Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = msrD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2856 KB  
Article
Genomic Landscape and Antimicrobial Resistance of Listeria monocytogenes in Retail Chicken in Qingdao, China
by Wei Wang, Yao Zhong, Juntao Jia, Lidan Ma, Yan Lu, Qiushui Wang, Lijuan Gao, Jijuan Cao, Yinping Dong, Qiuyue Zheng and Jing Xiao
Foods 2025, 14(18), 3260; https://doi.org/10.3390/foods14183260 - 19 Sep 2025
Viewed by 308
Abstract
Listeria monocytogenes (L. monocytogenes) is an important foodborne pathogen that poses great risks to food safety and public health, and knowledge about its presence and diversity in potential sources is crucial for effectively tracking and controlling it in the food chain. [...] Read more.
Listeria monocytogenes (L. monocytogenes) is an important foodborne pathogen that poses great risks to food safety and public health, and knowledge about its presence and diversity in potential sources is crucial for effectively tracking and controlling it in the food chain. In this study, we investigated the prevalence, antimicrobial susceptibility, and genomic characteristics of Listeria monocytogenes (L. monocytogenes) collected from retail chicken meat samples in Qingdao, China, in 2022. A total of 38 (10.6%, 38/360) L. monocytogenes isolates were recovered from 360 retail chickens. All 38 isolates were classified into two lineages (I and II), three serogroups (IIa, IIb, IIc), eight sequence types (STs), eight clonal complexes (CCs), eight Sublineages (SLs) and nine cgMLSTs (CTs). ST121 and ST9 were the most prevalent STs in this study. The ST121 strains from China had heterogeneity with those from other countries, while the Chinese ST9 strains had homogeneity with those from other countries. One resistance cassette tet(M)-entS-msr(D) was identified in eight L2-SL121-ST121-CT13265 isolates, the genetic structure of which was identical to that of three reference genomes. All isolates carried the L. monocytogenes pathogenic island (LIPI)-1, with only one carrying LIPI-3 and three carrying LIPI-4. In addition, 11 isolates subtyped as L2-SL121-ST121-CT13265 were found to have a premature stop codon (PMSC) in the inlA gene in this study. Our data revealed the antimicrobial susceptibility, genomic characteristics and evolutionary relationships of L. monocytogenes in retail chicken in Qingdao, China. The characterization of genotypes, virulence, stress and antimicrobial markers of strains circulating in retail chicken in Qingdao, as described in this study, provides the opportunity to improve risk assessments of L. monocytogenes exposure. Full article
Show Figures

Figure 1

26 pages, 6112 KB  
Article
Preliminary Experimental Validation of Single-Phase Natural Circulation Loop Based on RELAP5-3D Code: Part I
by Hossam H. Abdellatif, Joshua Young, David Arcilesi and Richard Christensen
J. Nucl. Eng. 2025, 6(3), 38; https://doi.org/10.3390/jne6030038 - 19 Sep 2025
Viewed by 500
Abstract
The molten salt reactor (MSR) is a prominent Generation IV nuclear reactor concept that offers substantial advantages over conventional solid-fueled systems, including enhanced fuel utilization, inherent passive safety features, and significant reductions in long-lived radioactive waste. Central to its safety strategy is a [...] Read more.
The molten salt reactor (MSR) is a prominent Generation IV nuclear reactor concept that offers substantial advantages over conventional solid-fueled systems, including enhanced fuel utilization, inherent passive safety features, and significant reductions in long-lived radioactive waste. Central to its safety strategy is a reliance on natural circulation (NC) mechanisms, which eliminate the need for active pumping systems and enhance system reliability during normal and off-normal conditions. However, the challenges associated with molten salts, such as their high melting points, corrosivity, and material compatibility issues, render experimental investigations inherently complex and demanding. Therefore, the use of high-Pr-number surrogate fluids represents a practical alternative for studying molten salt behavior under safer and more accessible experimental conditions. In this study, a single-phase natural circulation loop setup at the University of Idaho’s Thermal–Hydraulics Laboratory was employed to investigate NC behavior under various operating conditions. The RELAP5-3D code was initially validated against water-based experiments before employing Therminol-66, a high-Prandtl-number surrogate for molten salts, in the natural circulation loop for the first time. The RELAP5-3D results demonstrated good agreement with both steady-state and transient experimental results, thereby confirming the code’s ability to model NC behavior in a single-phase flow regime. The results also highlighted certain experimental limitations that should be addressed to enhance the NC loop’s performance. These include increasing the insulation thickness to reduce heat losses, incorporating a dedicated mass flow measurement device for improved accuracy, and replacing the current heater with a higher-capacity unit to enable testing at elevated power levels. By identifying and addressing the main causes of these limitations and uncertainties during water-based experiments, targeted improvements can be implemented in both the RELAP5 model and the experimental setup, thereby ensuring that tests using a surrogate fluid for MSR analyses are conducted with higher accuracy and minimal uncertainty. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

