning fibroblast-to-myofibroblast differentiation. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 4083 KiB  
Article
The Assessment of the Effect of Autophagy Inhibitors—Chloroquine and 3-Methyladenine on the Antitumor Activity of Trametinib Against Amelanotic Melanoma Cells
by Dominika Stencel, Justyna Kowalska, Zuzanna Rzepka, Klaudia Banach, Marta Karkoszka-Stanowska and Dorota Wrześniok
Cells 2025, 14(7), 557; https://doi.org/10.3390/cells14070557 - 7 Apr 2025
Viewed by 431
Abstract
Malignant melanoma, particularly amelanotic melanoma, contributes to a very serious problem in public health. One way to find new therapies is to learn about and understand the molecular pathways that regulate cancer growth and development. In the case of a tumor, the autophagy [...] Read more.
Malignant melanoma, particularly amelanotic melanoma, contributes to a very serious problem in public health. One way to find new therapies is to learn about and understand the molecular pathways that regulate cancer growth and development. In the case of a tumor, the autophagy process can lead to the development or inhibition of cancer. This study aimed to assess the cytotoxicity of connection trametinib (MEK1 and MEK2 kinase inhibitor) with autophagy inhibitors—chloroquine (lysosomal clearance of autophagosomes inhibitor) and 3-methyladenine (phosphatidylinositol 3-kinases inhibitor), on two amelanotic melanoma cell lines (C32 and A-375). The results showed that combination therapy had better anti-proliferative effects than alone therapy in both cell lines. The C32 cell line was more sensitive to 3-methyladenine treatment (alone and in combinations), and the A375 line showed sensitivity to chloroquine and 3-methyladenine (alone and in combinations). The anti-proliferative effect was accompanied by dysregulation of the cell cycle, a decrease in the reduced thiols, the depolarization of the mitochondrial membrane and the level of p44/p42 MAPK. Both inhibitors have the ability to induce apoptosis. Differences in the level of LC3A/B and LC3B proteins between the chloroquine and the 3-methyladenine samples indicate that these drugs inhibit autophagy at different stages. The enhancement of the effect of trametinib by autophagy inhibitors suggests the possibility of combining drugs with anti-cancer potential with modulators of the autophagy process. Full article
(This article belongs to the Special Issue Cell Death: Cell–Cell Interactions and Signaling Networks)
Show Figures

Figure 1

18 pages, 5535 KiB  
Article
An In Vitro Strategy to Evaluate Ketoprofen Phototoxicity at the Molecular and Cellular Levels
by Klaudia Banach, Justyna Kowalska, Mateusz Maszczyk, Zuzanna Rzepka, Jakub Rok and Dorota Wrześniok
Int. J. Mol. Sci. 2024, 25(23), 12647; https://doi.org/10.3390/ijms252312647 - 25 Nov 2024
Cited by 1 | Viewed by 875
Abstract
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the [...] Read more.
Phototoxicity is a significant problem that occurs in a large part of the population and is often caused by commonly used pharmaceuticals, including over-the-counter drugs. Therefore, testing drugs with photosensitizing potential is very important. The aim of this study is to analyze the cytotoxicity and phototoxicity of ketoprofen towards human melanocytes and fibroblasts in three different treatment schemes in order to optimize the study. Cytometric tests (studies of viability, proliferation, intracellular thiol levels, mitochondrial potential, cell cycle, and DNA fragmentation), Western blot analysis (cytochrome c and p44/p42 protein levels), and confocal microscopy imaging were performed to assess the impact of the developed treatments on skin cells. Research on experimental schemes may help reduce or eliminate the risk of phototoxic reactions. In the case of ketoprofen, we found that the strongest phototoxic potential was exhibited in the treatment where the drug was present in the solution during the irradiation of cells, both pigmented and non-pigmented cells. These results indicate that the greatest risk of photosensitivity reactions related to ketoprofen occurs after direct contact with the drug and UV exposure. Full article
(This article belongs to the Special Issue Cutaneous Biology, Molecular Dermatology and Dermatopathology)
Show Figures

