Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,285)

Search Parameters:
Keywords = multi-source fusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1588 KB  
Review
A Review of Dynamic Traffic Flow Prediction Methods for Global Energy-Efficient Route Planning
by Pengyang Qi, Chaofeng Pan, Xing Xu, Jian Wang, Jun Liang and Weiqi Zhou
Sensors 2025, 25(17), 5560; https://doi.org/10.3390/s25175560 - 5 Sep 2025
Abstract
Urbanization and traffic congestion caused by the surge in car ownership have exacerbated energy consumption and carbon emissions, and dynamic traffic flow prediction and energy-saving route planning have become the key to solving this problem. Dynamic traffic flow prediction accurately captures the spatio-temporal [...] Read more.
Urbanization and traffic congestion caused by the surge in car ownership have exacerbated energy consumption and carbon emissions, and dynamic traffic flow prediction and energy-saving route planning have become the key to solving this problem. Dynamic traffic flow prediction accurately captures the spatio-temporal changes of traffic flow through advanced algorithms and models, providing prospective information for traffic management and travel decision-making. Energy-saving route planning optimizes travel routes based on prediction results, reduces the time vehicles spend on congested road sections, thereby reducing fuel consumption and exhaust emissions. However, there are still many shortcomings in the current relevant research, and the existing research is mostly isolated and applies a single model, and there is a lack of systematic comparison of the adaptability, generalization ability and fusion potential of different models in various scenarios, and the advantages of heterogeneous graph neural networks in integrating multi-source heterogeneous data in traffic have not been brought into play. This paper systematically reviews the relevant global studies from 2020 to 2025, focuses on the integration path of dynamic traffic flow prediction methods and energy-saving route planning, and reveals the advantages of LSTM, graph neural network and other models in capturing spatiotemporal features by combing the application of statistical models, machine learning, deep learning and mixed methods in traffic forecasting, and comparing their performance with RMSE, MAPE and other indicators, and points out that the potential of heterogeneous graph neural networks in multi-source heterogeneous data integration has not been fully explored. Aiming at the problem of disconnection between traffic prediction and path planning, an integrated framework is constructed, and the real-time prediction results are integrated into path algorithms such as A* and Dijkstra through multi-objective cost functions to balance distance, time and energy consumption optimization. Finally, the challenges of data quality, algorithm efficiency, and multimodal adaptation are analyzed, and the development direction of standardized evaluation platform and open source toolkit is proposed, providing theoretical support and practical path for the sustainable development of intelligent transportation systems. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

