Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,388)

Search Parameters:
Keywords = mode share

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1123 KB  
Article
A Compact Dual-Band Dual-Mode Wearable Button Antenna for WBAN Applications
by Xue-Ping Li, Xue-Lin Zhang, Xue-Qing Yang, Zhen-Yong Dong, Xue-Mei Feng and Wei Li
Micromachines 2025, 16(9), 975; https://doi.org/10.3390/mi16090975 (registering DOI) - 25 Aug 2025
Abstract
A novel dual-band dual-mode wearable button antenna for wireless body area network (WBAN) applications is proposed in this paper. The antenna ingeniously integrates a monopole structure and an optimized planar inverted-F antenna (PIFA) configuration in a shared radiator, enabling dual-mode operation with a [...] Read more.
A novel dual-band dual-mode wearable button antenna for wireless body area network (WBAN) applications is proposed in this paper. The antenna ingeniously integrates a monopole structure and an optimized planar inverted-F antenna (PIFA) configuration in a shared radiator, enabling dual-mode operation with a compact size. In the low-frequency band, the monopole structure generates an omnidirectional radiation pattern, facilitating efficient on-body communication. Meanwhile, the PIFA structure in the high-frequency band exhibits directed radiation, optimizing off-body communication. To enhance bandwidth, a parasitic structure is incorporated into the design. Both numerical simulations and experimental measurements are conducted to evaluate the antenna’s bandwidth and radiation performance in free space and on-body environments, with results showing excellent agreement. The measured bandwidth of the antenna on the human tissue is 300 MHz (2.3–2.6 GHz) in the low-frequency band and 4.5 GHz (5.5–10 GHz) in the high-frequency band. The maximum radiation efficiency reaches 76% in the low band (2.4–2.4835 GHz) and 93% in the upper band (5.725–5.875 GHz). Additionally, the peak gain on the human body can achieve 2.5 dB and 6.9 dB for the low and upper bands, respectively. The results confirm that the antenna meets the design requirements for Industrial, Scientific, and Medical (ISM) band applications, making it a promising candidate for WBAN systems. Full article
(This article belongs to the Section E:Engineering and Technology)
22 pages, 659 KB  
Article
Incentive Mechanisms in Consortium-Based PPP Projects: Considering Team Collaboration and Reciprocal Member Preferences
by Ying Sun, Zhi-Qiang Ma and Fan Yang
Buildings 2025, 15(17), 2991; https://doi.org/10.3390/buildings15172991 - 22 Aug 2025
Viewed by 84
Abstract
The incentive mechanism functions as a core safeguard to ensure the efficient execution of consortium-based Public–Private Partnership (PPP) projects and the realization of value-added outcomes. The heterogeneity of consortium members, their reciprocal preferences, and the collaborative dynamics of the team collectively contribute to [...] Read more.
The incentive mechanism functions as a core safeguard to ensure the efficient execution of consortium-based Public–Private Partnership (PPP) projects and the realization of value-added outcomes. The heterogeneity of consortium members, their reciprocal preferences, and the collaborative dynamics of the team collectively contribute to the formation of project alliances characterized by resource synergy, complementary advantages, and risk sharing. However, these same factors also contribute to the multi-layered structure of principal–agent relationships and the inherent complexity of incentive pathways and mechanisms in consortium-based PPP settings. Drawing upon the team collaboration effect and reciprocal preferences among consortium members, this study incorporated the member heterogeneity and developed three incentive models for such projects, such as the Dual-Performance (DP) mode, the Total-Performance (TP) mode, and the Individual-Performance (IP) mode. This study examined the conditions under which these incentive modes were established, the relationship between incentive intensity and optimal effort levels of consortium members, and the influence of reciprocal preferences on incentive effectiveness. Further, the selection criteria and