Figure 1

17 pages, 3722 KiB  
Article
Structural Insights into Mechanisms Underlying Mitochondrial and Bacterial Cytochrome c Synthases
by Pema L. Childs, Ethan P. Lowder, Deanna L. Mendez, Shalon E. Babbitt, Amidala Martinie, Jonathan Q. Huynh and Robert G. Kranz
Biomolecules 2024, 14(12), 1483; https://doi.org/10.3390/biom14121483 - 21 Nov 2024
Viewed by 1710
Abstract
Mitochondrial holocytochrome c synthase (HCCS) is an essential protein in assembling cytochrome c (cyt c) of the electron transport system. HCCS binds heme and covalently attaches the two vinyls of heme to two cysteine thiols of the cyt c CXXCH motif. Human HCCS [...] Read more.
Mitochondrial holocytochrome c synthase (HCCS) is an essential protein in assembling cytochrome c (cyt c) of the electron transport system. HCCS binds heme and covalently attaches the two vinyls of heme to two cysteine thiols of the cyt c CXXCH motif. Human HCCS recognizes both cyt c and cytochrome c1 of complex III (cytochrome bc1). HCCS is mutated in some human diseases and it has been investigated recombinantly by mutational, biochemical, and reconstitution studies in the past decade. Here, we employ structural prediction programs (e.g., AlphaFold 3) on HCCS and its two substrates, heme and cytochrome c. The results, when combined with spectroscopic and functional analyses of HCCS and variants, provide insights into the structural basis for heme binding, apocyt c binding, covalent attachment, and release of the holocyt c product. Results from in vitro reconstitution of purified human HCCS using cyt c and cyt c1 peptides as acceptors are consistent with the structural modeling of substrate binding. Reconstitution of HCCS and cyt c1 provides an approach to studying cyt c1 assembly, which has been refractile to recombinant in vivo reconstitution (unlike HCCS and cyt c). We propose a structural basis for release of the holocyt c product from HCCS based on in vitro studies and on cryoEM structures of the bacterial cyt c synthase (CcsBA) active site. We analyze the kinetoplastid mitochondrial synthase (KCCS), and hypothesize a molecular evolutionary path from mitochondrial endosymbiosis to the current HCCS. Full article
(This article belongs to the Special Issue Unraveling Mysteries of Heme Metabolism)
Show Figures

Graphical abstract

17 pages, 2715 KiB  
Article
Sphaerococcenol A Derivatives: Design, Synthesis, and Cytotoxicity
by Dídia Sousa, Milene A. G. Fortunato, Joana Silva, Mónica Pingo, Alice Martins, Carlos A. M. Afonso, Rui Pedrosa, Filipa Siopa and Celso Alves
Mar. Drugs 2024, 22(9), 408; https://doi.org/10.3390/md22090408 - 5 Sep 2024
Viewed by 1461
Abstract
Sphaerococcenol A is a cytotoxic bromoditerpene biosynthesized by the red alga Sphaerococcus coronopifolius. A series of its analogues (16) was designed and semi-synthesized using thiol-Michael additions and enone reduction, and the structures of these analogues were characterized by [...] Read more.
Sphaerococcenol A is a cytotoxic bromoditerpene biosynthesized by the red alga Sphaerococcus coronopifolius. A series of its analogues (16) was designed and semi-synthesized using thiol-Michael additions and enone reduction, and the structures of these analogues were characterized by spectroscopic methods. Cytotoxic analyses (1–100 µM; 24 h) were accomplished on A549, DU-145, and MCF-7 cells. The six novel sphaerococcenol A analogues displayed an IC50 range between 14.31 and 70.11 µM on A549, DU-145, and MCF-7 malignant cells. Compound 1, resulting from the chemical addition of 4-methoxybenzenethiol, exhibited the smallest IC50 values on the A549 (18.70 µM) and DU-145 (15.82 µM) cell lines, and compound 3, resulting from the chemical addition of propanethiol, exhibited the smallest IC50 value (14.31 µM) on MCF-7 cells. The highest IC50 values were exhibited by compound 4, suggesting that the chemical addition of benzylthiol led to a loss of cytotoxic activity. The remaining chemical modifications were not able to potentiate the cytotoxicity of the original compounds. Regarding A549 cell viability, analogue 1 exhibited a marked effect on mitochondrial function, which was accompanied by an increase in ROS levels, Caspase-3 activation, and DNA fragmentation and condensation. This study opens new avenues for research by exploring sphaerococcenol A as a scaffold for the synthesis of novel bioactive molecules. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 3.0)
Show Figures