22 pages, 8901 KB  
Article
D3Fusion: Decomposition–Disentanglement–Dynamic Compensation Framework for Infrared-Visible Image Fusion in Extreme Low-Light
by Wansi Yang, Yi Liu and Xiaotian Chen
Appl. Sci. 2025, 15(16), 8918; https://doi.org/10.3390/app15168918 - 13 Aug 2025
Viewed by 621
Abstract
Infrared-visible image fusion quality is critical for nighttime perception in autonomous driving and surveillance but suffers severe degradation under extreme low-light conditions, including irreversible texture loss in visible images, thermal boundary diffusion artifacts, and overexposure under dynamic non-uniform illumination. To address these challenges, [...] Read more.
Infrared-visible image fusion quality is critical for nighttime perception in autonomous driving and surveillance but suffers severe degradation under extreme low-light conditions, including irreversible texture loss in visible images, thermal boundary diffusion artifacts, and overexposure under dynamic non-uniform illumination. To address these challenges, a Decomposition–Disentanglement–Dynamic Compensation framework, D3Fusion, is proposed. Firstly, a Retinex-inspired Decomposition Illumination Net (DIN) decomposes inputs into enhanced images and degradative illumination maps for joint low-light recovery. Secondly, an illumination-guided encoder and a multi-scale differential compensation decoder dynamically balance cross-modal features. Finally, a progressive three-stage training paradigm from illumination correction through feature disentanglement to adaptive fusion resolves optimization conflicts. Compared to State-of-the-Art methods, on the LLVIP, TNO, MSRS, and RoadScene datasets, D3Fusion achieves an average improvement of 1.59% in standard deviation (SD), 6.9% in spatial frequency (SF), 2.59% in edge intensity (EI), and 1.99% in visual information fidelity (VIF), demonstrating superior performance in extreme low-light scenarios. The framework effectively suppresses thermal diffusion artifacts while mitigating exposure imbalance, adaptively brightening scenes while preserving texture details in shadowed regions. This significantly improves fusion quality for nighttime images by enhancing salient information, establishing a robust solution for multimodal perception under illumination-critical conditions. Full article
Show Figures