appropriate application scenarios for each of the three incentive models were analyzed according to a comparative analysis, thereby putting forward effective suggestions for improving the effort levels of private investors in consortium-based PPP projects. The study results indicate that team synergy effects play an imperative role in improving the optimal effort levels under all three modes, whereas reciprocity preferences exhibit a negative relationship with effort in the DP and TP modes. When reciprocity remains within a moderate range, the DP mode achieves highest aggregate effort levels, whereas the IP mode induces positive incentive effects only under extreme reciprocity conditions. Thus, the application of dual incentive coefficients can enhance operational adaptability and allocative efficiency and governments should establish a multidimensional collaborative incentive for consortium-based PPP projects to strengthen effectiveness and project quality. This comprehensive evaluation provides crucial insights for policymakers, emphasizing the strategic selection of incentive mechanisms to enhance the sustainability and effectiveness of consortium-based PPP Projects. Full article
14 pages, 2569 KB  
Article
Exometabolite-Based Antimicrobial Formulations from Lactic Acid Bacteria as a Multi-Target Strategy Against Multidrug-Resistant Escherichia coli
by Gabriela N. Tenea, Diana Molina, Yuleissy Cuamacas, George Cătălin Marinescu and Roua Gabriela Popescu
Antibiotics 2025, 14(9), 851; https://doi.org/10.3390/antibiotics14090851 - 22 Aug 2025
Viewed by 153
Abstract
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied [...] Read more.
Background/Objectives: The global increase in multidrug-resistant (MDR) bacterial infections underscores the urgent need for effective and sustainable antimicrobial alternatives. This study investigates the antimicrobial activity of exometabolite-based formulations (ExAFs), derived from the cell-free supernatants (CFS) of native lactic acid bacteria (LAB) applied individually or in combination thereof, against MDR-Escherichia coli strain L1PEag1. Methods: Fourteen ExAFs were screened for inhibitory activity using time–kill assays, and structural damage to bacterial cells was assessed via scanning and transmission electron microscopy (SEM/TEM). The most potent formulation was further characterized by liquid chromatography–tandem mass spectrometry (LC–MS/MS) employing a Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH) approach for untargeted metabolite profiling. Results: Among the tested formulations, E10, comprising CFS from Weissella cibaria UTNGt21O, exhibited the strongest inhibitory activity (zone of inhibition: 17.12 ± 0.22 mm), followed by E1 (CFS from Lactiplantibacillus plantarum Gt28L and Lactiplantibacillus plantarum Gt2, 3:1 v/v) and E2 (Gt28L CFS + EPS from Gt2, 3:1 v/v). Time–kill assays demonstrated rapid, dose-dependent bactericidal activity: E1 and E10 achieved >98% reduction in viable counts within 2–3 h, at 1× MIC, while E2 sustained 98.24% inhibition over 18 h, at 0.25× MIC. SEM and TEM revealed pronounced ultrastructural damage, including membrane disruption, cytoplasmic condensation, and intracellular disintegration, consistent with a membrane-targeting mode of action. Metabolomic profiling of E10 identified 22 bioactive metabolites, including lincomycin, the proline-rich peptide Val–Leu–Pro–Val–Pro–Gln, multiple flavonoids, and loperamide. Several compounds shared structural similarity with ribosomally synthesized and post-translationally modified peptides (RiPPs), including lanthipeptides and lassopeptides, suggesting a multifaceted antimicrobial mechanism. Conclusions: These findings position ExAFs, particularly E10, as promising, peptide-rich, bio-based antimicrobial candidates for food safety or therapeutic applications. The co-occurrence of RiPP analogs and secondary metabolites in the formulation suggests the potential for complementary or multi-modal bactericidal effects, positioning these compounds as promising eco-friendly alternatives for combating MDR pathogens. Full article
(This article belongs to the Special Issue Bioactive Peptides and Their Antibiotic Activity)
Show Figures