Figure 1

25 pages, 3093 KiB  
Article
A Combination of Cardamonin and Doxorubicin Selectively Affect Cell Viability of Melanoma Cells: An In Vitro Study
by Lara Ebbert, Claudia von Montfort, Chantal-Kristin Wenzel, Andreas S. Reichert, Wilhelm Stahl and Peter Brenneisen
Antioxidants 2024, 13(7), 864; https://doi.org/10.3390/antiox13070864 - 19 Jul 2024
Viewed by 1745
Abstract
Treatment of the most aggressive and deadliest form of skin cancer, the malignant melanoma, still has room for improvement. Its invasive nature and ability to rapidly metastasize and to develop resistance to standard treatment often result in a poor prognosis. While the highly [...] Read more.
Treatment of the most aggressive and deadliest form of skin cancer, the malignant melanoma, still has room for improvement. Its invasive nature and ability to rapidly metastasize and to develop resistance to standard treatment often result in a poor prognosis. While the highly effective standard chemotherapeutic agent doxorubicin (DOX) is widely used in a variety of cancers, systemic side effects still limit therapy. Especially, DOX-induced cardiotoxicity remains a big challenge. In contrast, the natural chalcone cardamonin (CD) has been shown to selectively kill tumor cells. Besides its anti-tumor activity, CD exhibits anti-oxidative, anti-inflammatory and anti-bacterial properties. In this study, we investigated the effect of the combinational treatment of DOX with CD on A375 melanoma cells compared to normal human dermal fibroblasts (NHDF) and rat cardiac myoblasts (H9C2 cells). DOX-induced cytotoxicity was unselective and affected all cell types, especially H9C2 cardiac myoblasts, demonstrating its cardiotoxic effect. In contrast, CD only decreased the cell viability of A375 melanoma cells, without harming normal (healthy) cells. The addition of CD selectively protected human dermal fibroblasts and rat cardiac myoblasts from DOX-induced cytotoxicity. While no apoptosis was induced by the combinational treatment in normal (healthy) cells, an apoptosis-mediated cytotoxicity was demonstrated in A375 melanoma cells. CD exhibited thiol reactivity as it was able to directly interact with N-acetylcysteine (NAC) in a cell-free assay and to induce heme oxygenase-1 (HO-1) in all cell types. And that took place in a reactive oxygen species (ROS)-independent manner. DOX decreased the mitochondrial membrane potential (Δψm) in all cell types, whereas CD selectively decreased mitochondrial respiration, affecting basal respiration, maximal respiration, spare respiratory capacity and ATP production in A375 melanoma cells, but not in healthy cardiac myoblasts. The DOX-induced cytotoxicity seen in melanoma cells was ROS-independent, whereas the cytotoxic effect of CD was associated with CD-induced ROS-formation and/or its thiol reactivity. This study highlights the beneficial properties of the addition of CD to DOX treatment, which might protect patients from DOX-induced cardiotoxicity. Future experiments with other tumor cell lines or a mouse model should substantiate this hypothesis. Full article
Show Figures

