Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = modified nucleosides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2416 KiB  
Article
On the Quest for Biomarkers: A Comprehensive Analysis of Modified Nucleosides in Ovarian Cancer Cell Lines
by Daniel A. Mohl, Simon Lagies, Alexander Lonzer, Simon P. Pfäffle, Philipp Groß, Moritz Benka, Markus Jäger, Matthias C. Huber, Stefan Günther, Dietmar A. Plattner, Ingolf Juhasz-Böss, Clara Backhaus and Bernd Kammerer
Cells 2025, 14(9), 626; https://doi.org/10.3390/cells14090626 - 22 Apr 2025
Viewed by 355
Abstract
Ovarian carcinoma is a gynecological cancer with poor long-term survival rates when detected at advanced disease stages. Early symptoms are non-specific, and currently, there are no adequate strategies to identify this disease at an early stage when much higher survival rates can be [...] Read more.
Ovarian carcinoma is a gynecological cancer with poor long-term survival rates when detected at advanced disease stages. Early symptoms are non-specific, and currently, there are no adequate strategies to identify this disease at an early stage when much higher survival rates can be expected. Ovarian carcinoma is a heterogeneous disease, with various histotypes originating from different cells and tissues, and is characterized by distinct somatic mutations, progression profiles, and treatment responses. Our study presents a targeted metabolomics approach, characterizing seven different ovarian (cancer-) cell lines according to their extracellular, intracellular, and RNA-derived modified nucleoside profiles. Moreover, these data were correlated with transcriptomics data to elucidate the underlying mechanisms. Modified nucleosides are excreted in higher amounts in cancer cell lines due to their altered DNA/RNA metabolism. This study shows that seven different ovarian cancer cell lines, representing different molecular subtypes, can be discriminated according to their specific nucleoside pattern. We suggest modified nucleosides as strong biomarker candidates for ovarian cancer with the potential for subtype-specific discrimination. Extracellular modified nucleosides have the highest potential in the distinguishing of cell lines between control cell lines and themselves, and represent the closest to a desirable, non-invasive biomarker, since they accumulate in blood and urine. Full article
Show Figures

Graphical abstract

15 pages, 4182 KiB  
Article
A Phase 1/2 Randomized Study to Evaluate the Safety, Tolerability, and Immunogenicity of Nucleoside-Modified Messenger RNA Influenza Vaccines in Healthy Adults
by Angela Branche, Mark J. Mulligan, Alok Maniar, Orlando Puente, Islamiat Oladipupo, Graham Crowther, Agnieszka M. Zareba, Zhuobiao Yi, Ingrid Scully, Emily Gomme, Kenneth Koury, Nicholas Kitchin, Pirada Suphaphiphat Allen, Annaliesa S. Anderson, Alejandra Gurtman and Kelly Lindert
Vaccines 2025, 13(4), 383; https://doi.org/10.3390/vaccines13040383 - 3 Apr 2025
Viewed by 545
Abstract
Background/Objectives: Circulating influenza strains antigenically differing from vaccine antigens increase disease burden by decreasing vaccine efficacy. Nucleoside-modified mRNA (modRNA) influenza vaccines may facilitate rapid production allowing later antigen selection and improved antigenic similarity compared to circulating strains. We studied different influenza modRNA vaccine [...] Read more.
Background/Objectives: Circulating influenza strains antigenically differing from vaccine antigens increase disease burden by decreasing vaccine efficacy. Nucleoside-modified mRNA (modRNA) influenza vaccines may facilitate rapid production allowing later antigen selection and improved antigenic similarity compared to circulating strains. We studied different influenza modRNA vaccine (IRV) formulations and dose levels. Methods: This phase 1/2 randomized study evaluated IRV safety/tolerability and immunogenicity in healthy 18- through 85-year-olds. Based on safety and immunogenicity for different IRV doses, schedules, and valencies versus the quadrivalent influenza vaccine (QIV; Fluzone High-Dose Quadrivalent, Sanofi Pasteur) in phase 1 (65–85-year-olds), quadrivalent IRV (qIRV) was further evaluated in 65- through 85-year-olds and 18- through 64-year-olds in phase 2, leading to phase 3 dose selection. Results: Phase 1 (65–85-year-olds) safety/tolerability and immunogenicity findings supported qIRV 30-µg and 60-µg phase 2 assessment (18–85-year-olds, N = 610). qIRV was well tolerated. Injection site pain was the most frequently reported local reaction. Reactogenicity event incidences ≤ 7 days postvaccination for qIRV were generally higher versus QIV, observed more frequently in 18- through 64-year-olds than 65- through 85-year-olds, and showed dose-related trends (60 μg > 30 μg). qIRV and QIV adverse event profiles in 65- through 85-year-olds were similar. There were higher postvaccination hemagglutination inhibition assay geometric mean titers and fold rises and seroconversion rates observed with qIRV versus QIV for A strains, with no consistent pattern for B strains. Cell-mediated immune responses to qIRV by Day 7 showed overall higher T-cell responses against all strains versus QIV. Antibody and cell-mediated immune responses showed comparable trends across qIRV doses in 18- through 85-year-olds; a dose-related pattern was observed in 65- through 85-year-olds (60 μg > 30 μg). Conclusions: Phase 3 investigations of qIRV 60 µg in older adults and qIRV 30 µg in younger adults are warranted (ClinicalTrials.gov Identifier: NCT05052697). Full article
Show Figures