Figure 1

29 pages, 4827 KB  
Article
Cycling and GHG Emissions: How Infrastructure Makes All the Difference
by Hamed Naseri, Jérôme Laviolette, E. Owen D. Waygood and Kevin Manaugh
Sustainability 2025, 17(17), 7577; https://doi.org/10.3390/su17177577 - 22 Aug 2025
Viewed by 120
Abstract
One practical approach to reduce GHG emissions is to shift from driving to modes with lower emissions, such as cycling. One key component of supporting cycling is the quality and quantity of cycling infrastructure. This study analyzes the relationship between the quality (or [...] Read more.
One practical approach to reduce GHG emissions is to shift from driving to modes with lower emissions, such as cycling. One key component of supporting cycling is the quality and quantity of cycling infrastructure. This study analyzes the relationship between the quality (or comfort) and quantity of bicycle infrastructure, the likelihood of cycling, and the emissions. The first objective of this study is to analyze the influence of various variables on cycling choice using an interpretable ensemble learning approach. Second, a scenario-based analysis is applied to examine the influence of various policy scenarios (related to cycling infrastructure) on the transportation life cycle GHG emissions. Using origin–destination survey data from Montreal and Laval, Canada, policy modelling results suggest that without current cycling infrastructure, cycling mode share would be 5.3% less, driving mode share would be 4% higher, and GHG emissions would be 10.2% higher among all trips of a reasonable cycling distance starting from home. Then, policy scenarios modelling for this subset of trips suggests that improving the quality of bikeways, increasing their quantity, and reducing the trip distances by 25% can reduce the GHG emissions by 3.9%, 6.6%, and 29.3%, and increase the number of cycling trips by 8.1%, 14%, and 24.4%, respectively. Full article
Show Figures

Figure 1

23 pages, 4659 KB  
Article
The Impact of COVID-19 on Civil Aviation Emissions: A High-Resolution Inventory Study in Eastern China’s Industrial Province
by Chuanyong Zhu, Baodong Jiang, Mengyi Qiu, Na Yang, Lei Sun, Chen Wang, Baolin Wang, Guihuan Yan and Chongqing Xu
Atmosphere 2025, 16(8), 994; https://doi.org/10.3390/atmos16080994 - 21 Aug 2025
Viewed by 140
Abstract
Emissions from civil aviation not only degrade the environmental quality around airports but also have the significant effects on climate change. According to the flight schedules, aircraft/engine combination information and revised emission factors from the International Civil Aviation Organization (ICAO) Aircraft Engine Emission [...] Read more.
Emissions from civil aviation not only degrade the environmental quality around airports but also have the significant effects on climate change. According to the flight schedules, aircraft/engine combination information and revised emission factors from the International Civil Aviation Organization (ICAO) Aircraft Engine Emission Databank (EEDB) based on meteorological data, the emissions of climate forcers (CFs: BC, CH4, CO2, H2O, and N2O), conventional air pollutants (CAPs: CO, HC, NOX, OC, PM2.5, and SO2), and hazardous heavy metals (HMs: As, Cu, Ni, Se, Cr, Cd, Hg, Pb, and Zn) from flights of civil aviation of eight airports in Shandong in 2018 and 2020 are estimated in this study. Moreover, the study quantifies the impact of COVID-19 on civil aviation emissions (CFs, CAPs, and HMs) in Shandong, revealing reductions of 47.45%, 48.03%, and 47.45% in 2020 compared to 2018 due to flight cuts. By 2020, total emissions reach 9075.44 kt (CFs), 35.57 kt (CAPs), and 0.51 t (HMs), with top contributors being Qingdao Liuting International Airport (ZSQD) (39.60–40.37%), Shandong Airlines (26.56–28.92%), and B738 aircraft (42.98–46.70%). As byproducts of incomplete fuel combustion, the shares of CO (52.40%) and HC (47.76%) emissions during taxi/ground idle mode are significant. In contrast, emissions during cruise phase are the dominant contributor of other species with a share of 74.67–95.61% of the associated total emissions. The findings highlight the disproportionate role of specific airlines, aircraft, and operational phases in regional aviation pollution. By bridging gaps in localized emission inventories and flight-phase analyses, this research supports targeted mitigation strategies, such as fleet modernization and ground operation optimization, to improve air quality in Shandong. The study highlights how sudden shifts in demand, such as those caused by pandemics, can significantly alter emission profiles, providing insights for sustainable aviation planning. Full article
(This article belongs to the Special Issue Aviation Emissions and Their Impact on Air Quality)
Show Figures