Figure 1

20 pages, 6103 KiB  
Communication
Redox Homeostasis Alteration Is Restored through Melatonin Treatment in COVID-19 Patients: A Preliminary Study
by María Elena Soto, Israel Pérez-Torres, Linaloe Manzano-Pech, Adrían Palacios-Chavarría, Rafael Ricardo Valdez-Vázquez, Verónica Guarner-Lans, Elizabeth Soria-Castro, Eulises Díaz-Díaz and Vicente Castrejón-Tellez
Int. J. Mol. Sci. 2024, 25(8), 4543; https://doi.org/10.3390/ijms25084543 - 21 Apr 2024
Cited by 4 | Viewed by 1970
Abstract
Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox [...] Read more.
Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox homeostasis alteration in serum from COVID-19 patients. We determined oxidative stress (OS) markers such as carbonyls, glutathione (GSH), total antioxidant capacity (TAC), thiols, nitrites (NO2), lipid peroxidation (LPO), and thiol groups in serum. We also studied the enzymatic activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST), reductase (GR), thioredoxin reductase (TrxR), extracellular superoxide dismutase (ecSOD) and peroxidases. There were significant increases in LPO and carbonyl quantities (p ≤ 0.03) and decreases in TAC and the quantities of NO2, thiols, and GSH (p < 0.001) in COVID-19 patients. The activities of the antioxidant enzymes such as ecSOD, TrxR, GPx, GST, GR, and peroxidases were decreased (p ≤ 0.04) after the MT treatment. The treatment with MT favored the activity of the antioxidant enzymes that contributed to an increase in TAC and restored the lost redox homeostasis. MT also modulated glucose homeostasis, functioning as a glycolytic agent, and inhibited the Warburg effect. Thus, MT restores the redox homeostasis that is altered in COVID-19 patients and can be used as adjuvant therapy in SARS-CoV-2 infection. Full article
Show Figures

Figure 1

14 pages, 2202 KiB  
Article
A Physiological Approach to Explore How Thioredoxin–Glutathione Reductase (TGR) and Peroxiredoxin (Prx) Eliminate H2O2 in Cysticerci of Taenia
by Alberto Guevara-Flores, Gabriela Nava-Balderas, José de Jesús Martínez-González, César Vásquez-Lima, Juan Luis Rendón and Irene Patricia del Arenal Mena
Antioxidants 2024, 13(4), 444; https://doi.org/10.3390/antiox13040444 - 10 Apr 2024
Cited by 2 | Viewed by 1936
Abstract
Peroxiredoxins (Prxs) and glutathione peroxidases (GPxs) are the main enzymes of the thiol-dependent antioxidant systems responsible for reducing the H2O2 produced via aerobic metabolism or parasitic organisms by the host organism. These antioxidant systems maintain a proper redox state in [...] Read more.
Peroxiredoxins (Prxs) and glutathione peroxidases (GPxs) are the main enzymes of the thiol-dependent antioxidant systems responsible for reducing the H2O2 produced via aerobic metabolism or parasitic organisms by the host organism. These antioxidant systems maintain a proper redox state in cells. The cysticerci of Taenia crassiceps tolerate millimolar concentrations of this oxidant. To understand the role played by Prxs in this cestode, two genes for Prxs, identified in the genome of Taenia solium (TsPrx1 and TsPrx3), were cloned. The sequence of the proteins suggests that both isoforms belong to the class of typical Prxs 2-Cys. In addition, TsPrx3 harbors a mitochondrial localization signal peptide and two motifs (-GGLG- and -YP-) associated with overoxidation. Our kinetic characterization assigns them as thioredoxin peroxidases (TPxs). While TsPrx1 and TsPrx3 exhibit the same catalytic efficiency, thioredoxin–glutathione reductase from T. crassiceps (TcTGR) was five and eight times higher. Additionally, the latter demonstrated a lower affinity (>30-fold) for H2O2 in comparison with TsPrx1 and TsPrx3. The TcTGR contains a Sec residue in its C-terminal, which confers additional peroxidase activity. The aforementioned aspect implies that TsPrx1 and TsPrx3 are catalytically active at low H2O2 concentrations, and the TcTGR acts at high H2O2 concentrations. These results may explain why the T. crassiceps cysticerci can tolerate high H2O2 concentrations. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Graphical abstract