Figure 1

22 pages, 3017 KiB  
Review
Advances in the Enzymatic Synthesis of Nucleoside-5′-Triphosphates and Their Analogs
by Maryke Fehlau, Sarah Westarp, Peter Neubauer and Anke Kurreck
Catalysts 2025, 15(3), 270; https://doi.org/10.3390/catal15030270 - 13 Mar 2025
Viewed by 1146
Abstract
Nucleoside-5′-triphosphates (5′-NTPs) are essential building blocks of nucleic acids in nature and play an important role in molecular biology, diagnostics, and mRNA therapeutic synthesis. Chemical synthesis has long been the standard method for producing modified 5′-NTPs. However, chemical routes face limitations, including low [...] Read more.
Nucleoside-5′-triphosphates (5′-NTPs) are essential building blocks of nucleic acids in nature and play an important role in molecular biology, diagnostics, and mRNA therapeutic synthesis. Chemical synthesis has long been the standard method for producing modified 5′-NTPs. However, chemical routes face limitations, including low regio- and stereoselectivity, along with the need for protection/deprotection cycles, resulting in low yields, high costs, and lengthy processes. In contrast, enzymatic synthesis methods offer significant advantages, such as improved regio- and stereoselectivity and the use of mild reaction conditions, which often leads to higher product yields in “one-pot” reactions. Despite the extensive review of chemical synthesis routes for 5′-NTPs, there has not yet been any comprehensive analysis of enzymatic approaches. Initially, this review provides a brief overview of the enzymes involved in nucleotide metabolism, introducing valuable biocatalysts for 5’-NTP synthesis. Furthermore, the available enzymatic methods for efficient 5′-NTP synthesis using purified enzymes and starting from either nucleobases or nucleosides are examined, highlighting their respective advantages and disadvantages. Special attention is also given to the importance of ATP regeneration systems for 5′-NTP synthesis. We aim to demonstrate the remarkable potential of enzymatic in vitro cascade reactions, promoting their broader application in both basic research and industry. Full article
(This article belongs to the Special Issue Feature Papers in Catalysis for Pharmaceuticals)
Show Figures

