Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,838)

Search Parameters:
Keywords = moisture control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1174 KB  
Article
Chitin Assessment in Insect-Based Products from Reference Methods to Near-Infrared Models
by Audrey Pissard, Sébastien Gofflot, Vincent Baeten, Bernard Lecler, Bénédicte Lorrette, Jean-François Morin and Frederic Debode
Insects 2025, 16(9), 924; https://doi.org/10.3390/insects16090924 - 2 Sep 2025
Abstract
The global insect farming sector is rapidly expanding, driven by rising demand for sustainable protein sources and its potential to contribute to food security solutions. This study focuses on the quantification of chitin by comparing two gravimetric methods (ADF-ADL and crude fiber estimation) [...] Read more.
The global insect farming sector is rapidly expanding, driven by rising demand for sustainable protein sources and its potential to contribute to food security solutions. This study focuses on the quantification of chitin by comparing two gravimetric methods (ADF-ADL and crude fiber estimation) with a purification method considered as a reference method. It also aims to use the near-infrared spectroscopy (NIRS) to rapidly assess the quality of insect meals, in particular the macronutrients (moisture, protein, fat) and chitin content in a large data set of insect samples. Both alternative methods overestimated chitin content compared to the enzymatic purification method, which is the most reliable but more complex and expensive. Given their advantages (fairly simple, no significant investment, higher sample throughput, relatively short time execution), they can serve for rapid screening when precise chitin determination is not required. Calibration models showed good performance, particularly for protein and fat determination, and satisfactory results for chitin prediction. The NIRS models show promises for rapid and reliable prediction of insect products, although the chitin assessment remains to be further validated. Its implementation could streamline chemical quality control in insect-based food and feed production, offering speed and flexibility for industrial applications. Full article
(This article belongs to the Special Issue Insects as the Nutrition Source in Animal Feed)
24 pages, 4185 KB  
Article
Laboratory and Field Evaluation of Cement-Stabilized Phyllite for Sustainable Railway Subgrades
by Aiping Chen, Wei Qi, Qiwei Du, Songhao Hou, Gang Yuan, Zhiwei Ma, Lingying Peng and Tengfei Wang
Buildings 2025, 15(17), 3151; https://doi.org/10.3390/buildings15173151 - 2 Sep 2025
Abstract
Fully weathered phyllite is widely encountered along railway corridors in China, yet its suitability as subgrade fill remains insufficiently documented. This study provides an integrated laboratory and field evaluation of both untreated and low-dosage cement-stabilized phyllite for sustainable transport constructions. Laboratory investigations covered [...] Read more.
Fully weathered phyllite is widely encountered along railway corridors in China, yet its suitability as subgrade fill remains insufficiently documented. This study provides an integrated laboratory and field evaluation of both untreated and low-dosage cement-stabilized phyllite for sustainable transport constructions. Laboratory investigations covered mineralogy, classification, compaction, permeability, compressibility, shear strength, and bearing capacity, while large-scale field trials examined the influence of loose lift thickness, moisture content, and compaction sequence on subgrade quality. Performance indicators included the degree of compaction and the subgrade reaction modulus K30, defined as the plate load modulus measured with a 30 cm diameter plate. A recommended cement dosage of 3.5% (by weight of dry soil) was established based on preliminary trials to balance strength development with construction reliability. The results show that untreated phyllite, when compacted under controlled conditions, can be used in lower subgrade layers, whereas cement stabilization significantly improves strength, stiffness, and constructability, enabling reliable application in the main load-bearing subgrade layers. Beyond mechanical performance, the study demonstrates a methodological innovation by linking laboratory mix design directly with field compaction strategies and embedding these within a life-cycle perspective. The sustainability analysis shows that using stabilized in-situ phyllite achieves lower costs and approximately 30% lower CO2 emissions compared with importing crushed rock from 30 km away, while promoting resource reuse. Overall, the findings support circular economy and carbon-reduction objectives in railway and road earthworks, offering practical guidance for low-carbon, resource-efficient infrastructure. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