Figure 1

18 pages, 2348 KB  
Article
Glucomannan Accumulation Induced by Exogenous Lanthanum in Amorphophallus konjac: Insights from a Comparative Transcriptome Analysis
by Xiaoxian Li, Zhouting Zeng, Siyi Zhu, Xirui Yang, Xiaobo Xuan and Zhenming Yu
Biology 2025, 14(7), 849; https://doi.org/10.3390/biology14070849 - 11 Jul 2025
Viewed by 560
Abstract
Konjac glucomannan (KGM), derived from Amorphophallus konjac, is increasingly utilized in food and pharmaceutical applications. However, inconsistent KGM production across cultivars jeopardizes its quality and market viability. Lanthanum (La) has been shown to promote KGM levels, but the underlying mechanism remains unclear. [...] Read more.
Konjac glucomannan (KGM), derived from Amorphophallus konjac, is increasingly utilized in food and pharmaceutical applications. However, inconsistent KGM production across cultivars jeopardizes its quality and market viability. Lanthanum (La) has been shown to promote KGM levels, but the underlying mechanism remains unclear. In this study, 20~80 mg L−1 La significantly stimulated KGM accumulation compared with the control group. We performed a transcriptome analysis and found 21,047 differentially expressed genes (DEGs), predominantly enriched in carbohydrate and glycan metabolism pathways. A total of 48 DEGs were linked to KGM biosynthesis, with 20 genes (SuSy, INV1/3/5/6, HK1/2, FPK2, GPI3, PGM3, UGP2, GMPP1/4, CslA3~7, CslH2, and MSR1.2) showing significant positive correlations with KGM content. Interestingly, three key terminal pathway genes (UGP1, UGP3, and CslD3) exhibited strong upregulation (log2 fold change > 3). Seven DEGs were validated with qRT-PCR, aligning with the transcriptomic results. Furthermore, 12 hormone-responsive DEGs, including 4 ethylene-related genes (CTR1, EBF1/2, EIN3, and MPK6), 6 auxin-related genes (AUX/IAA1-3, SAUR1-2, and TIR1), and 2 gibberellin-related genes (DELLA1-2), were closely linked to KGM levels. Additionally, the transcription factors bHLH and AP2/ERF showed to be closely related to the biosynthesis of KGM. These results lay the foundation for a model wherein La (Ш) modulates KGM accumulation by coordinately regulating biosynthetic and hormonal pathways via specific transcription factors. Full article
Show Figures

Figure 1

17 pages, 2703 KB  
Article
Applicability Evaluation of Antarctic Ozone Reanalysis and Merged Satellite Datasets
by Junzhe Chen, Yu Zhang, Houxiang Shi, Hao Hu and Jianjun Xu
Atmosphere 2025, 16(6), 696; https://doi.org/10.3390/atmos16060696 - 10 Jun 2025
Viewed by 1225
Abstract
In this study, based on total column ozone observations from eight Antarctic stations, we evaluate the applicability of ERA5, C3S-MSR, MERRA-2, and JRA-55 reanalysis datasets and the NIWA-BS merged satellite dataset, in terms of interannual variation and long-term trend, using the correlation coefficient [...] Read more.
In this study, based on total column ozone observations from eight Antarctic stations, we evaluate the applicability of ERA5, C3S-MSR, MERRA-2, and JRA-55 reanalysis datasets and the NIWA-BS merged satellite dataset, in terms of interannual variation and long-term trend, using the correlation coefficient (R), root-mean-square error (RMSE), interannual variability skill score (IVS), and linear trend bias (TrBias). The results show that for interannual variation, C3S-MSR performs well at multiple stations, while JRA-55 performs poorly at most stations, especially Marambio, Rothera, and Faraday/Vernadsky, which are located at lower latitudes on the Antarctic Peninsula. Additionally, all datasets show significantly higher RMSE at Dumont D’Urville and Arrival Heights, which generally are located around the edge of the Antarctic stratospheric vortex where total column ozone values are more variable and on average larger than in the core of the vortex. The comprehensive ranking results show that C3S-MSR performs the best, followed by ERA5 and NIWA-BS, with MERRA-2 and JRA-55 ranking lower. For the long-term trend, each of the datasets has large bias values at Arrival Heights, and the absolute TrBias values of JRA-55 are larger at three stations on the Antarctic Peninsula. The overall averaged results show that C3S-MSR and NIWA-BS have the smallest absolute TrBias, and perform best in reflecting the Antarctic ozone trends, while ERA5 and JRA-55 significantly overestimate the Antarctic ozone recovery trend and perform poorly. Based on our analysis, the C3S-MSR dataset can be recommended to be prioritized when analyzing the interannual variations in Antarctic stratospheric ozone, and both the C3S-MSR reanalysis and NIWA-BS datasets should be prioritized for trend analysis. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

