Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,943)

Search Parameters:
Keywords = multi time scales

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1330 KB  
Article
Estimating Field-Scale Soil Organic Matter in Agricultural Soils Using UAV Hyperspectral Imagery
by Chenzhen Xia and Yue Zhang
AgriEngineering 2025, 7(10), 339; https://doi.org/10.3390/agriengineering7100339 (registering DOI) - 10 Oct 2025
Abstract
Fast and precise monitoring of soil organic matter (SOM) during maize growth periods is crucial for real-time assessment of soil quality. However, the big challenge we usually face is that many agricultural soils are covered by crops or snow, and the bare soil [...] Read more.
Fast and precise monitoring of soil organic matter (SOM) during maize growth periods is crucial for real-time assessment of soil quality. However, the big challenge we usually face is that many agricultural soils are covered by crops or snow, and the bare soil period is short, which makes reliable SOM prediction complex and difficult. In this study, an unmanned aerial vehicle (UAV) was utilized to acquire multi-temporal hyperspectral images of maize across the key growth stages at the field scale. The auxiliary predictors, such as spectral indices (I), field management (F), plant characteristics (V), and soil properties (S), were also introduced. We used stepwise multiple linear regression, partial least squares regression (PLSR), random forest (RF) regression, and XGBoost regression models for SOM prediction, and the results show the following: (1) Multi-temporal remote sensing information combined with multi-source predictors and their combinations can accurately estimate SOM content across the key growth periods. The best-fitting model depended on the types of models and predictors selected. With the I + F + V + S predictor combination, the best SOM prediction was achieved by using the XGBoost model (R2 = 0.72, RMSE = 0.27%, nRMSE = 0.16%) in the R3 stage. (2) The relative importance of soil properties, spectral indices, plant characteristics, and field management was 55.36%, 26.09%, 9.69%, and 8.86%, respectively, for the multiple periods combination. Here, this approach can overcome the impact of the crop cover condition by using multi-temporal UAV hyperspectral images combined with valuable auxiliary variables. This study can also improve the field-scale farmland soil properties assessment and mapping accuracy, which will aid in soil carbon sequestration and soil management. Full article
(This article belongs to the Section Remote Sensing in Agriculture)
24 pages, 76400 KB  
Article
MBD-YOLO: An Improved Lightweight Multi-Scale Small-Object Detection Model for UAVs Based on YOLOv8
by Bo Xu, Di Cai, Kelin Sui, Zheng Wang, Chuangchuang Liu and Xiaolong Pei
Appl. Sci. 2025, 15(20), 10877; https://doi.org/10.3390/app152010877 (registering DOI) - 10 Oct 2025
Abstract
To address the challenges of low detection accuracy and weak generalization in UAV aerial imagery caused by complex ground environments, significant scale variations among targets, dense small objects, and background interference, this paper proposes an improved lightweight multi-scale small-object detection model, MBD-YOLO (MBFF [...] Read more.
To address the challenges of low detection accuracy and weak generalization in UAV aerial imagery caused by complex ground environments, significant scale variations among targets, dense small objects, and background interference, this paper proposes an improved lightweight multi-scale small-object detection model, MBD-YOLO (MBFF module, BiMS-FPN, and Dual-Stream Head). Specifically, to enhance multi-scale feature extraction capabilities, we introduce the Multi-Branch Feature Fusion (MBFF) module, which dynamically adjusts receptive fields through parallel branches and adaptive depthwise convolutions, expanding the receptive field while preserving detail perception. We further design a lightweight Bidirectional Multi-Scale Feature Aggregation Pyramid Network (BiMS-FPN), integrating bidirectional propagation paths and a Multi-Scale Feature Aggregation (MSFA) module to mitigate feature spatial misalignment and improve small-target detection. Additionally, the Dual-Stream Head with NMS-free architecture leverages a task-aligned architecture and dynamic matching strategies to boost inference speed without compromising accuracy. Experiments on the VisDrone2019 dataset demonstrate that MBD-YOLO-n surpasses YOLOv8n by 6.3% in mAP50 and 8.2% in mAP50–95, with accuracy gains of 17.96–55.56% for several small-target categories, while increasing parameters by merely 3.1%. Moreover, MBD-YOLO-s achieves superior detection accuracy, efficiency, and generalization with only 12.1 million parameters, outperforming state-of-the-art models and proving suitable for resource-constrained embedded deployment scenarios. The superior performance of MBD-YOLO, which harmonizes high precision with low computational demand, fulfills the critical requirements for real-time deployment on resource-limited UAVs, showing great promise for applications in traffic monitoring, urban security, and agricultural surveying. Full article
Show Figures