12 pages, 753 KB  
Article
Association of Aspiration Pneumonia-Related Factors with the Incidence of Healthcare-Associated Pneumonia in Elderly with Dementia
by Takahide Miyamoto, Kanae Karita, Koichi Kozaki and Takae Ebihara
J. Clin. Med. 2025, 14(17), 6186; https://doi.org/10.3390/jcm14176186 - 2 Sep 2025
Abstract
Background/Objectives: The predominant etiology of healthcare-associated pneumonia (HCAP) that frequently manifests in elderly with advanced dementia is aspiration pneumonia in which the deteriorated upper respiratory protective reflexes are significant responsible triggers. However, the association of HCAP with cerebral degeneration has not been [...] Read more.
Background/Objectives: The predominant etiology of healthcare-associated pneumonia (HCAP) that frequently manifests in elderly with advanced dementia is aspiration pneumonia in which the deteriorated upper respiratory protective reflexes are significant responsible triggers. However, the association of HCAP with cerebral degeneration has not been investigated. Therefore, a cross-sectional and retrospective cohort study was conducted to elucidate the association of aspiration pneumonia-related factors with HCAP in elderly with dementia. Methods: Of the 154 participants (87.9 years), 30 of Alzheimer’s type dementia (AD) or 124 of vascular dementia (VaD) were assigned to the pneumonia group or the control group. Participant’s characteristics, including cognition, clinical pattern and stage of dementia, physical and eating abilities, latency of the swallowing reflex (LTSR), threshold of CRS, and tongue moisture (TOM), were evaluated. Result: The progression of dementia and the decline in LTSR, CRS, and TOM were synchronized (p < 0.05). Participants in the pneumonia group who were male, with eating difficulties, prolonged LTSR, lacunar infarction, or a smoking history, were significantly observed. The multiple logistic analysis indicated that the LTSR was a significant independent factor for developing HCAP (p = 0.01). Furthermore, as the possessed number of aspiration pneumonia-related factors increased, the odds ratio for HCAP became significantly higher (p < 0.001). Blunted CRS, male gender, and lacunar infarctions were evident in VaD participants but not in AD participants. Finally, the incidence of HCAP in VaD was 2.11 times higher than that in AD (p = 0.005). Conclusions: The higher incidence of HCAP in VaD than AD may be due to different underlying pathophysiological mechanisms between them. Full article
(This article belongs to the Special Issue Respiratory Medicine in the Oldest-Old)
Show Figures

Figure 1

28 pages, 8382 KB  
Article
Implementing Wireless Charging System for Semi-Autonomous Agricultural Robots
by Abdoulaye Bodian, Alben Cardenas, Dina Ouardani, Jaber Ouakrim and Afef Bennani-Ben Abdelghani
Energies 2025, 18(17), 4624; https://doi.org/10.3390/en18174624 - 30 Aug 2025
Viewed by 326
Abstract
The modernization of agriculture can help humanity address major challenges such as population growth, climate change, and labor shortages. Semi-autonomous agricultural robots offer clear advantages in automating tasks and improving efficiency. However, in open-field conditions, their autonomy is limited by the size and [...] Read more.
The modernization of agriculture can help humanity address major challenges such as population growth, climate change, and labor shortages. Semi-autonomous agricultural robots offer clear advantages in automating tasks and improving efficiency. However, in open-field conditions, their autonomy is limited by the size and weight of onboard batteries. Wireless charging is a promising solution to overcome this limitation. This work proposes a methodology for the design, modeling, and experimental validation of a wireless power transfer (WPT) system for battery recharging of agricultural robots. A brief review of WPT technologies is provided, followed by key design considerations, co-simulation, and testing results. The proposed WPT system uses a resonant inductive power transfer topology with series–series (SS) compensation, a high-frequency inverter (85 kHz), and optimized spiral planar coils, enabling medium-range operation under agricultural conditions. The main contribution lies in the first experimental assessment of WPT performance under real agricultural environmental factors such as soil moisture and water presence, combined with electromagnetic safety evaluation and robust component selection for harsh conditions. Results highlight both the potential and limitations of this approach, demonstrating its feasibility and paving the way for future integration with intelligent alignment and adaptive control strategies. Full article
Show Figures