12 pages, 675 KB  
Article
Bats as Hosts of Antimicrobial-Resistant Mammaliicoccus lentus and Staphylococcus epidermidis with Zoonotic Relevance
by Vanessa Silva, Manuela Caniça, Rani de la Rivière, Paulo Barros, João Alexandre Cabral, Patrícia Poeta and Gilberto Igrejas
Vet. Sci. 2025, 12(4), 322; https://doi.org/10.3390/vetsci12040322 - 1 Apr 2025
Viewed by 1150
Abstract
Bats are increasingly recognized as reservoirs for antimicrobial-resistant bacteria, playing a potential role in the dissemination of resistance genes across species and regions. In this study, 105 bats from 19 species in Portugal were sampled to investigate the presence, antimicrobial resistance, and genetic [...] Read more.
Bats are increasingly recognized as reservoirs for antimicrobial-resistant bacteria, playing a potential role in the dissemination of resistance genes across species and regions. In this study, 105 bats from 19 species in Portugal were sampled to investigate the presence, antimicrobial resistance, and genetic characteristics of Mammaliicoccus and Staphylococcus isolates. Thirteen Mammaliicoccus lentus and Staphylococcus epidermidis were recovered. Antimicrobial susceptibility testing revealed multidrug resistance in three isolates, with S. epidermidis carrying mph(C), msr(A), and dfrC genes, and M. lentus harboring salB, tet(K), and str. Notably, qacA was detected in S. epidermidis, highlighting its plasmid-associated potential for horizontal gene transfer to more pathogenic bacteria. Heavy metal resistance genes (arsB and cadD) were also identified, suggesting the role of environmental factors in co-selecting antimicrobial resistance. Molecular typing revealed the S. epidermidis strain as ST297, a clone associated with both healthy humans and invasive infections. These findings emphasize the need for monitoring bats as reservoirs of resistance determinants, particularly in the context of zoonotic and environmental health. The presence of mobile genetic elements and plasmids further underscores the potential for the dissemination of resistance. This study reinforces the importance of adopting a One Health approach to mitigate the risks associated with antimicrobial resistance. Full article
Show Figures

Figure 1

13 pages, 3504 KB  
Article
Genomic Diversity, Virulome, and Resistome of Streptococcus agalactiae in Northeastern Brazil: Are Multi-Host Adapted Strains Rising?
by Vinicius Pietta Perez, Luciana Roberta Torini, Fernanda Zani Manieri, Suellen Bernardo de Queiroz, Jorhanna Isabelle Araujo de Brito Gomes, Lauro Santos Filho, Eloiza Helena Campana, Celso Jose Bruno de Oliveira, Eduardo Sergio Soares Sousa and Ilana Lopes Baratella Cunha Camargo
Pathogens 2025, 14(3), 292; https://doi.org/10.3390/pathogens14030292 - 17 Mar 2025
Viewed by 1299
Abstract
Streptococcus agalactiae, known as group B streptococci (GBS), colonizes the digestive and genitourinary tracts and causes neonatal diseases and infections in immunocompromised and elderly individuals. GBS neonatal disease prevention includes intrapartum antibiotic prophylaxis. We characterized 101 GBS isolates obtained from patients in [...] Read more.
Streptococcus agalactiae, known as group B streptococci (GBS), colonizes the digestive and genitourinary tracts and causes neonatal diseases and infections in immunocompromised and elderly individuals. GBS neonatal disease prevention includes intrapartum antibiotic prophylaxis. We characterized 101 GBS isolates obtained from patients in João Pessoa, northeastern Brazil, owing to the need to develop and implement vaccines to prevent GBS infections. Capsular types were determined using multiplex-PCR, and antibiotic susceptibility profiles were determined using disc diffusion or the gradient strip method. Clonal diversity was evaluated using pulsed-field gel electrophoresis. Fourteen selected isolates had the genome sequenced and evaluated for virulence and resistance genes. The GBS population had high clonal diversity, with serotype Ia and V prevalence. Among the sequenced isolates, we detected antibiotic resistance genes (ant(6)-Ia, catA8, ermA, ermB, lsaE, lsnuB, mefA/msrD, tetM, tetO, and tetS), several virulence genes, and mobile genetic elements integrated into the chromosome. The most frequent Sequence Type (ST) was ST144, followed by ST196, ST28, ST19, ST12, ST23, ST103, and the new ST1983 (CC103). Phylogenetically, ST103 and ST1983 were distant from the other STs. Our data revealed highly virulent GBS strains in this population and a new ST that could be related to a zoonotic origin. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