Figure 1

23 pages, 2122 KB  
Article
PSD-YOLO: An Enhanced Real-Time Framework for Robust Worker Detection in Complex Offshore Oil Platform Environments
by Yikun Qin, Jiawen Dong, Wei Li, Linxin Zhang, Ke Feng and Zijia Wang
Sensors 2025, 25(20), 6264; https://doi.org/10.3390/s25206264 (registering DOI) - 10 Oct 2025
Abstract
To address the safety challenges for personnel in the complex and hazardous environments of offshore drilling platforms, this paper introduces the Platform Safety Detection YOLO (PSD-YOLO), an enhanced, real-time object detection framework based on YOLOv10s. The framework integrates several key innovations to improve [...] Read more.
To address the safety challenges for personnel in the complex and hazardous environments of offshore drilling platforms, this paper introduces the Platform Safety Detection YOLO (PSD-YOLO), an enhanced, real-time object detection framework based on YOLOv10s. The framework integrates several key innovations to improve detection robustness: first, the Channel Attention-Aware (CAA) mechanism is incorporated into the backbone network to effectively suppress complex background noise interference; second, a novel C2fCIB_Conv2Former module is designed in the neck to strengthen multi-scale feature fusion for small and occluded targets; finally, the Soft-NMS algorithm is employed in place of traditional NMS to significantly reduce missed detections in dense scenes. Experimental results on a custom offshore platform personnel dataset show that PSD-YOLO achieves a mean Average Precision (mAP@0.5) of 82.5% at an inference speed of 232.56 FPS. The efficient and accurate detection framework proposed in this study provides reliable technical support for automated safety monitoring systems, holds significant practical implications for reducing accident rates and safeguarding personnel by enabling real-time warnings of hazardous situations, fills a critical gap in intelligent sensor monitoring for offshore platforms and makes a significant contribution to advancing their safety monitoring systems. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

28 pages, 2961 KB  
Article
An Improved Capsule Network for Image Classification Using Multi-Scale Feature Extraction
by Wenjie Huang, Ruiqing Kang, Lingyan Li and Wenhui Feng
J. Imaging 2025, 11(10), 355; https://doi.org/10.3390/jimaging11100355 - 10 Oct 2025
Abstract
In the realm of image classification, the capsule network is a network topology that packs the extracted features into many capsules, performs sophisticated capsule screening using a dynamic routing mechanism, and finally recognizes that each capsule corresponds to a category feature. Compared with [...] Read more.
In the realm of image classification, the capsule network is a network topology that packs the extracted features into many capsules, performs sophisticated capsule screening using a dynamic routing mechanism, and finally recognizes that each capsule corresponds to a category feature. Compared with previous network topologies, the capsule network has more sophisticated operations, uses a large number of parameter matrices and vectors to express picture attributes, and has more powerful image classification capabilities. However, in the practical application field, the capsule network has always been constrained by the quantity of calculation produced by the complicated structure. In the face of basic datasets, it is prone to over-fitting and poor generalization and often cannot satisfy the high computational overhead when facing complex datasets. Based on the aforesaid problems, this research proposes a novel enhanced capsule network topology. The upgraded network boosts the feature extraction ability of the network by incorporating a multi-scale feature extraction module based on proprietary star structure convolution into the standard capsule network. At the same time, additional structural portions of the capsule network are changed, and a variety of optimization approaches such as dense connection, attention mechanism, and low-rank matrix operation are combined. Image classification studies are carried out on different datasets, and the novel structure suggested in this paper has good classification performance on CIFAR-10, CIFAR-100, and CUB datasets. At the same time, we also achieved 98.21% and 95.38% classification accuracy on two complicated datasets of skin cancer ISIC derived and Forged Face EXP. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