Figure 1

27 pages, 3286 KB  
Article
Insights into the Significance of Nitrogen Fertiliser and Hydraulic Lift with Moisture Depletions in Cotton Quality and Nitrogen Distribution Under Topsoil Drought
by Jia Lu, Longjia Tian, Dan Xu and Guangcheng Shao
Agronomy 2025, 15(9), 2094; https://doi.org/10.3390/agronomy15092094 - 30 Aug 2025
Viewed by 154
Abstract
Dry topsoil restricts root growth and nutrient uptake in arid regions, thereby significantly reducing crop yield. Hydraulic lift occurs due to the dry topsoil and wet deep soil. This study investigates the effects of topsoil drought intensity (three field capacities in topsoil: 60–70% [...] Read more.
Dry topsoil restricts root growth and nutrient uptake in arid regions, thereby significantly reducing crop yield. Hydraulic lift occurs due to the dry topsoil and wet deep soil. This study investigates the effects of topsoil drought intensity (three field capacities in topsoil: 60–70% (W1), 50–60% (W2), and 40–50% (W3)) and nitrogen application rate (N1: 120, N2: 240, and N3: 360 kg ha−1) on cotton quality and the distribution of nitrogen in soil and plant under hydraulic lift using a root-splitting device. The upper pot of the root-splitting device was 22 cm high, with a 26 cm top diameter and a 23 cm bottom diameter; the lower pot of the root-splitting device was 45 cm high, with a 48 cm top diameter and a 36 cm bottom diameter. Topsoil moisture was maintained at W1 without nitrogen application under the control treatment (CK). The W2 and W3 treatments (representing different topsoil drought intensities) were designed to compare the interactive effects of water and nitrogen fertiliser on nitrogen distribution and cotton quality with the CK treatment. Results indicate that the concentrations of nitrate nitrogen (NO3-N) in the 10–20 cm soil were generally higher than those in the 0–10 cm soil. The topsoil drought intensity and nitrogen application rate had significant impacts on nitrogen concentrations in cotton organs. The W2 treatment produced the maximum nitrogen concentration, except for the root nitrogen concentration in 2021. The nitrogen concentration in the roots and stems peaked at 240 kg ha−1 of nitrogen application rate. The topsoil drought intensity and nitrogen application rate had considerable influences on the cotton dry matter. The nitrogen application rate had a significant impact on the following indexes: internal nitrogen-fertiliser use efficiency (INUE), physiological nitrogen-fertiliser use efficiency (PNUE), and nitrogen-fertiliser recovery efficiency (NRE), except for PNUE in 2020. The INUE of other treatments decreased by 13.82–43.44% compared with CK treatment. In 2021, fibre length and elongation were significantly impacted by the topsoil drought intensity, nitrogen application rates, and their interactions. The nitrogen application rate’s effects on the uniformity index were significant in 2020 and 2021. The hydraulic lift magnitude, NRE, and NO3-N in the 0–10 cm soil were significantly correlated with each other. There were correlations among cotton quality indexes: fibre length and strength, uniformity index and micronaire, and micronaire and elongation. These findings provide a reference for future research on the mechanism by which hydraulic lift participates in nitrogen distribution in soil and crops and also offer a new direction to utilize deep water to improve the utilization rate of water resources. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