Graphical abstract

19 pages, 3865 KiB  
Article
mRNA Galsomes Vaccine Protects Budgerigars Against Virulent Chlamydia psittaci Challenge
by Anne De Meyst, Joeri Van Mieghem, Koen Chiers, Koen Raemdonck, Rein Verbeke, Ine Lentacker and Daisy Vanrompay
Vaccines 2025, 13(2), 206; https://doi.org/10.3390/vaccines13020206 - 19 Feb 2025
Viewed by 729
Abstract
Background/Objectives: Chlamydia (C.) psittaci is an avian respiratory pathogen that regularly infects budgerigars (Melopsittacus undulatus) and is a known zoonosis. This study aimed to evaluate the efficacy of a nucleoside-modified mRNA vaccine formulated in lipid nanoparticles (LNPs), either with (mRNA Galsomes) [...] Read more.
Background/Objectives: Chlamydia (C.) psittaci is an avian respiratory pathogen that regularly infects budgerigars (Melopsittacus undulatus) and is a known zoonosis. This study aimed to evaluate the efficacy of a nucleoside-modified mRNA vaccine formulated in lipid nanoparticles (LNPs), either with (mRNA Galsomes) or without (mRNA LNPs) the glycolipid antigen α-Galactosylceramide, in protecting budgerigars against C. psittaci genotype A infection. Methods: Three groups of eight budgerigars received two intramuscular vaccinations with PBS, mRNA LNPs or mRNA Galsomes, and were subsequently challenged via aerosol with the C. psittaci genotype A strain 90/1051. Vaccine efficacy was assessed over 14 days post challenge by monitoring clinical signs, macroscopic and microscopic lesions, pathogen excretion and chlamydial burden in organs. Antibody levels were evaluated at baseline, after vaccination and post challenge. Results: Both mRNA LNPs and mRNA Galsomes induced significant serum antibody responses post booster. Vaccination significantly reduced clinical signs, chlamydial burden in the lungs and macroscopic lesions in conjunctiva, conchae, lungs and thoracic airsacs, compared to controls. Additionally, mRNA Galsomes-treated birds showed a significantly reduced lung inflammation and fewer macroscopic lesions in abdominal airsacs and liver, compared to non-vaccinated animals. These animals also experienced a significantly lower chlamydial burden in the spleen, fewer clinical signs at day 11 and fewer fecal shedding at day 14 post challenge, compared to mRNA LNP-treated animals. Conclusions: This study demonstrated that mRNA vaccination confers partial protection against C. psittaci in budgerigars, with mRNA Galsomes appearing to provide enhanced efficacy. However, the absence of species-specific reagents for assessing cellular immunity in Psittaciformes limits a comprehensive understanding of vaccine-induced protection. The development of psittacine-specific T cell markers and cytokine assays is necessary to further elucidate immune mechanisms and optimize vaccine formulations. Full article
(This article belongs to the Special Issue mRNA Vaccines: Pioneering the Future of Vaccination)
Show Figures

Figure 1

20 pages, 2550 KiB  
Article
Synthesis and Application of 4′-C-[(N-alkyl)aminoethyl]thymidine Analogs for Optimizing Oligonucleotide Properties
by Kota Fujiki, Yuri Kakisawa, Elsayed M. Mahmoud and Yoshihito Ueno
Molecules 2025, 30(3), 581; https://doi.org/10.3390/molecules30030581 - 27 Jan 2025
Viewed by 1035
Abstract
Gapmer-type antisense oligonucleotides (ASOs) are an emerging class of therapeutic agents that directly inhibit pathogenic mRNA. In this study, three new 4′-C-substituted thymidine analogs were generated using a synthetic strategy recently established by our group, namely, 4′-C-(N-ethyl) [...] Read more.
Gapmer-type antisense oligonucleotides (ASOs) are an emerging class of therapeutic agents that directly inhibit pathogenic mRNA. In this study, three new 4′-C-substituted thymidine analogs were generated using a synthetic strategy recently established by our group, namely, 4′-C-(N-ethyl) aminoethyl (4′-EAE-T), 4′-C-(N-butyl) aminoethyl (4′-BAE-T), and 4′-C-(N-octyl) aminoethyl (4′-OAE-T). Their properties were evaluated and compared with those of previously reported analogs, including 4′-C-aminoethyl (4′-AE-T) and 4′-C-(N-methyl) aminoethyl (4′-MAE-T). The novel nucleoside analogs were subsequently incorporated into gapmer-type ASOs featuring phosphorothioate (PS) linkages and locked nucleic acids (LNAs) in the wing regions. The incorporation of 4′-EAE-T and 4′-BAE-T analogs resulted in RNA binding affinities similar to that of the previously reported 4′-MAE-T analog, whereas a marked decrease in RNA affinity was noted for 4′-OAE-T, however, this reduction was mitigated when combined with other chemical modifications. Furthermore, the structural modifications conferred enhanced nuclease resistance under bovine serum conditions, with 4′-EAE-T resulting in the highest stability, followed by 4′-BAE-T and 4′-OAE-T. Additionally, oligonucleotides modified with the developed analogs preserved their RNase H cleavage susceptibility, albeit inducing minor alterations in the cleavage pattern. Finally, the oligonucleotides were applied in a gene silencing experiment targeting the KRAS gene, conducted without the use of transfection agents, displaying gene silencing activities comparable to that of the control, with the exception of the 4′-OAE-modified nucleotide, which exhibited low activity. Full article
Show Figures