15 pages, 20759 KiB  
Article
Deletion of Interleukin-1β Converting Enzyme Alters Mouse Cardiac Structure and Function
by Gohar Azhar, Koichiro Nagano, Pankaj Patyal, Xiaomin Zhang, Ambika Verma and Jeanne Y. Wei
Biology 2024, 13(3), 172; https://doi.org/10.3390/biology13030172 - 7 Mar 2024
Cited by 1 | Viewed by 2002
Abstract
Interleukin-1β converting enzyme (ICE, caspase-1) is a thiol protease that cleaves the pro-inflammatory cytokine precursors of IL-1β and IL-18 into active forms. Given the association between caspase-1 and cardiovascular pathology, we analyzed the hearts of ICE knockout (ICE KO) mice to test the [...] Read more.
Interleukin-1β converting enzyme (ICE, caspase-1) is a thiol protease that cleaves the pro-inflammatory cytokine precursors of IL-1β and IL-18 into active forms. Given the association between caspase-1 and cardiovascular pathology, we analyzed the hearts of ICE knockout (ICE KO) mice to test the hypothesis that caspase-1 plays a significant role in cardiac morphology and function. We characterized the histological and functional changes in the hearts of ICE KO mice compared to the Wild type. The cardiomyocytes from the neonatal ICE KO mice showed an impaired response to oxidative stress. Subsequently, the hearts from the ICE KO mice were hypertrophied, with a significant increase in the left ventricular and septal wall thickness and a greater LV mass/body weight ratio. The ICE KO mice hearts exhibited irregular myofibril arrangements and disruption of the cristae in the mitochondrial structure. Proapoptotic proteins that were significantly increased in the hearts of ICE KO versus the Wild type included pErk, pJNK, p53, Fas, Bax, and caspase 3. Further, the antiapoptotic proteins Bag-1 and Bcl-2 are activated in ICE KO hearts. Functionally, there was an increase in the left ventricular epicardial diameter and volume in ICE KO. In conclusion, our findings support the important role of caspase-1 in maintaining cardiac health; specifically, a significant decrease in caspase-1 is detrimental to the cardiovascular system. Full article
(This article belongs to the Special Issue Molecular Sciences in Cardiology and Vascular Disorders)
Show Figures

Figure 1

16 pages, 4441 KiB  
Article
Phototoxic Reactions Inducted by Hydrochlorothiazide and Furosemide in Normal Skin Cells—In Vitro Studies on Melanocytes and Fibroblasts
by Marta Karkoszka, Jakub Rok, Zuzanna Rzepka, Klaudia Banach, Justyna Kowalska and Dorota Wrześniok
Int. J. Mol. Sci. 2024, 25(3), 1432; https://doi.org/10.3390/ijms25031432 - 24 Jan 2024
Cited by 1 | Viewed by 1823
Abstract
Hypertension is known to be a multifactorial disease associated with abnormalities in neuroendocrine, metabolic, and hemodynamic systems. Poorly controlled hypertension causes more than one in eight premature deaths worldwide. Hydrochlorothiazide (HCT) and furosemide (FUR), being first-line drugs in the treatment of hypertension, are [...] Read more.
Hypertension is known to be a multifactorial disease associated with abnormalities in neuroendocrine, metabolic, and hemodynamic systems. Poorly controlled hypertension causes more than one in eight premature deaths worldwide. Hydrochlorothiazide (HCT) and furosemide (FUR), being first-line drugs in the treatment of hypertension, are among others the most frequently prescribed drugs in the world. Currently, many pharmacoepidemiological data associate the use of these diuretics with an increased risk of adverse phototoxic reactions that may induce the development of melanoma and non-melanoma skin cancers. In this study, the cytotoxic and phototoxic potential of HCT and FUR against skin cells varied by melanin pigment content was assessed for the first time. The results showed that both drugs reduced the number of metabolically active normal skin cells in a dose-dependent manner. UVA irradiation significantly increased the cytotoxicity of HCT towards fibroblasts by approximately 40% and melanocytes by almost 20% compared to unirradiated cells. In the case of skin cells exposed to FUR and UVA radiation, an increase in cytotoxicity by approximately 30% for fibroblasts and 10% for melanocytes was observed. Simultaneous exposure of melanocytes and fibroblasts to HCT or FUR and UVAR caused a decrease in cell viability, and number, which was confirmed by microscopic assessment of morphology. The phototoxic effect of HCT and FUR was associated with the disturbance of redox homeostasis confirming the oxidative stress as a mechanism of phototoxic reaction. UVA-irradiated drugs increased the generation of ROS by 10–150%, and oxidized intracellular thiols. A reduction in mitochondrial potential of almost 80% in melanocytes exposed to HCT and UVAR and 60% in fibroblasts was found due to oxidative stress occurrence. In addition, HCT and FUR have been shown to disrupt the cell cycle of normal skin cells. Finally, it can be concluded that HCT is the drug with a stronger phototoxic effect, and fibroblasts turn out to be more sensitive cells to the phototoxic effect of tested drugs. Full article
(This article belongs to the Special Issue Dermal Research: From Molecular Mechanisms to Pathology 2.0)
Show Figures