25 pages, 7066 KB  
Article
Dynamic Effect of the Delayed Neutron Precursor Distribution on System Safety Analysis in Liquid-Fueled Molten Salt Reactor
by Shichao Chen, Rui Li, Xiandi Zuo, Maosong Cheng and Zhimin Dai
Energies 2025, 18(3), 670; https://doi.org/10.3390/en18030670 - 31 Jan 2025
Cited by 1 | Viewed by 1234
Abstract
The liquid-fueled molten salt reactor (MSR) is one of the candidate reactors for the Generation IV advanced nuclear power systems, which utilizes flowing liquid molten salt as both fuel and coolant. In transients of liquid-fueled MSRs, the distribution change in the delayed neutron [...] Read more.
The liquid-fueled molten salt reactor (MSR) is one of the candidate reactors for the Generation IV advanced nuclear power systems, which utilizes flowing liquid molten salt as both fuel and coolant. In transients of liquid-fueled MSRs, the distribution change in the delayed neutron precursors (DNPs) in the primary loop has an important impact on system safety analysis. In order to analyze and evaluate this effect, the RELAP5-TMSR code with a 1-D DNP transport model was used to model the Molten Salt Breeder Reactor (MSBR), and several representative transient scenarios, including the loss of primary flow, increase in primary flow, loss of secondary flow, reactivity perturbation, and load change, were simulated and analyzed. The results show that the DNP distribution changes obviously during primary flow transients, especially during the loss of primary flow. Besides, the power response trends at different power levels during the loss of primary flow are different. The analysis results reveal the steady-state and dynamic characteristics of the DNP distribution, indicating that the DNP distribution, temperature feedback, and reactor power are strongly coupled, which has significant implications for the design and safety analysis of liquid-fueled MSRs. Full article
(This article belongs to the Special Issue Optimal Design and Analysis of Advanced Nuclear Reactors)
Show Figures

Figure 1

14 pages, 2122 KB  
Article
Unveiling the Resistome Landscape in Peri-Implant Health and Disease
by Lucinda J. Bessa, Conceição Egas, João Botelho, Vanessa Machado, Gil Alcoforado, José João Mendes and Ricardo Alves
J. Clin. Med. 2025, 14(3), 931; https://doi.org/10.3390/jcm14030931 - 31 Jan 2025
Viewed by 1315
Abstract
Background: The human oral microbiome is a critical reservoir for antibiotic resistance; however, subgingival peri-implant biofilms remain underexplored in this context. We aimed to explore the prevalence and distribution of antibiotic resistance genes (ARGs) in metagenomes derived from saliva and subgingival peri-implant biofilms. [...] Read more.
Background: The human oral microbiome is a critical reservoir for antibiotic resistance; however, subgingival peri-implant biofilms remain underexplored in this context. We aimed to explore the prevalence and distribution of antibiotic resistance genes (ARGs) in metagenomes derived from saliva and subgingival peri-implant biofilms. Methods: A total of 100 metagenome datasets from 40 individuals were retrieved from the Sequence Read Archive (SRA) database. Of these, 20 individuals had exclusively healthy implants and 20 had both healthy and affected implants with peri-implantitis. ARGs and their taxonomic assignments were identified using the ABRicate tool, and plasmid detection was performed with PlasmidFinder. Results: Four plasmid replicons were identified in 72 metagenomes, and 55 distinct ARGs from 13 antibiotic classes were detected in 89 metagenomes. ARGs conferring resistance to macrolides–lincosamides–streptogramins, tetracyclines, beta-lactams, and fluoroquinolones were the most prevalent. The msr(D) and mef(A) genes showed the highest prevalence, except in saliva samples from individuals with healthy implants, where mef(A) ranked fourth. A pairwise PERMANOVA of principal coordinate analysis based on Jaccard distances revealed that saliva samples exhibited significantly greater ARG diversity than subgingival biofilm samples (p < 0.05). However, no significant differences were observed between healthy and peri-implantitis-affected subgingival biofilm groups (p > 0.05). The taxonomic origins of ARGs were also analyzed to understand their distribution and potential impact on oral microbial communities. Conclusions: Resistome profiles associated with both peri-implant health and disease showed no significant differences and higher salivary abundance of ARGs compared to subgingival biofilm samples. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