Graphical abstract

17 pages, 4231 KiB  
Article
A Spike-Based mRNA Vaccine Encapsulated in Phospholipid 1,2-Dioleoyl-sn-Glycero-3-PhosphoEthanolamine Containing Lipid Nanoparticles Induced Potent B- and T-Cell Responses Associated with Protection Against SARS-CoV-2 Infection and COVID-19-like Symptoms in Hamsters
by Afshana Quadiri, Swayam Prakash, Latifa Zayou, Nisha Rajeswari Dhanushkodi, Amruth Chilukuri, Gemma Ryan, Kelly Wang, Hawa Vahed, Aziz A. Chentoufi and Lbachir BenMohamed
Vaccines 2025, 13(1), 47; https://doi.org/10.3390/vaccines13010047 - 8 Jan 2025
Cited by 1 | Viewed by 1703
Abstract
Background: Nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNPs) have emerged as a promising vaccine strategy, especially for COVID-19. While the LNPs protect mRNA from degradation and efficiently deliver the mRNA to antigen-presenting cells, the effect of lipid composition on the immunogenicity and protective [...] Read more.
Background: Nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNPs) have emerged as a promising vaccine strategy, especially for COVID-19. While the LNPs protect mRNA from degradation and efficiently deliver the mRNA to antigen-presenting cells, the effect of lipid composition on the immunogenicity and protective efficacy of mRNA/LNP vaccines is not well characterized. Studies on using the mRNA/LNP platform for vaccines have largely focused on the nucleic acid cargo with less attention paid to the LNP vehicle. Whether the composition and biophysical properties of LNPs impact vaccine performance remains to be fully elucidated. Methods: In the present study, we used SARS-CoV-2 Spike-mRNA as a prototype vaccine to study the effect of four different LNPs with various lipid compositions. Results: We demonstrate that when the same Spike-mRNA was delivered in the LNP4 formulation based on phospholipid 1,2-dioleoyl-sn-glycero-3-Phosphoethanolamine, it outperformed other LNPs (LNP1, LNP2, and LNP3) that are based on different lipids. Compared to the other three LNPs, LNP4 (i) enhanced the phenotypic and functional maturation of dendritic cells; (ii) induced strong T-cell responses; (iii) increased the secretion of proinflammatory cytokines and pro-follicular T helper (Tfh) cell cytokines; (iv) induced higher neutralization IgG titers; and (v) provided better protection against SARS-CoV-2 infection and COVID-19-like symptoms in the hamster model. Furthermore, we compared LNP-4 with the commercially available LNPs and found it to provide better T-cell immunity against COVID-19 in hamsters. Conclusion: This study suggests mRNA vaccines encapsulated in Phospholipid 1,2-Dioleoyl-sn-Glycero-3-PhosphoEthanolamine containing LNPs induced Potent B- and T cell immunity. The mechanisms by which Phospholipid 1,2-Dioleoyl-sn-Glycero-3-PhosphoEthanolamine-based LNPs may activate protective B and T cells are discussed. Full article
(This article belongs to the Special Issue Role of Next Generation Vaccines in Immunotherapeutics)
Show Figures

Figure 1

29 pages, 1162 KiB  
Review
Antigen Delivery Platforms for Next-Generation Coronavirus Vaccines
by Aziz A. Chentoufi, Jeffrey B. Ulmer and Lbachir BenMohamed
Vaccines 2025, 13(1), 30; https://doi.org/10.3390/vaccines13010030 - 31 Dec 2024
Viewed by 2063
Abstract
The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is in its sixth year and is being maintained by the inability of current spike-alone-based COVID-19 vaccines to prevent transmission leading to the continuous emergence of variants and sub-variants of [...] Read more.
The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is in its sixth year and is being maintained by the inability of current spike-alone-based COVID-19 vaccines to prevent transmission leading to the continuous emergence of variants and sub-variants of concern (VOCs). This underscores the critical need for next-generation broad-spectrum pan-Coronavirus vaccines (pan-CoV vaccine) to break this cycle and end the pandemic. The development of a pan-CoV vaccine offering protection against a wide array of VOCs requires two key elements: (1) identifying protective antigens that are highly conserved between passed, current, and future VOCs; and (2) developing a safe and efficient antigen delivery system for induction of broad-based and long-lasting B- and T-cell immunity. This review will (1) present the current state of antigen delivery platforms involving a multifaceted approach, including bioinformatics, molecular and structural biology, immunology, and advanced computational methods; (2) discuss the challenges facing the development of safe and effective antigen delivery platforms; and (3) highlight the potential of nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) as the platform that is well suited to the needs of a next-generation pan-CoV vaccine, such as the ability to induce broad-based immunity and amenable to large-scale manufacturing to safely provide durable protective immunity against current and future Coronavirus threats. Full article
(This article belongs to the Special Issue Role of Next Generation Vaccines in Immunotherapeutics)
Show Figures