Figure 1

40 pages, 17003 KB  
Article
Marine Predators Algorithm-Based Robust Composite Controller for Enhanced Power Sharing and Real-Time Voltage Stability in DC–AC Microgrids
by Md Saiful Islam, Tushar Kanti Roy and Israt Jahan Bushra
Algorithms 2025, 18(8), 531; https://doi.org/10.3390/a18080531 - 20 Aug 2025
Viewed by 216
Abstract
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on [...] Read more.
Hybrid AC/DC microgrids (HADCMGs), which integrate renewable energy sources and battery storage systems, often face significant stability challenges due to their inherently low inertia and highly variable power inputs. To address these issues, this paper proposes a novel, robust composite controller based on backstepping fast terminal sliding mode control (BFTSMC). This controller is further enhanced with a virtual capacitor to emulate synthetic inertia and with a fractional power-based reaching law, which ensures smooth and finite-time convergence. Moreover, the proposed control strategy ensures the effective coordination of power sharing between AC and DC sub-grids through bidirectional converters, thereby maintaining system stability during rapid fluctuations in load or generation. To achieve optimal control performance under diverse and dynamic operating conditions, the controller gains are adaptively tuned using the marine predators algorithm (MPA), a nature-inspired metaheuristic optimization technique. Furthermore, the stability of the closed-loop system is rigorously established through control Lyapunov function analysis. Extensive simulation results conducted in the MATLAB/Simulink environment demonstrate that the proposed controller significantly outperforms conventional methods by eliminating steady-state error, reducing the settling time by up to 93.9%, and minimizing overshoot and undershoot. In addition, real-time performance is validated via processor-in-the-loop (PIL) testing, thereby confirming the controller’s practical feasibility and effectiveness in enhancing the resilience and efficiency of HADCMG operations. Full article
Show Figures

Figure 1

24 pages, 1481 KB  
Article
Optimal Heliocentric Orbit Raising of CubeSats with a Monopropellant Electrospray Multimode Propulsion System
by Alessandro A. Quarta, Marco Bassetto and Giulia Becatti
Appl. Sci. 2025, 15(16), 9169; https://doi.org/10.3390/app15169169 - 20 Aug 2025
Viewed by 126
Abstract
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion [...] Read more.
A Multimode Propulsion System (MPS) is an innovative spacecraft thruster concept that integrates two or more propulsion modes sharing the same type of propellant. A spacecraft equipped with an MPS can potentially combine the advantages of continuous-thrust electric propulsion and medium-to-high-thrust chemical propulsion within a single vehicle, while reducing the overall mass compared to traditional configurations where each propulsion system uses a different propellant. This feature makes the MPS concept particularly attractive for small spacecraft, such as the well-known CubeSats, which have now reached a high level of technological maturity and are employed not only in geocentric environments but also in interplanetary missions as support elements for conventional deep-space vehicles. Within the MPS framework, a Monopropellant-Electrospray Multimode Propulsion System (MEMPS) represents a specific type of micropropulsion technology that enables a single miniaturized propulsion unit to operate in either catalytic-chemical or electrospray-electric mode. This paper investigates the flight performance of a MEMPS-equipped CubeSat in a classical circle-to-circle orbit-raising (or lowering) maneuver within a two-dimensional mission scenario. Specifically, the study derives the optimal guidance law that allows the CubeSat to follow a transfer trajectory optimized either for minimum flight time or minimum propellant consumption, starting from a parking orbit of assigned radius and targeting a final circular orbit. Numerical simulations indicate that a heliocentric orbit raising, increasing the initial solar distance by 20%, can be achieved with a flight time of approximately 11 months and a propellant consumption slightly below 6 kg. The proposed method is applied to a heliocentric case study, although the procedure can be readily extended to geocentric transfer missions, which represent a more common application scenario for current CubeSat-based scientific missions. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