15 pages, 5640 KB  
Article
Numerical Study on Flow Channel Construction of Methanol Steam Reforming Reformer
by Yujing Xiang, Huan Liu and Qi Zhang
Catalysts 2024, 14(12), 913; https://doi.org/10.3390/catal14120913 - 11 Dec 2024
Cited by 1 | Viewed by 1144
Abstract
Compared with the traditional granular catalyst, a mesh-type structured CuZn-based catalyst prepared by the self-growth ordered nanoporous carrier γ-Al2O3/Al can adapt to the MSR reaction system with high flux, strong mass transfer and heat transfer, and can promote the [...] Read more.
Compared with the traditional granular catalyst, a mesh-type structured CuZn-based catalyst prepared by the self-growth ordered nanoporous carrier γ-Al2O3/Al can adapt to the MSR reaction system with high flux, strong mass transfer and heat transfer, and can promote the practical process. In this study, the kinetic experiment using a CuZn-based structured catalyst was carried out, and a nonlinear single-rate PL model was established. Based on this, a 3D theoretical model of the MSR reformer was drawn in COMSOL Multiphysics. By changing the stacking form and mesh shape of the catalyst to construct the flow channel, the chemical reaction process, heat transfer process, and mass transfer process of the CuZn structured catalyst in the reformer under different flow channels are further simulated, which provides a theoretical basis for studying the enhancement of the MSR reaction and the development of a supporting micro hydrogen production system. Full article
(This article belongs to the Special Issue Advances in Catalyst Design and Application for Fuel Cells)
Show Figures

Figure 1

18 pages, 5721 KB  
Article
A Novel Simulation Model of Shielding Performance Based on the Anisotropic Magnetic Property of Magnetic Shields
by Yuzheng Ma, Minxia Shi, Leran Zhang, Teng Li, Xuechen Ling, Shuai Yuan, Hanxing Wang and Yi Gao
Materials 2024, 17(23), 5906; https://doi.org/10.3390/ma17235906 - 2 Dec 2024
Viewed by 1152
Abstract
To achieve a near-zero magnetic field environment, the use of permalloy sheets with high-performance magnetic properties is essential. However, mainstream welding processes for magnetically shielded rooms (MSRs), such as argon arc welding and laser welding, can degrade the magnetic properties of the material. [...] Read more.
To achieve a near-zero magnetic field environment, the use of permalloy sheets with high-performance magnetic properties is essential. However, mainstream welding processes for magnetically shielded rooms (MSRs), such as argon arc welding and laser welding, can degrade the magnetic properties of the material. Additionally, neglecting the anisotropy of permalloy sheets can introduce unpredictable errors in the evaluation of MSR performance. To address this issue, this paper proposes a modified model for calculating the shielding factor (SF) of MSRs that incorporates the anisotropic magnetic characteristics of permalloy sheets. These characteristics were measured using a two-dimensional single sheet tester (2D-SST). A high-precision measurement system was developed, comprising a 2D-SST (to generate two-dimensional magnetic fields and sense the induced B and H signals) and a control system (to apply in-phase 2D excitation signals and amplify, filter, and record the B and H data). Hysteresis loops were tested at low frequencies (0.1–9 Hz) and under different magnetization states (0.1–0.6 T) in two orientations—parallel and perpendicular to the annealing magnetic field—to verify anisotropy under varying conditions. Initial permeability, near-saturation magnetization, and basic magnetization curves (BM curves) were measured across different directions to provide parameters for simulations and theoretical calculations. Based on these measurements and finite element simulations, a mathematical model was developed to adjust the empirical coefficient λ used in theoretical SF calculations. The results revealed that the ratio of empirical coefficients in different directions is inversely proportional to the ratio of magnetic permeability in the corresponding directions. A verification group was established to compare the original model and the modified model. The mean squared error (MSE) between the original model and the finite element simulation was 49.97, while the MSE between the improved model and the finite element simulation was reduced to 0.13. This indicates a substantial improvement in the computational accuracy of the modified model. Full article
Show Figures