Figure 1

21 pages, 8334 KiB  
Article
A Phosphatidyl Conjugated Telomerase-Dependent Telomere-Targeting Nucleoside Demonstrates Colorectal Cancer Direct Killing and Immune Signaling
by Merve Yilmaz, Sibel Goksen, Ilgen Mender, Gunes Esendagli, Sefik Evren Erdener, Alessandra Ahmed, Ates Kutay Tenekeci, Larisa L. Birichevskaya, Sergei M. Gryaznov, Jerry W. Shay and Z. Gunnur Dikmen
Biomolecules 2024, 14(12), 1616; https://doi.org/10.3390/biom14121616 - 18 Dec 2024
Viewed by 1307
Abstract
Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the [...] Read more.
Telomerase and telomeres are crucial in cancer cell immortalization, making them key targets for anticancer therapies. Currently, 6-thio-dG (THIO) combined with the anti-PD-1 inhibitor Cemiplimab is under phase II clinical investigation (NCT05208944) in NSCLC patients resistant to prior immunotherapies. This study presents the design, synthesis, and evaluation of novel bimodular conjugate molecules combining telomere-targeting nucleoside analogs and phosphatidyl diglyceride groups. Among them, dihexanoyl-phosphatidyl-THIO (diC6-THIO) showed high anticancer activity with sub-µM EC50 values in vitro across various cancer cell lines. In mouse colorectal cancer models, diC6-THIO demonstrated strong anticancer effects alone and in combination with PD1/PD-L1 inhibitors. Administration of this compound resulted in the efficient formation of Telomere dysfunction Induced Foci (TIFs) in vitro, indicating an on-target, telomerase-mediated telomere-modifying mechanism of action for the molecule. Systemic treatment also activated CD4+ and CD8+ T cells while reducing regulatory T cells, indicating immune system enhancement. Notably, diC6-THIO exhibits an improved solubility profile while maintaining comparable anticancer properties, further supporting its potential as a promising therapeutic candidate. These findings highlight diC6-THIO as a promising telomere-targeting prodrug with dual effects on telomere modification and immune activation. Full article
(This article belongs to the Special Issue Novel Molecules for Cancer Treatment (3rd Edition))
Show Figures

Figure 1

24 pages, 4541 KiB  
Article
Studies on the Oxidative Damage of the Wobble 5-Methylcarboxymethyl-2-Thiouridine in the tRNA of Eukaryotic Cells with Disturbed Homeostasis of the Antioxidant System
by Malgorzata Sierant, Rafal Szewczyk, Agnieszka Dziergowska, Karolina Krolewska-Golinska, Patrycja Szczupak, Przemyslaw Bernat and Barbara Nawrot
Int. J. Mol. Sci. 2024, 25(22), 12336; https://doi.org/10.3390/ijms252212336 - 17 Nov 2024
Viewed by 1376
Abstract
We have previously shown that 2-thiouridine (S2U), either as a single nucleoside or as an element of RNA chain, is effectively desulfurized under applied in vitro oxidative conditions. The chemically induced desulfuration of S2U resulted in two products: 4-pyrimidinone nucleoside (H2U) and uridine [...] Read more.
We have previously shown that 2-thiouridine (S2U), either as a single nucleoside or as an element of RNA chain, is effectively desulfurized under applied in vitro oxidative conditions. The chemically induced desulfuration of S2U resulted in two products: 4-pyrimidinone nucleoside (H2U) and uridine (U). Recently, we investigated whether the desulfuration of S2U is a natural process that also occurs in the cells exposed to oxidative stress or whether it only occurs in the test tube during chemical reactions with oxidants at high concentrations. Using different types of eukaryotic cells, such as baker’s yeast, human cancer cells, or modified HEK293 cells with an impaired antioxidant system, we confirmed that 5-substituted 2-thiouridines are oxidatively desulfurized in the wobble position of the anticodon of some tRNAs. The quantitative LC-MS/MS-MRMhr analysis of the nucleoside mixtures obtained from the hydrolyzed tRNA revealed the presence of the desulfuration products of mcm5S2U: mcm5H2U and mcm5U modifications. We also observed some amounts of immature cm5S2U, cm5H2U and cm5U products, which may have indicated a disruption of the enzymatic modification pathway at the C5 position of 2-thiouridine. The observed process, which was triggered by oxidative stress in the living cells, could impair the function of 2-thiouridine-containing tRNAs and alter the translation of genetic information. Full article
(This article belongs to the Special Issue Advanced Research of tRNA)
Show Figures