24 pages, 2605 KB  
Article
Spatiotemporal Evolution and Driving Forces of Carbon Decoupling in Tourism in the Yangtze River Economic Belt
by Qunli Tang, Qi Wang and Shouhao Zhang
Sustainability 2025, 17(16), 7516; https://doi.org/10.3390/su17167516 - 20 Aug 2025
Viewed by 230
Abstract
Achieving decoupling between tourism economic growth and tourism carbon emissions is of paramount importance. This study innovatively integrates the geographically weighted regression (GWR) model—a tool for analyzing spatial heterogeneity—into the Tapio decoupling framework to examine the dynamic decoupling relationship between tourism growth and [...] Read more.
Achieving decoupling between tourism economic growth and tourism carbon emissions is of paramount importance. This study innovatively integrates the geographically weighted regression (GWR) model—a tool for analyzing spatial heterogeneity—into the Tapio decoupling framework to examine the dynamic decoupling relationship between tourism growth and carbon emissions. It further investigates the driving factors behind decoupling evolution, their interactions, and precisely characterizes the mechanisms, directions, pathways, and intensities of these drivers. Key findings reveal an M-shaped fluctuation trend in tourism carbon emissions within the study area, with significant variations in emission shares across different tourism sectors and transportation modes. Spatially, carbon emissions exhibit heterogeneity and negative autocorrelation, where inter-regional disparities diminish while intra-regional disparities intensify. The tourism economic system in the Yangtze River Economic Belt (YREB) transitioned through weak decoupling, expansive negative decoupling, and strong decoupling states, eventually stabilizing at weak decoupling. Regional decoupling states varied markedly, suggesting that some areas require exploration of new low-carbon development paradigms. For sustainable tourism development, policy-makers should prioritize the decoupling relationship between tourism emissions and economic growth. Region-specific policies must be formulated to facilitate low-carbon transitions, promote industrial upgrading, and enhance inter-regional collaboration—ultimately advancing sustainable tourism under carbon neutrality goals. Full article
(This article belongs to the Special Issue Sustainable Development of the Tourism Economy)
Show Figures

Figure 1

25 pages, 380 KB  
Article
Elements of a Culture of Peace: A Bahá’í Perspective
by Tiffani Betts Razavi
Religions 2025, 16(8), 1073; https://doi.org/10.3390/rel16081073 - 19 Aug 2025
Viewed by 349
Abstract
The realization of universal peace is a central teaching of the Bahá’í Faith and permeates individual and collective Bahá’í practice. This article explores this teaching through the lens of culture as a constructive social process based on shared beliefs and values and their [...] Read more.
The realization of universal peace is a central teaching of the Bahá’í Faith and permeates individual and collective Bahá’í practice. This article explores this teaching through the lens of culture as a constructive social process based on shared beliefs and values and their expression. It begins by outlining a Bahá’í concept of peace and then turns to the question of how Bahá’í teachings foster a culture of peace. It focuses on three elements central to a Bahá’í approach to a culture of peace, outlined as follows: (i) the beliefs people hold of themselves and the world, (ii) the importance of a sense of moral purpose as the basis of individual and collective commitment, and (iii) a framework for shared agency through individual action and community building, as illustrated by Bahá’í educational activities, participation in social discourses, and community development initiatives. The article explores each of these elements from the perspective of Bahá’í principles and practices, at the individual and collective level, in the light of the academic literature on cultures of peace, paradigm shift, and normative change, and then addresses the contribution of a Bahá’í perspective to understanding cultures of peace. It concludes with a reflection on the mode of operation of the Bahá’í community, the role of individuals, communities, institutions, and emerging cultural patterns, challenges presented by this vision of peacebuilding, and questions for future research on a Bahá’í approach to a culture of peace. Full article
18 pages, 1690 KB  
Article
Mode-Aware Radio Resource Allocation Algorithm in Hybrid Users Based Cognitive Radio Networks
by Sirui Luo and Ziwei Chen
Sensors 2025, 25(16), 5086; https://doi.org/10.3390/s25165086 - 15 Aug 2025
Viewed by 220
Abstract
In cognitive radio networks (CRNs), primary users (PUs) have the highest priority in channel resource allocation. Secondary users (SUs) can generally only utilize temporarily unused channels of PUs, share channels with PUs, or cooperate with PUs [...] Read more.
In cognitive radio networks (CRNs), primary users (PUs) have the highest priority in channel resource allocation. Secondary users (SUs) can generally only utilize temporarily unused channels of PUs, share channels with PUs, or cooperate with PUs to gain priority through the interweave, underlay, and overlay modes. Traditional optimization schemes for channel resource allocation often lead to structural wastage of channel resources, whereas approaches such as reinforcement learning—though effective—require high computational power and thus exhibit poor adaptability in industrial deployments. Moreover, existing works typically optimize a single performance metric with limited scenario scalability. To address these limitations, this paper proposes a CR network algorithm based on the hybrid users (HU) concept, which links the Interweave and Underlay modes through an adaptive threshold for mode switching. The algorithm employs the Hungarian method for SU channel allocation and applies a multi-level power adjustment strategy when PUs and SUs share the same channel to maximize channel resource utilization. Simulation results under various parameter settings show that the proposed algorithm improves the average signal to interference plus noise ratio (SINR) of SUs while ensuring PU service quality, significantly enhances network energy efficiency, and markedly improves Jain’s fairness among SUs in low-power scenarios. Full article
(This article belongs to the Special Issue Emerging Trends in Next-Generation mmWave Cognitive Radio Networks)
Show Figures