17 pages, 3395 KB  
Article
Sustainable Indoor Thermal Regulation with Hybrid Desiccant and Post-Cooling Technologies
by Lolaksha Shettigar, Nitesh Kumar, Madhwesh Nagaraj, Mandya Channegowda Gowrishankar, Shiva Kumar and Sampath Suranjan Salins
Sustainability 2025, 17(17), 7805; https://doi.org/10.3390/su17177805 - 29 Aug 2025
Viewed by 224
Abstract
This study investigated the performance of a hybrid desiccant dehumidification system integrated with a post-cooling mechanism, focusing on its application to energy-efficient indoor climate control. A liquid desiccant system using magnesium chloride (MgCl2) was tested in its pure form and in [...] Read more.
This study investigated the performance of a hybrid desiccant dehumidification system integrated with a post-cooling mechanism, focusing on its application to energy-efficient indoor climate control. A liquid desiccant system using magnesium chloride (MgCl2) was tested in its pure form and in combination with silica gel at 10% and 20% concentrations to enhance its moisture removal capabilities. The key parameters, including the air velocity (3–6 m/s), desiccant flow rate (1–3 LPM), and desiccant composition, were varied to analyze their effects on the dehumidification efficiency, moisture removal rate (MRR), temperature reduction after post-cooling, and coefficient of performance (COP). The results show that post-cooling using a crossflow heat exchanger effectively lowered the exit air temperature, ensuring thermal comfort. Addition of silica gel significantly improved system performance. The MgCl2 + 20% silica gel mixture achieved the highest dehumidification efficiency of 0.86, the greatest temperature drop of 1.95 °C, and the maximum COP of 2.36 at optimal flow conditions. While the dehumidification efficiency declined with increasing air velocity due to reduced contact time, the COP increased owing to the higher thermal processing of the air stream. This study highlights the potential of optimized hybrid desiccant systems as sustainable solutions for building air conditioning, aligning with the key Sustainable Development Goals (SDGs) related to clean energy, climate action, and sustainable infrastructure. Full article
Show Figures

Figure 1

17 pages, 2886 KB  
Article
Improvement Effect and Mechanism of Hydroxytyrosol on Skin Aging Induced Advanced Glycation End Products
by Rui Fan, Yuxin Ma, Meng Sun, Haohao Zhang, Yaxin Han, Junbo Wang, Wenli Zhu and Zhaofeng Zhang
Nutrients 2025, 17(17), 2810; https://doi.org/10.3390/nu17172810 - 29 Aug 2025
Viewed by 209
Abstract
Objectives: Skin aging, often accelerated by dietary advanced glycation end products (AGEs), poses both cosmetic and health challenges. This study explores the protective effects of hydroxytyrosol (HT), a potent antioxidant found in olives, against AGEs-induced skin aging in mice. Methods: A total of [...] Read more.
Objectives: Skin aging, often accelerated by dietary advanced glycation end products (AGEs), poses both cosmetic and health challenges. This study explores the protective effects of hydroxytyrosol (HT), a potent antioxidant found in olives, against AGEs-induced skin aging in mice. Methods: A total of forty-eight 8-month-old specific pathogen-free (SPF) male C57BL/6J mice were randomly assigned to one of four groups: control, model, low-dose hydroxytyrosol (HT25), and high-dose hydroxytyrosol (HT50). An additional group of six 6-week-old SPF male C57BL/6J mice served as the youth group. The experimental period lasted 16 weeks. Following the intervention, skin, serum, and ileum samples were collected. Results: The results demonstrated that HT50 significantly increased skin moisture, epidermal thickness, and dermal thickness (p < 0.05). HT50 also significantly elevated hydroxyproline levels as well as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the skin while reducing malondialdehyde (MDA) content (p < 0.05). Furthermore, HT50 significantly reduced the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) (p < 0.05). Regarding intestinal integrity, hydroxytyrosol intervention (either HT25 or HT50) significantly increased the positive staining ratios of zonula occludens-1 (ZO-1) and occludin in the ileum (p < 0.05). Conclusions: HT improves skin hydration, thickness, and collagen levels while reducing oxidative stress and inflammation. Notably, HT also enhances intestinal barrier function, suggesting a role for the gut–skin axis. These findings highlight HT’s potential as a natural intervention for skin aging. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