20 pages, 2031 KB  
Article
Real-Time Driver Attention Detection in Complex Driving Environments via Binocular Depth Compensation and Multi-Source Temporal Bidirectional Long Short-Term Memory Network
by Shuhui Zhou, Wei Zhang, Yulong Liu, Xiaonian Chen and Huajie Liu
Sensors 2025, 25(17), 5548; https://doi.org/10.3390/s25175548 - 5 Sep 2025
Abstract
Driver distraction is a key factor contributing to traffic accidents. However, in existing computer vision-based methods for driver attention state recognition, monocular camera-based approaches often suffer from low accuracy, while multi-sensor data fusion techniques are compromised by poor real-time performance. To address these [...] Read more.
Driver distraction is a key factor contributing to traffic accidents. However, in existing computer vision-based methods for driver attention state recognition, monocular camera-based approaches often suffer from low accuracy, while multi-sensor data fusion techniques are compromised by poor real-time performance. To address these limitations, this paper proposes a Real-time Driver Attention State Recognition method (RT-DASR). RT-DASR comprises two core components: Binocular Vision Depth-Compensated Head Pose Estimation (BV-DHPE) and Multi-source Temporal Bidirectional Long Short-Term Memory (MSTBi-LSTM). BV-DHPE employs binocular cameras and YOLO11n (You Only Look Once) Pose to locate facial landmarks, calculating spatial distances via binocular disparity to compensate for monocular depth deficiency for accurate pose estimation. MSTBi-LSTM utilizes a lightweight Bidirectional Long Short-Term Memory (Bi-LSTM) network to fuse head pose angles, real-time vehicle speed, and gaze region semantics, bidirectionally extracting temporal features for continuous attention state discrimination. Evaluated under challenging conditions (e.g., illumination changes, occlusion), BV-DHPE achieved 44.7% reduction in head pose Mean Absolute Error (MAE) compared to monocular vision methods. RT-DASR achieved 90.4% attention recognition accuracy with 21.5 ms average latency when deployed on NVIDIA Jetson Orin. Real-world driving scenario tests confirm that the proposed method provides a high-precision, low-latency attention state recognition solution for enhancing the safety of mining vehicle drivers. RT-DASR can be integrated into advanced driver assistance systems to enable proactive accident prevention. Full article
(This article belongs to the Section Vehicular Sensing)
19 pages, 2115 KB  
Article
Situational Awareness for Oil Storage Tank Accidents Based on Complex Networks and Evidence Theory
by Yunlong Xia, Junmei Shi, Cheng Xun, Bo Kong, Changlin Chen, Yi Zhu and Dengyou Xia
Fire 2025, 8(9), 353; https://doi.org/10.3390/fire8090353 - 5 Sep 2025
Abstract
To address the difficulty frontline commanders face in accurately perceiving fireground risks during the early stages of oil storage tank fires, in this study, we propose a method that integrates complex network theory with a multi-source information fusion approach based on cloud models [...] Read more.
To address the difficulty frontline commanders face in accurately perceiving fireground risks during the early stages of oil storage tank fires, in this study, we propose a method that integrates complex network theory with a multi-source information fusion approach based on cloud models and Dempster-Shafer (D-S) evidence theory for situational analysis and dynamic perception. Initially, the internal evolution of accident scenarios within individual tanks is modeled as a single-layer network, while scenario propagation between tanks is represented through inter-layer connections, forming a multi-layer complex network for the storage area. The importance of each node is evaluated to assess the risk level of scenario nodes, enabling preliminary situational awareness, with limited reconnaissance information. Subsequently, the cloud model’s capability to handle fuzziness is combined with D-S theory’s strength in fusing multi-source data. Multi-source heterogeneous information is integrated to obtain the confidence levels of key nodes across low, medium, and high-risk categories. Based on these results, high-risk scenarios in oil storage tank emergency response are dynamically adjusted, enabling the updating and prediction of accident evolution. Finally, the proposed method is validated using the 2015 Gulei PX plant explosion case study. The results demonstrate that the approach effectively identifies high-risk scenarios, enhances dynamic situational perception, and is generally consistent with actual accident progression, thereby improving emergency response capability. Full article
Show Figures

Figure 1

25 pages, 8260 KB  
Article
A Novel Approach for Inverting Forest Fuel Moisture Content Utilizing Multi-Source Remote Sensing and Deep Learning
by Wenjun Wang, Cui Zhou, Junxiang Zhang, Yuanzong Li, Zhenyu Chen and Yongfeng Luo
Forests 2025, 16(9), 1423; https://doi.org/10.3390/f16091423 - 5 Sep 2025
Abstract
Fuel Moisture Content (FMC) is a critical indicator for assessing forest fire risk and formulating early warning strategies, as its spatiotemporal dynamics directly influence the accuracy of fire danger rating. To improve the accuracy of forest FMC estimation, this study proposes an innovative [...] Read more.
Fuel Moisture Content (FMC) is a critical indicator for assessing forest fire risk and formulating early warning strategies, as its spatiotemporal dynamics directly influence the accuracy of fire danger rating. To improve the accuracy of forest FMC estimation, this study proposes an innovative deep learning method integrating multi-source remote sensing data. By combining the global feature extraction capability of the Transformer architecture with the local temporal modeling advantages of Gated Recurrent Units (GRU) (referred to as the Transformer-GRU model), a high-precision FMC estimation framework is established. The study focuses on forested areas in California, USA, utilizing ground-measured FMC data alongside multi-source remote sensing datasets from MODIS, Sentinel-1, and Sentinel-2. A systematic comparison was conducted among Transformer-GRU model, standalone Transformer models, single GRU models, and two classical machine learning models (Random Forest, RF, and Support Vector Regression, SVR). Additionally, forward feature selection was employed to evaluate the performance of different models and feature combinations. The results demonstrate that (1) All models effectively utilize the derived features from multi-source remote sensing data, confirming the significant enhancement of multi-source data fusion for forest FMC estimation; (2) The Transformer-GRU model outperforms other models in capturing the nonlinear relationship between FMC and remote sensing data, achieving superior estimation accuracy (R2 = 0.79, MAE = 8.70%, RMSE = 11.44%, rRMSE = 12.60%); (3) The spatiotemporal distribution patterns of forest FMC in California generated by the Transformer-GRU model align well with regional geographic characteristics and climatic variability, while exhibiting a strong relationship with historical wildfire occurrences. The proposed Transformer-GRU model provides a novel approach for high-precision FMC estimation, offering reliable technical support for dynamic forest fire risk early warning and resource management. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