Figure 1

27 pages, 1883 KiB  
Review
Advances in mRNA LNP-Based Cancer Vaccines: Mechanisms, Formulation Aspects, Challenges, and Future Directions
by Eslam Ramadan, Ali Ahmed and Youssef Wahib Naguib
J. Pers. Med. 2024, 14(11), 1092; https://doi.org/10.3390/jpm14111092 - 4 Nov 2024
Cited by 3 | Viewed by 3930
Abstract
After the COVID-19 pandemic, mRNA-based vaccines have emerged as a revolutionary technology in immunization and vaccination. These vaccines have shown remarkable efficacy against the virus and opened up avenues for their possible application in other diseases. This has renewed interest and investment in [...] Read more.
After the COVID-19 pandemic, mRNA-based vaccines have emerged as a revolutionary technology in immunization and vaccination. These vaccines have shown remarkable efficacy against the virus and opened up avenues for their possible application in other diseases. This has renewed interest and investment in mRNA vaccine research and development, attracting the scientific community to explore all its other applications beyond infectious diseases. Recently, researchers have focused on the possibility of adapting this vaccination approach to cancer immunotherapy. While there is a huge potential, challenges still remain in the design and optimization of the synthetic mRNA molecules and the lipid nanoparticle delivery system required to ensure the adequate elicitation of the immune response and the successful eradication of tumors. This review points out the basic mechanisms of mRNA-LNP vaccines in cancer immunotherapy and recent approaches in mRNA vaccine design. This review displays the current mRNA modifications and lipid nanoparticle components and how these factors affect vaccine efficacy. Furthermore, this review discusses the future directions and clinical applications of mRNA-LNP vaccines in cancer treatment. Full article
(This article belongs to the Special Issue Nanomedicine in Cancer Therapy: What's New)
Show Figures

Figure 1

14 pages, 906 KiB  
Article
GWAS for Drought Resilience Traits in Red Clover (Trifolium pratense L.)
by Tim Vleugels, Tom Ruttink, Daniel Ariza-Suarez, Reena Dubey, Aamir Saleem, Isabel Roldán-Ruiz and Hilde Muylle
Genes 2024, 15(10), 1347; https://doi.org/10.3390/genes15101347 - 21 Oct 2024
Cited by 2 | Viewed by 1400
Abstract
Red clover (Trifolium pratense L.) is a well-appreciated grassland crop in temperate climates but suffers from increasingly frequent and severe drought periods. Molecular markers for drought resilience (DR) would benefit breeding initiatives for red clover, as would a better understanding of the [...] Read more.
Red clover (Trifolium pratense L.) is a well-appreciated grassland crop in temperate climates but suffers from increasingly frequent and severe drought periods. Molecular markers for drought resilience (DR) would benefit breeding initiatives for red clover, as would a better understanding of the genes involved in DR. Two previous studies, as follows, have: (1) identified phenotypic DR traits in a diverse set of red clover accessions; and (2) produced genotypic data using a pooled genotyping-by-sequencing (GBS) approach in the same collection. In the present study, we performed genome-wide association studies (GWAS) for DR using the available phenotypic and genotypic data. Single nucleotide polymorphism (SNP) calling was performed using GBS data and the following two red clover genome assemblies: the recent HEN-17 assembly and the Milvus assembly. SNP positions with significant associations were used to delineate flanking regions in both genome assemblies, while functional annotations were retrieved from Medicago truncatula orthologs. GWAS revealed 19 significant SNPs in the HEN-17-derived SNP set, explaining between 5.3 and 23.2% of the phenotypic variation per SNP–trait combination for DR traits. Among the genes in the SNP-flanking regions, we identified candidate genes related to cell wall structuring, genes encoding sugar-modifying proteins, an ureide permease gene, and other genes linked to stress metabolism pathways. GWAS revealed 29 SNPs in the Milvus-derived SNP set that explained substantially more phenotypic variation for DR traits, between 5.3 and 42.3% per SNP–trait combination. Candidate genes included a DEAD-box ATP-dependent RNA helicase gene, a P-loop nucleoside triphosphate hydrolase gene, a Myb/SANT-like DNA-binding domain protein, and an ubiquitin–protein ligase gene. Most accessions in this study are genetically more closely related to the Milvus genotype than to HEN-17, possibly explaining how the Milvus-derived SNP set yielded more robust associations. The Milvus-derived SNP set pinpointed 10 genomic regions that explained more than 25% of the phenotypic variation for DR traits. A possible next step could be the implementation of these SNP markers in practical breeding programs, which would help to improve DR in red clover. Candidate genes could be further characterized in future research to unravel drought stress resilience in red clover in more detail. Full article
(This article belongs to the Special Issue Genomic Studies of Plant Breeding)
Show Figures