30 pages, 17187 KB  
Article
Numerical Validation of a Multi-Dimensional Similarity Law for Scaled STOVL Aircraft Models
by Shengguan Xu, Mingyu Li, Xiance Wang, Yanting Song, Bingbing Tang, Lianhe Zhang, Shuai Yin and Jianfeng Tan
Aerospace 2025, 12(10), 908; https://doi.org/10.3390/aerospace12100908 (registering DOI) - 9 Oct 2025
Abstract
The complex jet-ground interactions of Short Take-off and Vertical Landing (STOVL) aircraft are critical to flight safety and performance, yet studying them with traditional full-scale wind tunnel tests is prohibitively expensive and time-consuming, hindering design optimization. This study addresses this challenge by developing [...] Read more.
The complex jet-ground interactions of Short Take-off and Vertical Landing (STOVL) aircraft are critical to flight safety and performance, yet studying them with traditional full-scale wind tunnel tests is prohibitively expensive and time-consuming, hindering design optimization. This study addresses this challenge by developing and numerically verifying a “pressure ratio–momentum–geometry” multi-dimensional similarity framework, enabling accurate and efficient scaled-model analysis. Systematic simulations of an F-35B-like configuration demonstrate the framework’s high fidelity. For a representative curved nozzle configuration (e.g., the F-35B three-bearing swivel duct nozzle, 3BSD), across scale factors ranging from 1:1 to 1:15, the plume deflection angle remains stable at 12° ± 1°. Concurrently, axial force (F) and mass flow rate (Q) strictly follow the square scaling relationship (F1/n2, Q1/n2), with deviations from theory remaining below 0.15% and 0.58%, respectively, even at the 1:15 scale, confirming high-fidelity momentum similarity, particularly in the near-field flow direction. Second, a 1:13.25 scale aircraft model, constructed using Froude similarity principles, exhibits critical parameter agreement (intake total pressure and total temperature) of the prototype-including vertical axial force, lift fan mass flow, and intake total temperature—all less than 1.5%, while the critical intake total pressure error is only 2.2%. Fountain flow structures and ground temperature distributions show high consistency with the full-scale aircraft, validating the reliability of the proposed “pressure ratio–momentum–geometry” multi-dimensional similarity criterion. The framework developed herein has the potential to reduce wind tunnel testing costs and shorten development cycles, offering an efficient experimental strategy for STOVL aircraft research and development. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