34 pages, 2931 KB  
Article
Data-Fusion-Based Algorithm for Assessing Threat Levels of Low-Altitude and Slow-Speed Small Targets
by Wei Wu, Wenjie Jie, Angang Luo, Xing Liu and Weili Luo
Sensors 2025, 25(17), 5510; https://doi.org/10.3390/s25175510 - 4 Sep 2025
Abstract
Low-Altitude and Slow-Speed Small (LSS) targets pose significant challenges to air defense systems due to their low detectability and complex maneuverability. To enhance defense capabilities against low-altitude targets and assist in formulating interception decisions, this study proposes a new threat assessment algorithm based [...] Read more.
Low-Altitude and Slow-Speed Small (LSS) targets pose significant challenges to air defense systems due to their low detectability and complex maneuverability. To enhance defense capabilities against low-altitude targets and assist in formulating interception decisions, this study proposes a new threat assessment algorithm based on multisource data fusion under visible-light detection conditions. Firstly, threat assessment indicators and their membership functions are defined to characterize LSS targets, and a comprehensive evaluation system is established. To reduce the impact of uncertainties in weight allocation on the threat assessment results, a combined weighting method based on bias coefficients is proposed. The proposed weighting method integrates the analytic hierarchy process (AHP), entropy weighting, and CRITIC methods to optimize the fusion of subjective and objective weights. Subsequently, Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and Dempster–Shafer (D-S) evidence theory are used to calculate and rank the target threat levels so as to reduce conflicts and uncertainties from heterogeneous data sources. Finally, the effectiveness and reliability of the two methods are verified through simulation experiments and measured data. The experimental results show that the TOPSIS method can significantly discriminate threat values, making it suitable for environments requiring rapid distinction between high- and low-threat targets. The D-S evidence theory, on the other hand, has strong anti-interference capability, making it suitable for environments requiring a balance between subjective and objective uncertainties. Both methods can improve the reliability of threat assessment in complex environments, providing valuable support for air defense command and control systems. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

27 pages, 7274 KB  
Article
Intelligent Identification of Internal Leakage of Spring Full-Lift Safety Valve Based on Improved Convolutional Neural Network
by Shuxun Li, Kang Yuan, Jianjun Hou and Xiaoqi Meng
Sensors 2025, 25(17), 5451; https://doi.org/10.3390/s25175451 - 3 Sep 2025
Viewed by 187
Abstract
In modern industry, the spring full-lift safety valve is a key device for safe pressure relief of pressure-bearing systems. Its valve seat sealing surface is easily damaged after long-term use, causing internal leakage, resulting in safety hazards and economic losses. Therefore, it is [...] Read more.
In modern industry, the spring full-lift safety valve is a key device for safe pressure relief of pressure-bearing systems. Its valve seat sealing surface is easily damaged after long-term use, causing internal leakage, resulting in safety hazards and economic losses. Therefore, it is of great significance to quickly and accurately diagnose its internal leakage state. Among the current methods for identifying fluid machinery faults, model-based methods have difficulties in parameter determination. Although the data-driven convolutional neural network (CNN) has great potential in the field of fault diagnosis, it has problems such as hyperparameter selection relying on experience, insufficient capture of time series and multi-scale features, and lack of research on valve internal leakage type identification. To this end, this study proposes a safety valve internal leakage identification method based on high-frequency FPGA data acquisition and improved CNN. The acoustic emission signals of different internal leakage states are obtained through the high-frequency FPGA acquisition system, and the two-dimensional time–frequency diagram is obtained by short-time Fourier transform and input into the improved model. The model uses the leaky rectified linear unit (LReLU) activation function to enhance nonlinear expression, introduces random pooling to prevent overfitting, optimizes hyperparameters with the help of horned lizard optimization algorithm (HLOA), and integrates the bidirectional gated recurrent unit (BiGRU) and selective kernel attention module (SKAM) to enhance temporal feature extraction and multi-scale feature capture. Experiments show that the average recognition accuracy of the model for the internal leakage state of the safety valve is 99.7%, which is better than the comparison model such as ResNet-18. This method provides an effective solution for the diagnosis of internal leakage of safety valves, and the signal conversion method can be extended to the fault diagnosis of other mechanical equipment. In the future, we will explore the fusion of lightweight networks and multi-source data to improve real-time and robustness. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