Figure 1

13 pages, 4906 KB  
Technical Note
An Extended Omega-K Algorithm for Automotive SAR with Curved Path
by Ping Guo, Chao Li, Haolan Li, Yuchen Luan, Anyi Wang, Rongshu Wang and Shiyang Tang
Remote Sens. 2024, 16(23), 4508; https://doi.org/10.3390/rs16234508 - 1 Dec 2024
Cited by 1 | Viewed by 1609
Abstract
Automotive millimeter-wave (MMW) synthetic aperture radar (SAR) systems can achieve high-resolution images of detection areas, providing environmental perceptions that facilitate intelligent driving. However, curved path is inevitable in complex urban road environments. Non-uniform spatial sampling, brought about by curved path, leads to cross-coupling [...] Read more.
Automotive millimeter-wave (MMW) synthetic aperture radar (SAR) systems can achieve high-resolution images of detection areas, providing environmental perceptions that facilitate intelligent driving. However, curved path is inevitable in complex urban road environments. Non-uniform spatial sampling, brought about by curved path, leads to cross-coupling and spatial variation deteriorates greatly, significantly impacting the imaging results. To deal with these issues, we developed an Extended Omega-K Algorithm (EOKA) for an automotive SAR with a curved path. First, an equivalent range model was constructed based on the relationship between the range history and Doppler frequency. Then, using azimuth time mapping, the echo data was reconstructed with a form similar to that of a uniform linear case. As a result, an analytical two-dimensional (2D) spectrum was easily derived without using of the method of series reversion (MSR) that could be exploited for EOKA. The results from the parking lot, open road, and obstacle experimental scenes demonstrate the performance and feasibility of an MMW SAR for environmental perception. Full article
Show Figures

Figure 1

14 pages, 4606 KB  
Article
Research on Multi-Scale Spatio-Temporal Graph Convolutional Human Behavior Recognition Method Incorporating Multi-Granularity Features
by Yulin Wang, Tao Song, Yichen Yang and Zheng Hong
Sensors 2024, 24(23), 7595; https://doi.org/10.3390/s24237595 - 28 Nov 2024
Cited by 1 | Viewed by 1195
Abstract
Aiming at the problem that the existing human skeleton behavior recognition methods are insensitive to human local movements and show inaccurate recognition in distinguishing similar behaviors, a multi-scale spatio-temporal graph convolution method incorporating multi-granularity features is proposed for human behavior recognition. Firstly, a [...] Read more.
Aiming at the problem that the existing human skeleton behavior recognition methods are insensitive to human local movements and show inaccurate recognition in distinguishing similar behaviors, a multi-scale spatio-temporal graph convolution method incorporating multi-granularity features is proposed for human behavior recognition. Firstly, a skeleton fine-grained partitioning strategy is proposed, which initializes the skeleton data into data streams of different granularities. An adaptive cross-scale feature fusion layer is designed using a normalized Gaussian function to perform feature fusion among different granularities, guiding the model to focus on discriminative feature representations among similar behaviors through fine-grained features. Secondly, a sparse multi-scale adjacency matrix is introduced to solve the bias weighting problem that amplifies the multi-scale spatial domain modeling process under multi-granularity conditions. Finally, an end-to-end graph convolutional neural network is constructed to improve the feature expression ability of spatio-temporal receptive field information and enhance the robustness of recognition between similar behaviors. The feasibility of the proposed algorithm was verified on the public behavior recognition dataset MSR Action 3D, with a accuracy of 95.67%, which is superior to existing behavior recognition methods. Full article
(This article belongs to the Special Issue AI-Based Computer Vision Sensors & Systems)
Show Figures