30 pages, 37105 KB  
Article
FPGA Accelerated Large-Scale State-Space Equations for Multi-Converter Systems
by Jiyuan Liu, Mingwang Xu, Hangyu Yang, Zhiqiang Que, Wei Gu, Yongming Tang, Baoping Wang and He Li
Electronics 2025, 14(19), 3966; https://doi.org/10.3390/electronics14193966 - 9 Oct 2025
Abstract
The increasing integration of high-frequency power electronic converters in renewable energy-grid systems has escalated reliability concerns, necessitating FPGA-accelerated large-scale real-time electromagnetic transient (EMT) computation to prevent failures. However, most existing studies prioritize computational performance and struggle to achieve large-scale EMT computation. To enhance [...] Read more.
The increasing integration of high-frequency power electronic converters in renewable energy-grid systems has escalated reliability concerns, necessitating FPGA-accelerated large-scale real-time electromagnetic transient (EMT) computation to prevent failures. However, most existing studies prioritize computational performance and struggle to achieve large-scale EMT computation. To enhance the computational scale, we propose a scalable hardware architecture comprising domain-specific components and data-centric processing element (PE) arrays. This architecture is further enhanced by a graph-based matrix mapping methodology and matrix-aware fixed-point quantization for hardware-efficient computation. We demonstrate our principles with FPGA implementations of large-scale multi-converter systems. The experimental results show that we set a new record of supporting 1200 switches with a computation latency of 373 ns and an accuracy of 99.83% on FPGA implementations. Compared to the state-of-the-art large-scale EMT computation on FPGAs, our design on U55C FPGA achieves an up-to 200.00× increase in the switch scale, without I/O resource limitations, and demonstrates up-to 71.70% reduction in computation error and 51.43% reduction in DSP consumption, respectively. Full article
17 pages, 1344 KB  
Article
SolarFaultAttentionNet: Dual-Attention Framework for Enhanced Photovoltaic Fault Classification
by Mubarak Alanazi and Yassir A. Alamri
Inventions 2025, 10(5), 91; https://doi.org/10.3390/inventions10050091 - 9 Oct 2025
Abstract
Photovoltaic (PV) fault detection faces significant challenges in distinguishing subtle defects from complex backgrounds while maintaining reliability across diverse environmental conditions. Traditional approaches struggle with scalability and accuracy limitations, particularly when detecting electrical damage, physical defects, and environmental soiling in thermal imagery. This [...] Read more.
Photovoltaic (PV) fault detection faces significant challenges in distinguishing subtle defects from complex backgrounds while maintaining reliability across diverse environmental conditions. Traditional approaches struggle with scalability and accuracy limitations, particularly when detecting electrical damage, physical defects, and environmental soiling in thermal imagery. This paper presents SolarFaultAttentionNet, a novel dual-attention deep learning framework that integrates channel-wise and spatial attention mechanisms within a multi-path CNN architecture for enhanced PV fault classification. The approach combines comprehensive data augmentation strategies with targeted attention modules to improve feature discrimination across six fault categories: Electrical-Damage, Physical-Damage, Snow-Covered, Dusty, Bird-Drop, and Clean. Experimental validation on a dataset of 885 images demonstrates that SolarFaultAttentionNet achieves 99.14% classification accuracy, outperforming state-of-the-art models by 5.14%. The framework exhibits perfect detection for dust accumulation (100% across all metrics) and robust electrical damage detection (99.12% F1 score) while maintaining an optimal sensitivity (98.24%) and specificity (99.91%) balance. The computational efficiency (0.0160 s inference time) and systematic performance improvements establish SolarFaultAttentionNet as a practical solution for automated PV monitoring systems, enabling reliable fault detection critical for maximizing energy production and minimizing maintenance costs in large-scale solar installations. Full article
Show Figures

Figure 1

21 pages, 3712 KB  
Article
CISC-YOLO: A Lightweight Network for Micron-Level Defect Detection on Wafers via Efficient Cross-Scale Feature Fusion
by Yulun Chi, Xingyu Gong, Bing Zhao and Lei Yao
Electronics 2025, 14(19), 3960; https://doi.org/10.3390/electronics14193960 - 9 Oct 2025
Abstract
With the development of the semiconductor manufacturing process towards miniaturization and high integration, the detection of microscopic defects on wafer surfaces faces the challenge of balancing precision and efficiency. Therefore, this study proposes a lightweight inspection model based on the YOLOv8 framework, aiming [...] Read more.
With the development of the semiconductor manufacturing process towards miniaturization and high integration, the detection of microscopic defects on wafer surfaces faces the challenge of balancing precision and efficiency. Therefore, this study proposes a lightweight inspection model based on the YOLOv8 framework, aiming to achieve an optimal balance between inspection accuracy, model complexity, and inference speed. First, we design a novel lightweight module called IRB-GhostConv-C2f (IGC) to replace the C2f module in the backbone, thereby significantly minimizing redundant feature computations. Second, a CNN-based cross-scale feature fusion neck network, the CCFF-ISC neck, is proposed to reduce the redundant computation of low-level features and enhance the expression of multi-scale semantic information. Meanwhile, the novel IRB-SCSA-C2f (ISC) module replaces the C2f in the neck to further improve the efficiency of feature fusion. In addition, a novel dynamic head network, DyHeadv3, is integrated into the head structure, aiming to improve the small-scale target detection performance by dynamically adjusting the feature interaction mechanism. Finally, so as to comprehensively assess the proposed algorithm’s performance, an industrial dataset of wafer defects, WSDD, is constructed, which covers “broken edges”, “scratches”, “oil pollution”, and “minor defects”. The experimental results demonstrate that the CISC-YOLO model attains an mAP50 of 93.7%, and the parameter amount is reduced to 1.92 M, outperforming other mainstream leading algorithms in the field. The proposed approach provides a high-precision and low-latency real-time defect detection solution for semiconductor industry scenarios. Full article
Show Figures