Figure 1

12 pages, 1316 KiB  
Review
The Roles of Cystatin B in the Brain and Pathophysiological Mechanisms of Progressive Myoclonic Epilepsy Type 1
by Shekhar Singh and Riikka H. Hämäläinen
Cells 2024, 13(2), 170; https://doi.org/10.3390/cells13020170 - 16 Jan 2024
Cited by 6 | Viewed by 2807
Abstract
Progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disorder, also known as Unverricht–Lundborg disease (ULD). EPM1 patients suffer from photo-sensitive seizures, stimulus-sensitive myoclonus, nocturnal myoclonic seizures, ataxia and dysarthria. In addition, cerebral ataxia and impaired GABAergic inhibition are typically present. EPM1 [...] Read more.
Progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disorder, also known as Unverricht–Lundborg disease (ULD). EPM1 patients suffer from photo-sensitive seizures, stimulus-sensitive myoclonus, nocturnal myoclonic seizures, ataxia and dysarthria. In addition, cerebral ataxia and impaired GABAergic inhibition are typically present. EPM1 is caused by mutations in the Cystatin B gene (CSTB). The CSTB protein functions as an intracellular thiol protease inhibitor and inhibits Cathepsin function. It also plays a crucial role in brain development and regulates various functions in neurons beyond maintaining cellular proteostasis. These include controlling cell proliferation and differentiation, synaptic functions and protection against oxidative stress, likely through regulation of mitochondrial function. Depending on the differentiation stage and status of neurons, the protein localizes either to the cytoplasm, nucleus, lysosomes or mitochondria. Further, CSTB can also be secreted to the extracellular matrix for interneuron rearrangement and migration. In this review, we will review the various functions of CSTB in the brain and discuss the putative pathophysiological mechanism underlying EPM1. Full article
Show Figures