47 pages, 13862 KB  
Review
Land Use/Land Cover Remote Sensing Classification in Complex Subtropical Karst Environments: Challenges, Methodological Review, and Research Frontiers
by Denghong Huang, Zhongfa Zhou, Zhenzhen Zhang, Qingqing Dai, Huanhuan Lu, Ya Li and Youyan Huang
Appl. Sci. 2025, 15(17), 9641; https://doi.org/10.3390/app15179641 - 2 Sep 2025
Viewed by 96
Abstract
Land use/land cover (LULC) data serve as a critical information source for understanding the complex interactions between human activities and global environmental change. The subtropical karst region, characterized by fragmented terrain, spectral confusion, topographic shadowing, and frequent cloud cover, represents one of the [...] Read more.
Land use/land cover (LULC) data serve as a critical information source for understanding the complex interactions between human activities and global environmental change. The subtropical karst region, characterized by fragmented terrain, spectral confusion, topographic shadowing, and frequent cloud cover, represents one of the most challenging natural scenes for remote sensing classification. This study reviews the evolution of multi-source data acquisition (optical, SAR, LiDAR, UAV) and preprocessing strategies tailored for subtropical regions. It evaluates the applicability and limitations of various methodological frameworks, ranging from traditional approaches and GEOBIA to machine learning and deep learning. The importance of uncertainty modeling and robust accuracy assessment systems is emphasized. The study identifies four major bottlenecks: scarcity of high-quality samples, lack of scale awareness, poor model generalization, and insufficient integration of geoscientific knowledge. It suggests that future breakthroughs lie in developing remote sensing intelligent models that are driven by few samples, integrate multi-modal data, and possess strong geoscientific interpretability. The findings provide a theoretical reference for LULC information extraction and ecological monitoring in heterogeneous geomorphic regions. Full article
Show Figures

Figure 1

25 pages, 29114 KB  
Article
Towards UAV Localization in GNSS-Denied Environments: The SatLoc Dataset and a Hierarchical Adaptive Fusion Framework
by Xiang Zhou, Xiangkai Zhang, Xu Yang, Jiannan Zhao, Zhiyong Liu and Feng Shuang
Remote Sens. 2025, 17(17), 3048; https://doi.org/10.3390/rs17173048 - 2 Sep 2025
Viewed by 129
Abstract
Precise and robust localization for micro Unmanned Aerial Vehicles (UAVs) in GNSS-denied environments is hindered by the lack of diverse datasets and the limited real-world performance of existing visual matching methods. To address these gaps, we introduce two contributions: (1) the SatLoc dataset, [...] Read more.
Precise and robust localization for micro Unmanned Aerial Vehicles (UAVs) in GNSS-denied environments is hindered by the lack of diverse datasets and the limited real-world performance of existing visual matching methods. To address these gaps, we introduce two contributions: (1) the SatLoc dataset, a new benchmark featuring synchronized, multi-source data from varied real-world scenarios tailored for UAV-to-satellite image matching, and (2) SatLoc-Fusion, a hierarchical localization framework. Our proposed pipeline integrates three complementary layers: absolute geo-localization via satellite imagery using DinoV2, high-frequency relative motion tracking from visual odometry with XFeat, and velocity estimation using optical flow. An adaptive fusion strategy dynamically weights the output of each layer based on real-time confidence metrics, ensuring an accurate and self-consistent state estimate. Deployed on a 6 TFLOPS edge computer, our system achieves real-time operation at over 2 Hz, with an absolute localization error below 15 m and effective trajectory coverage exceeding 90%, demonstrating state-of-the-art performance. The SatLoc dataset and fusion pipeline provide a robust and comprehensive baseline for advancing UAV navigation in challenging environments. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