Figure 1

18 pages, 7353 KB  
Article
Low-Carbon Concrete Reinforced with Waste Steel Rivet Fibers Utilizing Steel Slag Powder, and Processed Recycled Concrete Aggregate—Engineering Insights
by Dilan Dh. Awla, Bengin M. A. Herki and Aryan Far H. Sherwani
Fibers 2025, 13(8), 109; https://doi.org/10.3390/fib13080109 - 14 Aug 2025
Viewed by 160
Abstract
The construction industry is a major source of environmental degradation as it is responsible for a significant share of global CO2 emissions, especially from cement and aggregate consumption. This study fills the need for sustainable construction materials by developing and evaluating a [...] Read more.
The construction industry is a major source of environmental degradation as it is responsible for a significant share of global CO2 emissions, especially from cement and aggregate consumption. This study fills the need for sustainable construction materials by developing and evaluating a low-carbon fiber-reinforced concrete (FRC) made of steel slag powder (SSP), processed recycled concrete aggregates (PRCAs), and waste steel rivet fibers (WSRFs) derived from industrial waste. The research seeks to reduce dependency on virgin materials while maintaining high values of mechanical performance and durability in structural applications. Sixteen concrete mixes were used in the experimental investigations with control, SSP, SSP+RCA, and RCA, reinforced with various fiber dosages (0%, 0.2%, 0.8%, 1.4%) by concrete volume. Workability, density, compressive strength, tensile strength, and water absorption were measured according to the appropriate standards. Compressive and tensile strength increased in all mixes and the 1.4% WSRF mix had the best performance. However, it was found that a fiber content of 0.8% was optimal, which balanced the improvement in strength, durability, and workability by sustainable reuse of recycled materials and demolition waste. It was found by failure mode analysis that the transition was from brittle to ductile behavior as the fiber content increased. The relationship between compressive, tensile strength, and fiber content was visualized as a 3D response surface in order to support these mechanical trends. It is concluded in this study that 15% SSP, 40% PRCA, and 0.8% WSRF are feasible, specific solutions to improve concrete performance and advance the circular economy. Full article
Show Figures