Figure 1

31 pages, 6076 KB  
Article
MSWindD-YOLO: A Lightweight Edge-Deployable Network for Real-Time Wind Turbine Blade Damage Detection in Sustainable Energy Operations
by Pan Li, Jitao Zhou, Jian Zeng, Qian Zhao and Qiqi Yang
Sustainability 2025, 17(19), 8925; https://doi.org/10.3390/su17198925 (registering DOI) - 8 Oct 2025
Abstract
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate [...] Read more.
Wind turbine blade damage detection is crucial for advancing wind energy as a sustainable alternative to fossil fuels. Existing methods based on image processing technologies face challenges such as limited adaptability to complex environments, trade-offs between model accuracy and computational efficiency, and inadequate real-time inference capabilities. In response to these limitations, we put forward MSWindD-YOLO, a lightweight real-time detection model for wind turbine blade damage. Building upon YOLOv5s, our work introduces three key improvements: (1) the replacement of the Focus module with the Stem module to enhance computational efficiency and multi-scale feature fusion, integrating EfficientNetV2 structures for improved feature extraction and lightweight design, while retaining the SPPF module for multi-scale context awareness; (2) the substitution of the C3 module with the GBC3-FEA module to reduce computational redundancy, coupled with the incorporation of the CBAM attention mechanism at the neck network’s terminus to amplify critical features; and (3) the adoption of Shape-IoU loss function instead of CIoU loss function to facilitate faster model convergence and enhance localization accuracy. Evaluated on the Wind Turbine Blade Damage Visual Analysis Dataset (WTBDVA), MSWindD-YOLO achieves a precision of 95.9%, a recall of 96.3%, an mAP@0.5 of 93.7%, and an mAP@0.5:0.95 of 87.5%. With a compact size of 3.12 MB and 22.4 GFLOPs inference cost, it maintains high efficiency. After TensorRT acceleration on Jetson Orin NX, the model attains 43 FPS under FP16 quantization for real-time damage detection. Consequently, the proposed MSWindD-YOLO model not only elevates detection accuracy and inference efficiency but also achieves significant model compression. Its deployment-compatible performance in edge environments fulfills stringent industrial demands, ultimately advancing sustainable wind energy operations through lightweight lifecycle maintenance solutions for wind farms. Full article
Show Figures