22 pages, 3983 KB  
Article
System Integration of Multi-Source Wearable Sensors for Non-Invasive Blood Lactate Estimation: A Data Fusion Approach
by Jingjie Wu, Zhixuan Chen and Lixin Sun
Processes 2025, 13(9), 2810; https://doi.org/10.3390/pr13092810 - 2 Sep 2025
Viewed by 134
Abstract
Blood lactate (BLa) concentration is a pivotal biomarker of exercise intensity and physiological stress, which provides insights into athletic performance and recovery. However, traditional lactate measurement requires invasive blood sampling, which presents significant limitations, including procedural discomfort, infection risks, and impracticality for continuous [...] Read more.
Blood lactate (BLa) concentration is a pivotal biomarker of exercise intensity and physiological stress, which provides insights into athletic performance and recovery. However, traditional lactate measurement requires invasive blood sampling, which presents significant limitations, including procedural discomfort, infection risks, and impracticality for continuous monitoring. Though non-invasive measurements of BLa concentration have emerged, most rely on a single physiological indicator like heart rate and sweat rate, and their accuracy and reliability remain limited. To address these limitations, this study proposes an innovative multi-sensor fusion framework for non-invasive estimation of BLa. By leveraging the inherent multisystem and multidimensional coordination of human physiology during exercise, the framework integrates a range of physiological signals (e.g., heart rate variability and respiratory entropy) and biomechanical signals (e.g., motion data). We proposed a stacking ensemble model that leverages the complementary strengths of these signals and achieved exceptional predictive performance with near-perfect correlation (R2 = 0.9661) while maintaining high precision (MAE = 0.1816 mmol/L) and robustness (RMSE = 0.5891 mmol/L). Furthermore, the model’s exceptional capability extends to blood lactate threshold detection with 98.15% classification accuracy, which is a critical metric for training intensity optimization. This approach provides a robust, non-invasive solution for continuous exercise intensity monitoring, demonstrating significant potential for optimizing athletic performance through real-time physiological assessment and data-driven training modulation. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

24 pages, 5793 KB  
Article
Comparative Assessment of Planar Density and Stereoscopic Density for Estimating Grassland Aboveground Fresh Biomass Across Growing Season
by Cong Xu, Jinchen Wu, Yuqing Liang, Pengyu Zhu, Siyang Wang, Fangming Wu, Wei Liu, Xin Mei, Zhaoju Zheng, Yuan Zeng, Yujin Zhao, Bingfang Wu and Dan Zhao
Remote Sens. 2025, 17(17), 3038; https://doi.org/10.3390/rs17173038 - 1 Sep 2025
Viewed by 197
Abstract
Grassland aboveground biomass (AGB) serves as a critical indicator of ecosystem productivity and carbon cycling, playing a pivotal role in ecosystem functioning. The advances in hyperspectral and terrestrial Light Detection and Ranging (LiDAR) data have provided new opportunities for grassland AGB monitoring, but [...] Read more.
Grassland aboveground biomass (AGB) serves as a critical indicator of ecosystem productivity and carbon cycling, playing a pivotal role in ecosystem functioning. The advances in hyperspectral and terrestrial Light Detection and Ranging (LiDAR) data have provided new opportunities for grassland AGB monitoring, but current research remains predominantly focused on data-driven machine learning models. The black-box nature of such approaches resulted in a lack of clear interpretation regarding the coupling relationships between these two data types in grassland AGB estimation. For grassland aboveground fresh biomass, the theoretical estimation can be decomposed into either the product of planar density (PD) and plot area or the product of stereoscopic density (SD) and grassland community volume. Based on this theory, our study developed a semi-mechanistic remote sensing model for grassland AGB estimation by integrating hyperspectral-derived biomass density with extracted structural parameters from terrestrial LiDAR. Initially, we built hyperspectral estimation models for both PD and SD of grassland fresh AGB using PLSR. Subsequently, by integrating the inversion results with grassland quadrat area and community volume measurements, respectively, we achieved quadrat-scale remote sensing estimation of grassland AGB. Finally, we conducted comparative accuracy assessments of both methods across different phenological stages to evaluate their performance differences. Our results demonstrated that SD, which incorporated structural features, could be more precisely estimated (R2 = 0.90, nRMSE = 7.92%, Bias% = 0.01%) based on hyperspectral data compared to PD (R2 = 0.79, nRMSE = 10.19%, Bias% = −7.25%), with significant differences observed in their respective responsive spectral bands. PD showed greater sensitivity to shortwave infrared regions, while SD exhibited stronger associations with visible, red-edge, and near-infrared bands. Although both methods achieved comparable overall AGB estimation accuracy (PD-based: R2 = 0.79, nRMSE = 10.19%, Bias% = −7.25%; SD-based: R2 = 0.82, nRMSE = 10.58%, Bias% = 1.86%), the SD-based approach effectively mitigated the underestimation of high biomass values caused by spectral saturation effects and also demonstrated superior and more stable performance across different growth periods (R2 > 0.6). This work provided concrete physical meaning to the integration of hyperspectral and LiDAR data for grassland AGB monitoring and further suggested the potential of multi-source remote sensing data fusion in estimating grassland AGB. The findings offered theoretical foundations for developing large-scale grassland AGB monitoring models using airborne and spaceborne remote sensing platforms. Full article
(This article belongs to the Special Issue Advances in Multi-Sensor Remote Sensing for Vegetation Monitoring)
Show Figures