30 pages, 1781 KB  
Review
Recent Advances in Drying Technologies for Orange Products
by Xindi Tan, Wenzhan Jiang, Jiaying Su and Fanqianhui Yu
Foods 2025, 14(17), 3051; https://doi.org/10.3390/foods14173051 - 29 Aug 2025
Viewed by 110
Abstract
Oranges are popular worldwide, due not only to their refreshing taste but also to their high content of bioactive compounds. The main phytochemicals in oranges are phenolic compounds, vitamins, and carotenoids, which contribute to their antioxidant and anti-cancer activities. Various drying methods are [...] Read more.
Oranges are popular worldwide, due not only to their refreshing taste but also to their high content of bioactive compounds. The main phytochemicals in oranges are phenolic compounds, vitamins, and carotenoids, which contribute to their antioxidant and anti-cancer activities. Various drying methods are used to remove the high moisture content in orange products to extend their shelf life. This review summarizes and compares the effects of different drying methods such as hot air drying, freeze drying, vacuum drying, spray drying, microwave drying, solar drying and innovative pretreatment on the physicochemical quality of orange products including slices, peels, and by-products. It lists the key parameters, advantages, and disadvantages of drying methods, as well as a decision tree for “product type-constraints-recommended drying method with pretreatment”. For example, the results indicate that vacuum microwave drying is effective in drying orange slices, and control techniques are employed to assist the drying process. Freeze drying preserves more phytochemicals in orange peels and their by-products, which results in higher antioxidant activity. Pretreatments like pulsed electric field and ozone enhance drying efficiency and phytochemical retention. Different drying methods are adopted to treat different by-products. This work can be used as a guide for selecting the optimal drying technique to balance efficiency, nutritional quality, and industrial scalability for different orange products. Full article
(This article belongs to the Special Issue Drying Technology Used in Food Processing and Preservation)
Show Figures

Figure 1

18 pages, 2459 KB  
Article
Effect of Moisture and Aging of Kraft Paper Immersed in Mineral Oil and Synthetic Ester on Bubbling Inception Temperature in Power Transformers
by Ghada Gmati, Issouf Fofana, Patrick Picher, Oscar Henry Arroyo-Fernàndez, Djamal Rebaine, Fethi Meghnefi, Youssouf Brahami and Kouba Marie Lucia Yapi
Energies 2025, 18(17), 4579; https://doi.org/10.3390/en18174579 - 29 Aug 2025
Viewed by 136
Abstract
Bubbling Inception Temperature (BIT) is a critical metric that indicates the temperature at which gas bubbles form due to cellulose decomposition in a paper–oil insulation system. It serves as a key indicator of the thermal stability of transformer insulation, offering valuable insights into [...] Read more.
Bubbling Inception Temperature (BIT) is a critical metric that indicates the temperature at which gas bubbles form due to cellulose decomposition in a paper–oil insulation system. It serves as a key indicator of the thermal stability of transformer insulation, offering valuable insights into its performance under elevated temperatures. Building on findings from a companion study that examined the BIT of Kraft paper (KP), thermally upgraded Kraft paper (TUK), and aramid paper in mineral oil, this research expands the analysis to assess the impact of moisture, aging, and alternative dielectric fluids. Using the same customized experimental setup featuring precise dynamic load control, real-time bubble detection, and continuous monitoring of moisture and temperature, this study evaluates BIT across four distinct oil–paper aging stages: new (0 h) and 2 weeks, 4 weeks, and 6 weeks of accelerated thermal aging. This approach enables a comparative analysis of BIT in various paper–oil systems, focusing on both mineral oil and synthetic esters, as well as the influence of different moisture levels in the paper insulation. The results show that BIT decreases with aging, indicating reduced thermal stability. Furthermore, KP impregnated with synthetic ester exhibits a higher BIT than when impregnated with mineral oil, suggesting that synthetic esters may offer better resistance to bubble formation under thermal stress. Based on these results, empirical BIT models were developed as a function of degree of polymerization (DP) and water content in paper (WCP). This study further demonstrates how these models can be applied to quantify safety margins under emergency overloading conditions, providing a practical tool for operational decision-making in transformer thermal risk management. Full article
Show Figures