Figure 1

32 pages, 3160 KB  
Article
Multimodal Image Segmentation with Dynamic Adaptive Window and Cross-Scale Fusion for Heterogeneous Data Environments
by Qianping He, Meng Wu, Pengchang Zhang, Lu Wang and Quanbin Shi
Appl. Sci. 2025, 15(19), 10813; https://doi.org/10.3390/app151910813 - 8 Oct 2025
Abstract
Multi-modal image segmentation is a key task in various fields such as urban planning, infrastructure monitoring, and environmental analysis. However, it remains challenging due to complex scenes, varying object scales, and the integration of heterogeneous data sources (such as RGB, depth maps, and [...] Read more.
Multi-modal image segmentation is a key task in various fields such as urban planning, infrastructure monitoring, and environmental analysis. However, it remains challenging due to complex scenes, varying object scales, and the integration of heterogeneous data sources (such as RGB, depth maps, and infrared). To address these challenges, we proposed a novel multi-modal segmentation framework, DyFuseNet, which features dynamic adaptive windows and cross-scale feature fusion capabilities. This framework consists of three key components: (1) Dynamic Window Module (DWM), which uses dynamic partitioning and continuous position bias to adaptively adjust window sizes, thereby improving the representation of irregular and fine-grained objects; (2) Scale Context Attention (SCA), a hierarchical mechanism that associates local details with global semantics in a coarse-to-fine manner, enhancing segmentation accuracy in low-texture or occluded regions; and (3) Hierarchical Adaptive Fusion Architecture (HAFA), which aligns and fuses features from multiple modalities through shallow synchronization and deep channel attention, effectively balancing complementarity and redundancy. Evaluated on benchmark datasets (such as ISPRS Vaihingen and Potsdam), DyFuseNet achieved state-of-the-art performance, with mean Intersection over Union (mIoU) scores of 80.40% and 80.85%, surpassing MFTransNet by 1.91% and 1.77%, respectively. The model also demonstrated strong robustness in challenging scenes (such as building edges and shadowed objects), achieving an average F1 score of 85% while maintaining high efficiency (26.19 GFLOPs, 30.09 FPS), making it suitable for real-time deployment. This work presents a practical, versatile, and computationally efficient solution for multi-modal image analysis, with potential applications beyond remote sensing, including smart monitoring, industrial inspection, and multi-source data fusion tasks. Full article
(This article belongs to the Special Issue Signal and Image Processing: From Theory to Applications: 2nd Edition)
Show Figures

Figure 1

22 pages, 5772 KB  
Article
CF-DETR: A Lightweight Real-Time Model for Chicken Face Detection in High-Density Poultry Farming
by Bin Gao, Wanchao Zhang, Deqi Hao, Kaisi Yang and Changxi Chen
Animals 2025, 15(19), 2919; https://doi.org/10.3390/ani15192919 - 8 Oct 2025
Abstract
Reliable individual detection under dense and cluttered conditions is a prerequisite for automated monitoring in modern poultry systems. We propose CF-DETR, an end-to-end detector that builds on RT-DETR and is tailored to chicken face detection in production-like environments. CF-DETR advances three technical directions: [...] Read more.
Reliable individual detection under dense and cluttered conditions is a prerequisite for automated monitoring in modern poultry systems. We propose CF-DETR, an end-to-end detector that builds on RT-DETR and is tailored to chicken face detection in production-like environments. CF-DETR advances three technical directions: Dynamic Inception Depthwise Convolution (DIDC) expands directional and multi-scale receptive fields while remaining lightweight, Polar Embedded Multi-Scale Encoder (PEMD) restores global context and fuses multi-scale information to compensate for lost high-frequency details, and a Matchability Aware Loss (MAL) aligns predicted confidence with localization quality to accelerate convergence and improve discrimination. On a comprehensive broiler dataset, CF-DETR achieves a mean average precision at IoU 0.50 of 96.9% and a mean average precision (IoU 0.50–0.95) of 62.8%. Compared to the RT-DETR baseline, CF-DETR reduces trainable parameters by 33.2% and lowers FLOPs by 23.0% while achieving 81.4 frames per second. Ablation studies confirm that each module contributes to performance gains and that the combined design materially enhances robustness to occlusion and background clutter. Owing to its lightweight design, CF-DETR is well-suited for deployment in real-time smart farming monitoring systems. These results indicate that CF-DETR delivers an improved trade-off between detection performance and computational cost for real-time visual monitoring in intensive poultry production. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