Figure 1

24 pages, 11496 KiB  
Article
Glutaredoxin 2 Protein (Grx2) as an Independent Prognostic Factor Associated with the Survival of Colon Adenocarcinoma Patients
by Marlena Brzozowa-Zasada, Adam Piecuch, Karolina Bajdak-Rusinek, Karolina Gołąbek, Marek Michalski, Kamil Janelt and Natalia Matysiak
Int. J. Mol. Sci. 2024, 25(2), 1060; https://doi.org/10.3390/ijms25021060 - 15 Jan 2024
Cited by 3 | Viewed by 2321
Abstract
Glutaredoxin 2 (Grx2; Glrx2) is a glutathione-dependent oxidoreductase located in mitochondria, which is central to the regulation of glutathione homeostasis and mitochondrial redox, and plays a crucial role in highly metabolic tissues. In response to mitochondrial redox signals and oxidative stress, Grx2 can [...] Read more.
Glutaredoxin 2 (Grx2; Glrx2) is a glutathione-dependent oxidoreductase located in mitochondria, which is central to the regulation of glutathione homeostasis and mitochondrial redox, and plays a crucial role in highly metabolic tissues. In response to mitochondrial redox signals and oxidative stress, Grx2 can catalyze the oxidation and S-glutathionylation of membrane-bound thiol proteins in mitochondria. Therefore, it can have a significant impact on cancer development. To investigate this further, we performed an immunohistochemical analysis of Grx2 protein expression in colon adenocarcinoma samples collected from patients with primary colon adenocarcinoma (stage I and II) and patients with metastasis to regional lymph nodes (stage III). The results of our study revealed a significant relationship between the immunohistochemical expression of Grx2 and tumor histological grade, depth of invasion, regional lymph node involvement, angioinvasion, staging, and PCNA immunohistochemical expression. It was found that 87% of patients with stage I had high levels of Grx2 expression. In contrast, only 33% of patients with stage II and 1% of patients with stage III had high levels of Grx2 expression. Moreover, the multivariate analysis revealed that the immunohistochemical expression of Grx2 protein apart from the grade of tumor differentiation was an independent prognostic factors for the survival of patients with colon adenocarcinoma. Studies analyzing Grx2 levels in patients’ blood confirmed that the highest levels of serum Grx2 protein was also found in stage I patients, which was reflected in the survival curves. A higher level of Grx2 in the serum has been associated with a more favorable outcome. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western Blot. Full article
(This article belongs to the Special Issue Advanced Research on Biomarkers in Gastrointestinal Cancer)
Show Figures

Figure 1

20 pages, 5073 KiB  
Article
Chronic Intermittent Hypoxia-Induced Dysmetabolism Is Associated with Hepatic Oxidative Stress, Mitochondrial Dysfunction and Inflammation
by Joana L. Fernandes, Fátima O. Martins, Elena Olea, Jesus Prieto-Lloret, Patrícia C. Braga, Joana F. Sacramento, Catarina O. Sequeira, Ana P. Negrinho, Sofia A. Pereira, Marco G. Alves, Asunción Rocher and Silvia V. Conde
Antioxidants 2023, 12(11), 1910; https://doi.org/10.3390/antiox12111910 - 25 Oct 2023
Cited by 7 | Viewed by 3079
Abstract
The association between obstructive sleep apnea (OSA) and metabolic disorders is well-established; however, the underlying mechanisms that elucidate this relationship remain incompletely understood. Since the liver is a major organ in the maintenance of metabolic homeostasis, we hypothesize that liver dysfunction plays a [...] Read more.
The association between obstructive sleep apnea (OSA) and metabolic disorders is well-established; however, the underlying mechanisms that elucidate this relationship remain incompletely understood. Since the liver is a major organ in the maintenance of metabolic homeostasis, we hypothesize that liver dysfunction plays a crucial role in the pathogenesis of metabolic dysfunction associated with obstructive sleep apnea (OSA). Herein, we explored the underlying mechanisms of this association within the liver. Experiments were performed in male Wistar rats fed with a control or high fat (HF) diet (60% lipid-rich) for 12 weeks. Half of the groups were exposed to chronic intermittent hypoxia (CIH) (30 hypoxic (5% O2) cycles, 8 h/day) that mimics OSA, in the last 15 days. Insulin sensitivity and glucose tolerance were assessed. Liver samples were collected for evaluation of lipid deposition, insulin signaling, glucose homeostasis, hypoxia, oxidative stress, antioxidant defenses, mitochondrial biogenesis and inflammation. Both the CIH and HF diet induced dysmetabolism, a state not aggravated in animals submitted to HF plus CIH. CIH aggravates hepatic lipid deposition in obese animals. Hypoxia-inducible factors levels were altered by these stimuli. CIH decreased the levels of oxidative phosphorylation complexes in both groups and the levels of SOD-1. The HF diet reduced mitochondrial density and hepatic antioxidant capacity. The CIH and HF diet produced alterations in cysteine-related thiols and pro-inflammatory markers. The results obtained suggest that hepatic mitochondrial dysfunction and oxidative stress, leading to inflammation, may be significant factors contributing to the development of dysmetabolism associated with OSA. Full article
Show Figures

Graphical abstract

Back to TopTop