Figure 1

23 pages, 7983 KB  
Article
Genome-Wide Identification of ATP-Binding Cassette (ABC) Transporter Gene Family and Their Expression Analysis in Response to Anthocyanin Transportation in the Fruit Peel of Eggplant (Solanum melongena L.)
by Hesbon Ochieng Obel, Xiaohui Zhou, Songyu Liu, Liwei Xing, Yan Yang, Jun Liu and Yong Zhuang
Int. J. Mol. Sci. 2025, 26(16), 7848; https://doi.org/10.3390/ijms26167848 - 14 Aug 2025
Viewed by 241
Abstract
The ATP-binding cassette (ABC) gene family represents one of the most extensive and evolutionarily conserved groups of proteins, characterized by ATP-dependent transporters that mediate the movement of substrates across cellular membranes. Despite their well-documented functions in various biological processes, the specific contributions of [...] Read more.
The ATP-binding cassette (ABC) gene family represents one of the most extensive and evolutionarily conserved groups of proteins, characterized by ATP-dependent transporters that mediate the movement of substrates across cellular membranes. Despite their well-documented functions in various biological processes, the specific contributions of ABC transporters in eggplant (Solanum melongena L.) remain unexplored. To address this gap, we conducted a comprehensive genome-wide identification and expression profiling of ABC transporter-encoding genes in eggplant. Our investigation identified 159 SmABC genes encoding ABC transporter that were irregularly dispersed across all 12 chromosomes. The encoded proteins exhibited considerable diversity in size, with amino acid lengths varying from 55 to 2628 residues, molecular weights ranging between 4.04 and 286.42 kDa, and isoelectric points spanning from 4.89 to 11.62. Phylogenetic analysis classified the SmABC transporters into eight distinct subfamilies, with the ABCG subfamily being the most predominant. Subcellular localization predictions revealed that most SmABC proteins were localized to the plasma membrane. Members within the same subfamily exhibited conserved motif arrangements and exon–intron structures, suggesting functional and evolutionary conservation. Promoter analysis identified both shared and unique cis-regulatory elements associated with transcriptional regulation. We identified 9 tandem duplication gene pairs and 20 segmental duplication pairs in the SmABC gene family, with segmental duplication being the major mode of expansion. Non-synonymous to synonymous substitutions (Ka/Ks) analysis revealed that paralogs of SmABC family genes underwent mainly purifying selection during the evolutionary process. Comparative genomic analysis demonstrated collinearity between eggplant, Arabidopsis thaliana, and tomato (Solanum lycopersicum), confirming homology among SmABC, AtABC, and SlABC genes. Tissue-specific expression profiling revealed differential SmABC expression patterns, with three distinct genes, SmABCA16, SmABCA17 and SmABCG15, showing preferential expression in purple-peeled fruits (A1, A3, and A5 accessions), implicating their potential involvement in anthocyanin transport. Functional validation via SmABCA16 silencing led to a significant downregulation of SmABCA16 and reduced purple coloration, indicating its regulatory role in anthocyanin transport in eggplant fruit peel. This comprehensive genomic and functional characterization of ABC transporters in eggplant establishes a critical foundation for understanding their biological roles and supports targeted breeding strategies to enhance fruit quality traits. Full article
(This article belongs to the Special Issue Advances in Vegetable Breeding and Molecular Research)
Show Figures

Figure 1

17 pages, 5141 KB  
Article
Optimization of the Photovoltaic Panel Design Towards Durable Solar Roads
by Peichen Cai, Yutong Chai, Susan Tighe, Meng Wang and Shunde Yin
Inventions 2025, 10(4), 70; https://doi.org/10.3390/inventions10040070 - 11 Aug 2025
Viewed by 280
Abstract
To improve the mechanical stability and service durability of solar road structures, this study systematically investigates the mechanical response characteristics of photovoltaic panels with different geometric shapes—including triangles, rectangles, squares, regular pentagons, and regular hexagons—under consistent boundary and loading conditions using the discrete [...] Read more.
To improve the mechanical stability and service durability of solar road structures, this study systematically investigates the mechanical response characteristics of photovoltaic panels with different geometric shapes—including triangles, rectangles, squares, regular pentagons, and regular hexagons—under consistent boundary and loading conditions using the discrete element method (DEM). All panels have a uniform thickness of 10 cm and equivalent surface areas to ensure shape comparability. Side lengths vary among the shapes: square panels with sides of 0.707 m, 1.0 m, and 1.5 m; triangle 1.155 m; rectangle (aspect ratio 1:2) 0.707 m; pentagon 1.175 m; and hexagon 0.577 m. Results show that panel geometry significantly influences stress distribution and deformation behavior. Although triangular panels exhibit higher ultimate bearing capacity and failure energy, they suffer from severe stress concentration and low stiffness. Regular hexagonal panels, due to their geometric symmetry, enable more uniform stress and displacement distributions, offering better stability and crack resistance. Size effect analysis reveals that larger panels improve load-bearing and energy dissipation capacity but exacerbate edge stress concentration and reduce overall stiffness, leading to more pronounced “thinning” deformation and premature failure. Failure mode analysis further indicates that shape governs crack initiation and path, while size determines crack propagation rate and failure extent—revealing a coupled shape–size mechanical mechanism. Regarding assembly, honeycomb arrangements demonstrate superior mechanical performance due to higher compactness and better load-sharing characteristics. The study ultimately recommends the use of small-sized regular hexagonal units and optimized splicing structures to balance strength, stiffness, and durability. These findings provide theoretical guidance and parameter references for the structural design of solar roads. Full article
Show Figures