22 pages, 29892 KB  
Article
Lightweight Deep Learning for Real-Time Cotton Monitoring: UAV-Based Defoliation and Boll-Opening Rate Assessment
by Minghui Xia, Xuegeng Chen, Xinliang Tian, Haojun Wen, Yan Zhao, Hongxia Liu, Wei Liu and Yuchen Zheng
Agriculture 2025, 15(19), 2095; https://doi.org/10.3390/agriculture15192095 - 8 Oct 2025
Abstract
Unmanned aerial vehicle (UAV) imagery provides an efficient approach for monitoring cotton defoliation and boll-opening rates. Deep learning, particularly convolutional neural networks (CNNs), has been widely applied in image processing and agricultural monitoring, achieving strong performance in tasks such as disease detection, weed [...] Read more.
Unmanned aerial vehicle (UAV) imagery provides an efficient approach for monitoring cotton defoliation and boll-opening rates. Deep learning, particularly convolutional neural networks (CNNs), has been widely applied in image processing and agricultural monitoring, achieving strong performance in tasks such as disease detection, weed recognition, and yield prediction. However, existing models often suffer from heavy computational costs and slow inference speed, limiting their real-time deployment in agricultural fields. To address this challenge, we propose a lightweight cotton maturity recognition model, RTCMNet (Real-time Cotton Monitoring Network). By incorporating a multi-scale convolutional attention (MSCA) module and an efficient feature fusion strategy, RTCMNet achieves high accuracy with substantially reduced computational complexity. A UAV dataset was constructed using images collected in Xinjiang, and the proposed model was benchmarked against several state-of-the-art networks. Experimental results demonstrate that RTCMNet achieves 0.96 and 0.92 accuracy on defoliation rate and boll-opening rate classification tasks, respectively. Meanwhile, it contains only 0.35 M parameters—94% fewer than DenseNet121—and only requires an inference time of 33 ms, representing a 97% reduction compared to DenseNet121. Field tests further confirm its real-time performance and robustness on UAV platforms. Overall, RTCMNet provides an efficient and low-cost solution for UAV-based cotton maturity monitoring, supporting the advancement of precision agriculture. Full article
Show Figures

Figure 1

29 pages, 3364 KB  
Article
Effects of Stand Age Gradient and Thinning Intervention on the Structure and Productivity of Larix gmelinii Plantations
by Jiang Liu, Xin Huang, Shaozhi Chen, Pengfei Zheng, Dongyang Han and Wendou Liu
Forests 2025, 16(10), 1552; https://doi.org/10.3390/f16101552 - 8 Oct 2025
Abstract
Larix gmelinii is the fourth most important tree species in China and a typical zonal climax species in the cold temperate region, with high ecological and resource value. However, intensive logging, high-density afforestation, and insufficient scientific management have led to overly dense, homogeneous, [...] Read more.
Larix gmelinii is the fourth most important tree species in China and a typical zonal climax species in the cold temperate region, with high ecological and resource value. However, intensive logging, high-density afforestation, and insufficient scientific management have led to overly dense, homogeneous, and unstable plantations, severely limiting productivity. To clarify the mechanisms by which structural dynamics regulate productivity, we established a space-for-time sequence (T1–T3, T2-D, CK) under a consistent early-tending background. Using the “1 + 4” nearest-neighbor framework and six spatial structural parameters, we developed tree and forest spatial structure indices (TSSI and FSSI) and integrated nine structural–functional indicators for multivariate analysis. The results showed that TSSI and FSSI effectively characterized multi-level stability and supported stability classification. Along the stand-age gradient, structural stability and spatial use efficiency improved significantly, with FSSI and biomass per hectare (BPH) increasing by 91% and 18% from T1 to T3, though a “structural improvement–functional lag” occurred at T2. Moderate thinning markedly optimized stand configuration, reducing low-stability individuals from 86.45% in T1 to 42.65% in T2-D, while DBH, crown width, FSSI, and BPH (229.87 t·hm−2) increased to near natural-forest levels. At the tree scale, DBH, tree height, crown width, and TSSI were positive drivers, whereas a high height–diameter ratio (HDR) constrained growth. At the stand scale, canopy density, species richness, and mean DBH promoted FSSI and BPH, while mean HDR and stand density imposed major constraints. A critical management window was identified when DBH < 25 cm, HDR > 10, and TSSI < 0.25 (approximately 10–30 years post-planting). We propose a stepwise, moderate, and targeted thinning strategy with necessary underplanting to reduce density and slenderness, increase diameter and canopy structure, and enhance diversity, thereby accelerating the synergy between stability and productivity. This framework provides a practical pathway for the scientific management and high-quality development of L. gmelinii plantations. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