Figure 1

12 pages, 1945 KiB  
Article
Optimized Method for the Synthesis of Alkyne-Modified 2′-Deoxynucleoside Triphosphates
by Viktoriya E. Kuznetsova, Valeriy E. Shershov, Georgiy F. Shtylev, Ivan Yu. Shishkin, Veronika I. Butvilovskaya, Andrey A. Stomakhin, Irina V. Grechishnikova, Olga A. Zasedateleva and Alexander V. Chudinov
Molecules 2024, 29(19), 4747; https://doi.org/10.3390/molecules29194747 - 8 Oct 2024
Viewed by 1170
Abstract
A general approach is presented for synthesizing alkyne-modified nucleoside triphosphates via the Sonogashira cross-coupling reaction of unprotected halogenated 2ʹ-deoxynucleoside, followed by monophosphorylation and the reaction of the corresponding phosphoromorpholidate with tributylammonium pyrophosphate. A highly efficient approach for the milligram-scale synthesis of base-modified nucleoside [...] Read more.
A general approach is presented for synthesizing alkyne-modified nucleoside triphosphates via the Sonogashira cross-coupling reaction of unprotected halogenated 2ʹ-deoxynucleoside, followed by monophosphorylation and the reaction of the corresponding phosphoromorpholidate with tributylammonium pyrophosphate. A highly efficient approach for the milligram-scale synthesis of base-modified nucleoside triphosphates with an amino acid-like side chain was developed. The present chemical method outweighs the other reported methods of a base-modified nucleoside triphosphates synthesis in terms of it being a protection-free strategy, the shortening of reaction steps, and increased yields (about 70%). The resulting 8-alkynylated dATP was tested as a substrate for DNA polymerases in a primer extension reaction. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

14 pages, 4098 KiB  
Article
Nucleoside Analogs in ADAR Guide Strands Enable Editing at 5′-GA Sites
by Aashrita Manjunath, Jeff Cheng, Kristen B Campbell, Casey S. Jacobsen, Herra G. Mendoza, Leila Bierbaum, Victorio Jauregui-Matos, Erin E. Doherty, Andrew J. Fisher and Peter A. Beal
Biomolecules 2024, 14(10), 1229; https://doi.org/10.3390/biom14101229 - 29 Sep 2024
Cited by 1 | Viewed by 2018
Abstract
Adenosine Deaminases Acting on RNA (ADARs) are members of a family of RNA editing enzymes that catalyze the conversion of adenosine into inosine in double-stranded RNA (dsRNA). ADARs’ selective activity on dsRNA presents the ability to correct mutations at the transcriptome level using [...] Read more.
Adenosine Deaminases Acting on RNA (ADARs) are members of a family of RNA editing enzymes that catalyze the conversion of adenosine into inosine in double-stranded RNA (dsRNA). ADARs’ selective activity on dsRNA presents the ability to correct mutations at the transcriptome level using guiding oligonucleotides. However, this approach is limited by ADARs’ preference for specific sequence contexts to achieve efficient editing. Substrates with a guanosine adjacent to the target adenosine in the 5′ direction (5′-GA) are edited less efficiently compared to substrates with any other canonical nucleotides at this position. Previous studies showed that a G/purine mismatch at this position results in more efficient editing than a canonical G/C pair. Herein, we investigate a series of modified oligonucleotides containing purine or size-expanded nucleoside analogs on guide strands opposite the 5′-G (−1 position). The results demonstrate that modified adenosine and inosine analogs enhance editing at 5′-GA sites. Additionally, the inclusion of a size-expanded cytidine analog at this position improves editing over a control guide bearing cytidine. High-resolution crystal structures of ADAR:/RNA substrate complexes reveal the manner by which both inosine and size-expanded cytidine are capable of activating editing at 5′-GA sites. Further modification of these altered guide sequences for metabolic stability in human cells demonstrates that the incorporation of specific purine analogs at the −1 position significantly improves editing at 5′-GA sites. Full article
(This article belongs to the Special Issue RNA Therapeutics)
Show Figures