Figure 1

22 pages, 9411 KB  
Article
A Spatiotemporal Multi-Model Ensemble Framework for Urban Multimodal Traffic Flow Prediction
by Zhenkai Wang and Lujin Hu
ISPRS Int. J. Geo-Inf. 2025, 14(8), 308; https://doi.org/10.3390/ijgi14080308 - 10 Aug 2025
Viewed by 642
Abstract
Urban multimodal travel trajectory prediction is a core challenge in Intelligent Transportation Systems (ITSs). It requires modeling both spatiotemporal dependencies and dynamic interactions among different travel modes such as taxi, bike-sharing, and buses. To address the limitations of existing methods in capturing these [...] Read more.
Urban multimodal travel trajectory prediction is a core challenge in Intelligent Transportation Systems (ITSs). It requires modeling both spatiotemporal dependencies and dynamic interactions among different travel modes such as taxi, bike-sharing, and buses. To address the limitations of existing methods in capturing these diverse trajectory characteristics, we propose a spatiotemporal multi-model ensemble framework, which is an ensemble model called GLEN (GCN and LSTM Ensemble Network). Firstly, the trajectory feature adaptive driven model selection mechanism classifies trajectories into dynamic travel and fixed-route scenarios. Secondly, we use a Graph Convolutional Network (GCN) to capture dynamic travel patterns and Long Short-Term Memory (LSTM) network to model fixed-route patterns. Subsequently the outputs of these models are dynamically weighted, integrated, and fused over a spatiotemporal grid to produce accurate forecasts of urban total traffic flow at multiple future time steps. Finally, experimental validation using Beijing’s Chaoyang district datasets demonstrates that our framework effectively captures spatiotemporal and interactive characteristics between multimodal travel trajectories and outperforms mainstream baselines, thereby offering robust support for urban traffic management and planning. Full article
Show Figures

Figure 1

18 pages, 2337 KB  
Article
Foldable/Deployable Spherical Mechanisms Based on Regular Polygons
by Raffaele Di Gregorio
Symmetry 2025, 17(8), 1281; https://doi.org/10.3390/sym17081281 - 9 Aug 2025
Viewed by 370
Abstract
The possibility of satisfying special geometric conditions, either through their architecture or through their configuration, makes a mechanism acquire changeable motion characteristics (kinematotropic or metamorphic behavior, multi-mode operation capability, etc.) that are of interest. Aligning revolute (R)-pair axes is one of such special [...] Read more.
The possibility of satisfying special geometric conditions, either through their architecture or through their configuration, makes a mechanism acquire changeable motion characteristics (kinematotropic or metamorphic behavior, multi-mode operation capability, etc.) that are of interest. Aligning revolute (R)-pair axes is one of such special conditions. In spherical linkages, only R-pairs, whose axes share a common intersection (spherical motion center (SMC)), are present. Investigating how R-pair axes can become collinear in a spherical mechanism leads to the identification of those that exhibit changeable motion features. This approach is adopted here to select non-redundant spherical mechanisms coming from regular polygons that are foldable/deployable and have a wide enough workspace for performing motion tasks. This analysis shows that the ones with hexagonal architecture prevail over the others. These results are exploitable in many contexts related to field robotics (aerospace, machines for construction sites, deployable antennas, etc.) Full article
Show Figures

Figure 1

Back to TopTop