Figure 1

26 pages, 1692 KB  
Review
Comparative Assessment and Deployment of Zeolites, MOFs, and Activated Carbons for CO2 Capture and Geological Sequestration Applications
by Mohamadou Hamadama Mouctar, Mohamed G Hassan, Nuno Bimbo, Syed Zaheer Abbas and Ihab Shigidi
Inventions 2025, 10(5), 78; https://doi.org/10.3390/inventions10050078 - 28 Aug 2025
Viewed by 203
Abstract
The rising level of atmospheric carbon dioxide (CO2) is a major driver of climate change, highlighting the need to develop carbon capture and storage (CCS) technologies quickly. This paper offers a comparative review of three main groups of porous adsorbent materials—zeolites, [...] Read more.
The rising level of atmospheric carbon dioxide (CO2) is a major driver of climate change, highlighting the need to develop carbon capture and storage (CCS) technologies quickly. This paper offers a comparative review of three main groups of porous adsorbent materials—zeolites, metal–organic frameworks (MOFs), and activated carbons—for their roles in CO2 capture and long-term storage. By examining their structural features, adsorption capacities, moisture stability, and economic viability, the strengths and weaknesses of each material are assessed. Additionally, five different methods for delivering these materials into depleted oil and gas reservoirs are discussed: direct suspension injection, polymer-assisted transport, foam-assisted delivery, encapsulation with controlled release, and preformed particle gels. The potential of hybrid systems, such as MOF–carbon composites and polymer-functionalized materials, is also examined for improved selectivity and durability in underground environments. This research aims to connect materials science with subsurface engineering, helping guide the selection and use of adsorbent materials in real-world CCS applications. The findings support the optimization of CCS deployment and contribute to broader climate change efforts and the goal of achieving net-zero emissions. Key findings include CO2 adsorption capacities of 3.5–8.0 mmol/g and surface areas up to 7000 m2/g, with MOFs demonstrating the highest uptake and activated carbons offering cost-effective performance. Full article
(This article belongs to the Section Inventions and Innovation in Biotechnology and Materials)
Show Figures

Figure 1

24 pages, 700 KB  
Systematic Review
Wet vs. Dry Dentin Bonding: A Systematic Review and Meta-Analysis of Adhesive Performance and Hybrid Layer Integrity
by Mircea Popescu, Mădălina Malița, Andrei Vorovenci, Andreea Angela Ștețiu, Viorel Ștefan Perieanu, Radu Cătălin Costea, Mihai David, Raluca Mariana Costea, Maria Antonia Ștețiu, Andi Ciprian Drăguș, Cristina Maria Șerbănescu, Andrei Burlibașa, Oana Eftene and Mihai Burlibașa
Oral 2025, 5(3), 63; https://doi.org/10.3390/oral5030063 - 28 Aug 2025
Viewed by 230
Abstract
Objective: This systematic review and meta-analysis aimed to evaluate the effects of moisture control strategies (including wet-bonding techniques, universal adhesives, and etching type) on dentin bonding performance in restorative dentistry. Methods: A comprehensive literature search was conducted across PubMed, Scopus, and [...] Read more.
Objective: This systematic review and meta-analysis aimed to evaluate the effects of moisture control strategies (including wet-bonding techniques, universal adhesives, and etching type) on dentin bonding performance in restorative dentistry. Methods: A comprehensive literature search was conducted across PubMed, Scopus, and Google Scholar, following PRISMA guidelines. Only in vitro and ex vivo studies comparing wet- and dry-bonding protocols, using human dentin substrates, and reporting microtensile bond strength (μTBS) were included. The data were synthesized using a random-effects meta-analysis and the methodological quality was assessed using the MINORS tool. Certainty of evidence was evaluated using the GRADE framework. Results: Nine studies met the inclusion criteria, eight of which were included in this meta-analysis. The moisture control strategies significantly influenced the bonding outcomes, with ethanol and acetone wet bonding yielding higher μTBS and enhanced hybrid layer morphology. The universal adhesives performed effectively under both moist and dry conditions, although their performance varied by the adhesive composition and solvent system. The meta-analysis revealed a statistically significant advantage for hydrated dentin (SMD = +1.20; 95% CI: 0.52 to 1.86; p < 0.001), with the moist and ethanol-treated substrates outperforming the dry and over-wet surfaces. The long-term durability was better preserved with ethanol and acetone pretreatments and the adjunctive use of chlorhexidine. Conclusions: Moisture conditions influence dentin bond strength, but modern universal adhesives show consistent bonding performance across different moisture conditions. Solvent-wet-bonding protocols, particularly with ethanol or acetone, enhance the immediate and long-term performance. While the current evidence is limited by the in vitro designs and heterogeneity, the findings demonstrate protocol flexibility and highlight strategies to optimize adhesion in clinical practice. Future clinical trials are necessary to validate these approaches under real-world conditions. Full article
Show Figures