Figure 1

19 pages, 2216 KB  
Article
A Photovoltaic Power Prediction Framework Based on Multi-Stage Ensemble Learning
by Lianglin Zou, Hongyang Quan, Ping Tang, Shuai Zhang, Xiaoshi Xu and Jifeng Song
Energies 2025, 18(17), 4644; https://doi.org/10.3390/en18174644 - 1 Sep 2025
Viewed by 189
Abstract
With the significant increase in solar power generation’s proportion in power systems, the uncertainty of its power output poses increasingly severe challenges to grid operation. In recent years, solar forecasting models have achieved remarkable progress, with various developed models each exhibiting distinct advantages [...] Read more.
With the significant increase in solar power generation’s proportion in power systems, the uncertainty of its power output poses increasingly severe challenges to grid operation. In recent years, solar forecasting models have achieved remarkable progress, with various developed models each exhibiting distinct advantages and characteristics. To address complex and variable geographical and meteorological conditions, it is necessary to adopt a multi-model fusion approach to leverage the strengths and adaptability of individual models. This paper proposes a photovoltaic power prediction framework based on multi-stage ensemble learning, which enhances prediction robustness by integrating the complementary advantages of heterogeneous models. The framework employs a three-level optimization architecture: first, a recursive feature elimination (RFE) algorithm based on LightGBM–XGBoost–MLP weighted scoring is used to screen high-discriminative features; second, mutual information and hierarchical clustering are utilized to construct a heterogeneous model pool, enabling competitive intra-group and complementary inter-group model selection; finally, the traditional static weighting strategy is improved by concatenating multi-model prediction results with real-time meteorological data to establish a time-period-based dynamic weight optimization module. The performance of the proposed framework was validated across multiple dimensions—including feature selection, model screening, dynamic integration, and comprehensive performance—using measured data from a 75 MW photovoltaic power plant in Inner Mongolia and the open-source dataset PVOD. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