Figure 1

11 pages, 1747 KiB  
Article
Simplified Synthesis of Poly(ethyleneimine)-Modified Silica Particles and Their Application in Oligosaccharide Isolation Methods
by Xingyun Zhao, Yifan Niu, Chengxiao Zhao, Zhenyu Li, Ke Li and Xuemei Qin
Int. J. Mol. Sci. 2024, 25(17), 9465; https://doi.org/10.3390/ijms25179465 - 30 Aug 2024
Cited by 3 | Viewed by 1056
Abstract
There are great challenges in the field of natural product isolation and purification and in the pharmacological study of oligosaccharide monomers. And these isolation and purification processes are still universal problems in the study of natural products (NPs), traditional Chinese medicine (TCM), omics, [...] Read more.
There are great challenges in the field of natural product isolation and purification and in the pharmacological study of oligosaccharide monomers. And these isolation and purification processes are still universal problems in the study of natural products (NPs), traditional Chinese medicine (TCM), omics, etc. The same polymer-modified materials designed for the special separation of oligosaccharides, named Sil-epoxy-PEI and Sil-chloropropyl-PEI, were synthesized via two different methods and characterized by scanning electron microscopy combined with energy spectrum analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential as well as surface area analysis, etc. Several nucleotide/nucleoside molecules with different polarities and selectivities were successfully isolated in our laboratory using stainless-steel columns filled with the synthesized material. In addition, the separation of saccharide probes and oligosaccharides mixtures in water extracts of Morinda officinalis were compared in HILIC mode. The results showed that the resolution of separations for the representative analytes of the Sil-epoxy-PEI column was higher than for the Sil-chloropropyl-PEI column, and the developed stationary phase exhibited improved performance compared to hydrothermal carbon, amide columns and other HILIC materials previously reported. Full article
Show Figures

Figure 1

29 pages, 5564 KiB  
Review
Synthesis and Properties of α-Phosphate-Modified Nucleoside Triphosphates
by Alina I. Novgorodtseva, Alexander A. Lomzov and Svetlana V. Vasilyeva
Molecules 2024, 29(17), 4121; https://doi.org/10.3390/molecules29174121 - 30 Aug 2024
Viewed by 1980
Abstract
This review article is focused on the progress made in the synthesis of 5′-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have [...] Read more.
This review article is focused on the progress made in the synthesis of 5′-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have been developed. There is a unique class of nucleoside triphosphate analogs with different properties. The main chemical approaches to the synthesis of NTPαXYs are analyzed and systematized here. Using the data presented here on the diversity of NTPαXYs and their synthesis protocols, it is possible to select an appropriate method for obtaining a desired α-phosphate mimetic. Triphosphates’ substrate properties toward nucleic acid metabolism enzymes are highlighted too. We reviewed some of the most prominent applications of NTPαXYs including the use of modified dNTPs in studies on mechanisms of action of polymerases or in systematic evolution of ligands by exponential enrichment (SELEX). The presence of heteroatoms such as sulfur, selenium, or boron in α-phosphate makes modified triphosphates nuclease resistant. The most distinctive feature of NTPαXYs is that they can be recognized by polymerases. As a result, S-, Se-, or BH3-modified phosphate residues can be incorporated into DNA or RNA. This property has made NTPαXYs a multifunctional tool in molecular biology. This review will be of interest to synthetic chemists, biochemists, biotechnologists, or biologists engaged in basic or applied research. Full article
(This article belongs to the Special Issue Chemistry of Nucleosides and Nucleotides and Their Analogues)
Show Figures

Scheme 1

Back to TopTop