22 pages, 4493 KB  
Article
Strategies of Urban Aggregation for Cultural Heritage Protection: Evaluation of the Effect of Facade Layout on the Seismic Behavior of Terraced Masonry Buildings
by Maria Rosa Valluzzi
Sustainability 2025, 17(19), 8914; https://doi.org/10.3390/su17198914 - 8 Oct 2025
Abstract
Aggregate masonry buildings in historic urban centers constitute tangible testimony of collective identity and historical continuity. They encompass both simple terraced configurations and more intricate clusters, which are inherently vulnerable to earthquake-induced damage, due to their typological features and the transformations that occurred [...] Read more.
Aggregate masonry buildings in historic urban centers constitute tangible testimony of collective identity and historical continuity. They encompass both simple terraced configurations and more intricate clusters, which are inherently vulnerable to earthquake-induced damage, due to their typological features and the transformations that occurred in the course of time. Strategies aimed at the protection and valorization of such typical architectural heritage should be based on the recognition of their peculiarities, so that the intangible values embedded within the historic fabric can be preserved. A simplified approach able to identify the effect of facade layout on the vulnerability of terraced buildings was validated on a historical center struck by the Central Italy earthquake. It is based on the evaluation of vulnerability factors derived by the application of a multi-level procedure on a large scale, which integrates data on typological and structural aspects, as well as on the condition state and previous interventions. In the center in question, the evidence of prevalent shear damage in the continuous frontage of the buildings facing the main street suggested the in-depth analysis of the facade’s characteristics, and its relationship with the main direction of the seismic swarm. Starting from a preliminary abacus of twelve vulnerability factors, 16 archetypes of facades at increasing vulnerability defined by a combination of the most significant geometrical features of building aggregates were identified. These virtual models encompass typical features that can be found in similar buildings in different contexts, thus enabling preventive actions based on parametric assessment. Full article
(This article belongs to the Collection Sustainable Conservation of Urban and Cultural Heritage)
Show Figures

Figure 1

30 pages, 10084 KB  
Article
Automatic Visual Inspection for Industrial Application
by António Gouveia Ribeiro, Luís Vilaça, Carlos Costa, Tiago Soares da Costa and Pedro Miguel Carvalho
J. Imaging 2025, 11(10), 350; https://doi.org/10.3390/jimaging11100350 - 8 Oct 2025
Viewed by 39
Abstract
Quality control represents a critical function in industrial environments, ensuring that manufactured products meet strict standards and remain free from defects. In highly regulated sectors such as the pharmaceutical industry, traditional manual inspection methods remain widely used. However, these are time-consuming and prone [...] Read more.
Quality control represents a critical function in industrial environments, ensuring that manufactured products meet strict standards and remain free from defects. In highly regulated sectors such as the pharmaceutical industry, traditional manual inspection methods remain widely used. However, these are time-consuming and prone to human error, and they lack the reliability required for large-scale operations, highlighting the urgent need for automated solutions. This is crucial for industrial applications, where environments evolve and new defect types can arise unpredictably. This work proposes an automated visual defect detection system specifically designed for pharmaceutical bottles, with potential applicability in other manufacturing domains. Various methods were integrated to create robust tools capable of real-world deployment. A key strategy is the use of incremental learning, which enables machine learning models to incorporate new, unseen data without full retraining, thus enabling adaptation to new defects as they appear, allowing models to handle rare cases while maintaining stability and performance. The proposed solution incorporates a multi-view inspection setup to capture images from multiple angles, enhancing accuracy and robustness. Evaluations in real-world industrial conditions demonstrated high defect detection rates, confirming the effectiveness of the proposed approach. Full article
(This article belongs to the Section Computer Vision and Pattern Recognition)
Show Figures

Figure 1

Back to TopTop