Figure 1

20 pages, 10218 KB  
Article
Numerical Simulation of Deep Bed Cooling Drying Process of Pellet Feed Based on Non-Equilibrium Model
by Wei Wang, Junhua Wu, Fanglei Zou, Hongying Wang and Liangju Wang
Appl. Sci. 2025, 15(17), 9445; https://doi.org/10.3390/app15179445 - 28 Aug 2025
Viewed by 142
Abstract
In this study, a deep bed cooling drying model based on non-equilibrium model was established for pellet feed. The modified Verma model was used to describe the thin-layer drying rate, and the air temperature coefficient was introduced to optimize the convection heat transfer [...] Read more.
In this study, a deep bed cooling drying model based on non-equilibrium model was established for pellet feed. The modified Verma model was used to describe the thin-layer drying rate, and the air temperature coefficient was introduced to optimize the convection heat transfer coefficient. The model was verified by the enterprise production data and laboratory-scale cooling and drying test. The results show that the improved model can accurately predict the changes in feed temperature and moisture and has good applicability to the cooling and drying process under different wind speeds, air temperatures, and humidity. The model lays a foundation for the development of an intelligent control system for a pellet feed cooler and has important engineering value for achieving real-time control of cooling process parameters, improving feed quality stability and energy savings, and reducing energy consumption. Full article
Show Figures

Figure 1

8 pages, 2553 KB  
Proceeding Paper
Arduino-Based Sensor System Prototype for Microclimate Monitoring of an Experimental Greenhouse
by Ivaylo Belovski, Todor Mihalev, Elena Koleva and Aleksandar Mandadzhiev
Eng. Proc. 2025, 104(1), 54; https://doi.org/10.3390/engproc2025104054 - 27 Aug 2025
Viewed by 181
Abstract
Arduino-based sensor systems are gaining widespread adoption in modern technological applications due to their accessibility, low-cost components, diverse sensor compatibility, high reliability, and user-friendly programming. Because of these advantages, such a system was selected to monitor and control microclimate parameters in a small-scale [...] Read more.
Arduino-based sensor systems are gaining widespread adoption in modern technological applications due to their accessibility, low-cost components, diverse sensor compatibility, high reliability, and user-friendly programming. Because of these advantages, such a system was selected to monitor and control microclimate parameters in a small-scale experimental greenhouse. The greenhouse will cultivate several vegetable species in soils with varying zeolite concentrations. The aim of this paper is to present the design and prototype development of a sensor system capable of tracking key environmental parameters, including temperature, humidity, atmospheric pressure, and soil moisture, while also enabling automated irrigation. Full article
Show Figures