36 pages, 25793 KB  
Article
DATNet: Dynamic Adaptive Transformer Network for SAR Image Denoising
by Yan Shen, Yazhou Chen, Yuming Wang, Liyun Ma and Xiaolu Zhang
Remote Sens. 2025, 17(17), 3031; https://doi.org/10.3390/rs17173031 - 1 Sep 2025
Viewed by 247
Abstract
Aiming at the problems of detail blurring and structural distortion caused by speckle noise, additive white noise and hybrid noise interference in synthetic aperture radar (SAR) images, this paper proposes a Dynamic Adaptive Transformer Network (DAT-Net) integrating a dynamic gated attention module and [...] Read more.
Aiming at the problems of detail blurring and structural distortion caused by speckle noise, additive white noise and hybrid noise interference in synthetic aperture radar (SAR) images, this paper proposes a Dynamic Adaptive Transformer Network (DAT-Net) integrating a dynamic gated attention module and a frequency-domain multi-expert enhancement module for SAR image denoising. The proposed model leverages a multi-scale encoder–decoder framework, combining local convolutional feature extraction with global self-attention mechanisms to transcend the limitations of conventional approaches restricted to single noise types, thereby achieving adaptive suppression of multi-source noise contamination. Key innovations comprise the following: (1) A Dynamic Gated Attention Module (DGAM) employing dual-path feature embedding and dynamic thresholding mechanisms to precisely characterize noise spatial heterogeneity; (2) A Frequency-domain Multi-Expert Enhancement (FMEE) Module utilizing Fourier decomposition and expert network ensembles for collaborative optimization of high-frequency and low-frequency components; (3) Lightweight Multi-scale Convolution Blocks (MCB) enhancing cross-scale feature fusion capabilities. Experimental results demonstrate that DAT-Net achieves quantifiable performance enhancement in both simulated and real SAR environments. Compared with other denoising algorithms, the proposed methodology exhibits superior noise suppression across diverse noise scenarios while preserving intrinsic textural features. Full article
Show Figures

Graphical abstract

24 pages, 6603 KB  
Article
Advancing Forest Inventory in Tropical Rainforests: A Multi-Source LiDAR Approach for Accurate 3D Tree Modeling and Volume Estimation
by Zongzhu Chen, Ziwei Lin, Tiezhu Shi, Dongping Deng, Yiqing Chen, Xiaoyan Pan, Xiaohua Chen, Tingtian Wu, Jinrui Lei and Yuanling Li
Remote Sens. 2025, 17(17), 3030; https://doi.org/10.3390/rs17173030 - 1 Sep 2025
Viewed by 210
Abstract
This study proposes an Automatic Branch Modeling (ABM) framework that combines AdTree and AdQSM algorithms to reconstruct individual tree models and estimate timber volume from fused Hand-held Laser Scanners (HLS) and Unmanned Aerial Vehicle Laser Scanners (UAV-LS) point cloud data. The research focuses [...] Read more.
This study proposes an Automatic Branch Modeling (ABM) framework that combines AdTree and AdQSM algorithms to reconstruct individual tree models and estimate timber volume from fused Hand-held Laser Scanners (HLS) and Unmanned Aerial Vehicle Laser Scanners (UAV-LS) point cloud data. The research focuses on two 50 × 50 m primary tropical rainforest plots in Hainan Island, China, characterized by dense and vertically stratified vegetation. Key steps include multi-source point cloud registration and noise removal, individual tree segmentation using the Comparative Shortest Path (CSP) algorithm, extraction of diameter at breast height (DBH) and tree height, and 3D reconstruction and volume estimation via cylindrical fitting and convex polyhedron decomposition. Results demonstrate high accuracy in parameter extraction, with DBH estimation achieving R2 = 0.89–0.90, RMSE = 2.93–3.95 cm and RMSE% = 13.95–14.75%, while tree height estimation yielded R2 = 0.89–0.94, RMSE = 1.26–1.81 m and RMSE% = 9.41–13.2%. Timber volume estimates showed strong agreement with binary volume models (R2 = 0.90–0.94, RMSE = 0.10–0.18 m3, RMSE% = 32.33–34.65%), validated by concordance correlation coefficients (CCC) of 0.95–0.97. The fusion of HLS (ground-level trunk details) and UAV-LS (canopy structure) data significantly improved structural completeness, overcoming occlusion challenges in dense forests. This study highlights the efficacy of multi-source LiDAR fusion and 3D modeling for precise forest inventory in complex ecosystems. The ABM framework provides a scalable, non-destructive alternative to traditional methods, supporting carbon stock assessment and sustainable forest management in tropical rainforests. Future work should refine individual tree segmentation and wood-leaf separation to further enhance accuracy in heterogeneous environments. Full article
(This article belongs to the Special Issue Close-Range LiDAR for Forest Structure and Dynamics Monitoring)
Show Figures