Figure 1

22 pages, 9206 KB  
Article
An Enhanced Multiscale Retinex, Oriented FAST and Rotated BRIEF (ORB), and Scale-Invariant Feature Transform (SIFT) Pipeline for Robust Key Point Matching in 3D Monitoring of Power Transmission Line Icing with Binocular Vision
by Nalini Rizkyta Nusantika, Jin Xiao and Xiaoguang Hu
Electronics 2024, 13(21), 4252; https://doi.org/10.3390/electronics13214252 - 30 Oct 2024
Cited by 2 | Viewed by 1343
Abstract
Power transmission line icing (PTLI) poses significant threats to the reliability and safety of electrical power systems, particularly in cold regions. Accumulation of ice on power lines can lead to severe consequences, such as line breaks, tower collapses, and widespread power outages, resulting [...] Read more.
Power transmission line icing (PTLI) poses significant threats to the reliability and safety of electrical power systems, particularly in cold regions. Accumulation of ice on power lines can lead to severe consequences, such as line breaks, tower collapses, and widespread power outages, resulting in economic losses and infrastructure damage. This study proposes an enhanced image processing pipeline to accurately detect and match key points in PTLI images for 3D monitoring of ice thickness using binocular vision. The pipeline integrates established techniques such as multiscale retinex (MSR), oriented FAST and rotated BRIEF (ORB) and scale-invariant feature transform (SIFT) algorithms, further refined with m-estimator sample consensus (MAGSAC)-based random sampling consensus (RANSAC) optimization. The image processing steps include automatic cropping, image enhancement, feature detection, and robust key point matching, all designed to operate in challenging environments with poor lighting and noise. Experiments demonstrate that the proposed method significantly improves key point matching accuracy and computational efficiency, reducing processing time to make it suitable for real-time applications. The effectiveness of the pipeline is validated through 3D ice thickness measurements, with results showing high precision and low error rates, making it a valuable tool for monitoring power transmission lines in harsh conditions. Full article
Show Figures

Figure 1

19 pages, 1474 KB  
Article
Molecular Characterization of MDR and XDR Clinical Strains from a Tertiary Care Center in North India by Whole Genome Sequence Analysis
by Uzma Tayyaba, Shariq Wadood Khan, Asfia Sultan, Fatima Khan, Anees Akhtar, Geetha Nagaraj, Shariq Ahmed and Bhaswati Bhattacharya
J. Oman Med. Assoc. 2024, 1(1), 29-47; https://doi.org/10.3390/joma1010005 - 24 Sep 2024
Cited by 1 | Viewed by 1523
Abstract
Whole genome sequencing (WGS) has the potential to greatly enhance AMR (Anti-microbial Resistance) surveillance. To characterize the prevalent pathogens and dissemination of various AMR-genes, 73 clinical isolates were obtained from blood and respiratory tract specimens, were characterized phenotypically by VITEK-2 (bioMerieux), and 23 [...] Read more.
Whole genome sequencing (WGS) has the potential to greatly enhance AMR (Anti-microbial Resistance) surveillance. To characterize the prevalent pathogens and dissemination of various AMR-genes, 73 clinical isolates were obtained from blood and respiratory tract specimens, were characterized phenotypically by VITEK-2 (bioMerieux), and 23 selected isolates were genotypically characterized by WGS (Illumina). AST revealed high levels of resistance with 50.7% XDR, 32.9% MDR, and 16.4% non-MDR phenotype. A total of 11 K. pneumoniae revealed six sequence types, six K-locus, and four O-locus types, with ST437, KL36, and O4 being predominant types, respectively. They carried ESBL genes CTX-M-15 (90.9%), TEM-1D (72.7%), SHV-11 (54.5%), SHV-1, SHV-28, OXA-1, FONA-5, and SFO-1; NDM-5 (72.7%) and 63.6%OXA48-like carbapenamases; 90.9%OMP mutation; dfrA12, sul-1, ermB, mphA, qnrB1, gyrA831, and pmrB1 for other groups. Virulence gene found were Yerisiniabactin (90.9%), aerobactin, RmpADC, and rmpA2. Predominant plasmid replicons were Col(pHAD28), IncFII, IncFIB(pQil), and Col440. A total of seven XDR A. baumannii showed single MLST type(2) and single O-locus type(OCL-1); with multiple AMR-genes: blaADC-73, blaOXA-66, blaOXA-23, blaNDM-1, gyrA, mphE, msrE, and tetB. Both S. aureus tested were found to be ST22, SCCmec IVa(2B), and spa type t309; multiple AMR-genes: blaZ, mecA, dfrC, ermC, and aacA-aphD. Non-MDR Enterococcus faecalis sequenced was ST 946, with multiple virulence genes. This study documents for the first-time prevalent virulence genes and MLST types, along with resistance genes circulating in our center. Full article
Show Figures

Figure 1

Back to TopTop