Figure 1

20 pages, 13277 KB  
Article
The Thermodynamic and Dynamic Cause Analysis of Three Extensive Compound Heatwaves from 2011 to 2024 in Mainland Spain
by Zeqi Li, Nan Jiang, Yan Xu, Luísa Bastos, Jiangteng Wang and Tianhe Xu
Remote Sens. 2025, 17(17), 2976; https://doi.org/10.3390/rs17172976 - 27 Aug 2025
Viewed by 306
Abstract
In recent years, frequent heatwaves (HWs) in Spain have increased mortality rates and impacted ecosystems. While most studies only investigate the causes of HWs in a single year, we analyzed the thermodynamic and dynamic causes of three extensive compound HWs (defined as concurrent [...] Read more.
In recent years, frequent heatwaves (HWs) in Spain have increased mortality rates and impacted ecosystems. While most studies only investigate the causes of HWs in a single year, we analyzed the thermodynamic and dynamic causes of three extensive compound HWs (defined as concurrent daytime and nighttime high temperatures) over mainland Spain during the 2011–2024 summers using station and reanalysis data. In addition, we explained the differences in the duration of the three HWs in terms of thermodynamic processes and the evolution of large-scale circulation systems. For thermodynamic analysis, we applied the first law of thermodynamics to examine local temperature variations and the surface energy balance to assess solar radiation and soil moisture impacts on HWs. It was found that high temperatures occurred more frequently over mainland Spain during 2015–2024 compared with 2011–2014. The thermodynamic analysis indicates negative contributions from horizontal advection, positive contributions from adiabatic heating, and a dominant positive contribution from diabatic heating in the formation of the three HWs. Although we observed anomalously increased solar radiation during the three HWs, soil moisture deficit was the primary factor in HW formation. The dynamic analysis shows that a similar large-scale circulation configuration prevailed over mainland Spain during the three HWs. The region was simultaneously controlled by an anomalously intense Azores High and the ridge line of a warm high-pressure ridge, accompanied by a weak divergent flow. This work offers valuable insights for the study of HWs in Spain and helps to understand the universal mechanism behind the HWs. Full article
Show Figures

Figure 1

18 pages, 5845 KB  
Article
Mechanical Properties and Microstructure of High-Performance Cold Mix Asphalt Modified with Portland Cement
by Anmar Dulaimi, Yasir N. Kadhim, Qassim Ali Al Quraishy, Hayder Al Hawesah, Tiago Pinto Ribeiro and Luís Filipe Almeida Bernardo
CivilEng 2025, 6(3), 46; https://doi.org/10.3390/civileng6030046 - 27 Aug 2025
Viewed by 275
Abstract
The use of hot mix asphalt (HMA) has several drawbacks, such as the emission of harmful gases into the atmosphere, difficulties in maintaining temperature over long distances, and the requirement for high energy consumption during preparation and installation. In order to solve these [...] Read more.
The use of hot mix asphalt (HMA) has several drawbacks, such as the emission of harmful gases into the atmosphere, difficulties in maintaining temperature over long distances, and the requirement for high energy consumption during preparation and installation. In order to solve these issues, this research aimed to produce High-Performance Cold Mix Asphalt (HP-CMA), in which Ordinary Portland Cement (OPC) is used as a filler to replace limestone filler at 0%, 1.5%, 3%, 4.5%, and 6% of the aggregate weight. Indirect Tensile Stiffness Modulus (ITSM), moisture susceptibility, temperature susceptibility, and microstructural analysis tests were carried out. The results showed that the ITSM was considerably enhanced when OPC was utilized. When comparing HP-CMA with 3% OPC to the control HMA (100–150 pen), the ITSM increased by approximately 80% after three days. In contrast, HP-CMA with 4.5% OPC achieved the same ITSM as the control HMA (40–60 pen) after seven days. Moreover, the ITSM of the HMA 40–60 pen decreased by 91.93% when the temperature rose from 20 °C to 45 °C, whereas the ITSM of the HP-CMA with 6% OPC decreased by 42.47% over the same temperature range. This suggests that HP-CMA is more stable than the HMA 40–60 pen at elevated temperatures. The superior performance of the HP-CMA can be attributed to two essential factors: the improved binding effect due to the demulsification of the asphalt emulsion used as a binder, and the formation of hydration products from the added cement. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

Back to TopTop