Graphical abstract

21 pages, 8734 KB  
Article
An Assessment Model for Winter Wheat Crop Water Status Fusing Hyperspectral and Environmental Data
by Nana Han, Minmin Wang, Qingyun Zhou, Xin Han, Xiaomao Liu, Zhigong Peng and Songmin Li
Water 2025, 17(17), 2574; https://doi.org/10.3390/w17172574 - 31 Aug 2025
Viewed by 307
Abstract
Accurate monitoring of the crop water status is of great significance for agricultural water management. To address the limitations of traditional spectral models that neglect the synergistic effects of environmental factors, this study aimed to improve the prediction ability of winter wheat water [...] Read more.
Accurate monitoring of the crop water status is of great significance for agricultural water management. To address the limitations of traditional spectral models that neglect the synergistic effects of environmental factors, this study aimed to improve the prediction ability of winter wheat water status by integrating multi-source data and machine learning algorithms. The results demonstrated significant improvements in prediction accuracy when environmental factors were integrated with hyperspectral data. During the jointing, heading, and filling stages, the prediction accuracy of the winter wheat plant water content model based on canopy hyperspectral fusion environmental factors (temperature and soil water content) was significantly higher than that based on the canopy spectral data model. The model performance (R2) increased from 0.74, 0.59, and 0.70 to 0.82, 0.69, and 0.76, respectively. The SVM-based full-growth-stage fusion model exhibited superior performance (R2 = 0.85, RMSE = 5.10%, RE = 7.79%), achieving accuracy improvements of 3.53%, 23.19%, and 11.84% compared to three key growth-period models. This study confirms that integrating canopy hyperspectral data with environmental factors systematically enhances the generalization capability and accuracy of winter wheat water content prediction, providing a reliable technical solution for precision irrigation and innovative agricultural development in the future. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

24 pages, 2159 KB  
Article
Agentic RAG-Driven Multi-Omics Analysis for PI3K/AKT Pathway Deregulation in Precision Medicine
by Micheal Olaolu Arowolo, Sulaiman Olaniyi Abdulsalam, Rafiu Mope Isiaka, Kingsley Theophilus Igulu, Bukola Fatimah Balogun, Mihail Popescu and Dong Xu
Algorithms 2025, 18(9), 545; https://doi.org/10.3390/a18090545 - 30 Aug 2025
Viewed by 256
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is a crucial regulator of cellular metabolism, proliferation, and survival. It is frequently dysregulated in metabolic, cardiovascular, and neoplastic disorders. Despite the advancements in multi-omics technology, existing methods often fail to provide real-time, pathway-specific insights for precision [...] Read more.
The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is a crucial regulator of cellular metabolism, proliferation, and survival. It is frequently dysregulated in metabolic, cardiovascular, and neoplastic disorders. Despite the advancements in multi-omics technology, existing methods often fail to provide real-time, pathway-specific insights for precision medicine and drug repurposing. We offer Agentic RAG-Driven Multi-Omics Analysis (ARMOA), an autonomous, hypothesis-driven system that integrates retrieval-augmented generation (RAG), large language models (LLMs), and agentic AI to thoroughly analyze genomic, transcriptomic, proteomic, and metabolomic data. Through the use of graph neural networks (GNNs) to model complex interactions within the PI3K/AKT pathway, ARMOA enables the discovery of novel biomarkers, probable candidates for drug repurposing, and customized therapy responses to address the complexities of PI3K/AKT dysregulation in disease states. ARMOA dynamically gathers and synthesizes knowledge from multiple sources, including KEGG, TCGA, and DrugBank, to guarantee context-aware insights. Through adaptive reasoning, it gradually enhances predictions, achieving 91% accuracy in external testing and 92% accuracy in cross-validation. Case studies in breast cancer and type 2 diabetes demonstrate that ARMOA can identify synergistic drug combinations with high clinical relevance and predict therapeutic outcomes specific to each patient. The framework’s interpretability and scalability are greatly enhanced by its use of multi-omics data fusion and real-time hypothesis creation. ARMOA provides a cutting-edge example for precision medicine by integrating multi-omics data, clinical judgment, and AI agents. Its ability to provide valuable insights on its own makes it a powerful tool for advancing biomedical research and treatment development. Full article
(This article belongs to the Special Issue Advanced Algorithms for Biomedical Data Analysis)
Show Figures

Figure 1

Back to TopTop