Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,332)

Search Parameters:
Keywords = multiphase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4725 KB  
Article
Characterization of Brazilian Tin Slag and Evaluation of Its Potential as a Secondary Source of Nb and Ta
by Franco Garjulli, Gabriel Alves de Souza Gonçalves, Jorge Alberto Soares Tenório and Denise Crocce Romano Espinosa
Minerals 2025, 15(11), 1126; https://doi.org/10.3390/min15111126 - 28 Oct 2025
Abstract
Tin slags generated during cassiterite smelting in Brazil contain significant amounts of technologically important metals such as niobium, tantalum, and zirconium. Improper disposal of these materials represents both an environmental concern and the loss of a valuable secondary source of critical elements. This [...] Read more.
Tin slags generated during cassiterite smelting in Brazil contain significant amounts of technologically important metals such as niobium, tantalum, and zirconium. Improper disposal of these materials represents both an environmental concern and the loss of a valuable secondary source of critical elements. This study aimed to characterize a Brazilian tin slag sample to evaluate its composition, morphology, and potential for metal recovery. The material was homogenized and analyzed by laser diffraction (particle size), ICP-OES (chemical composition), X-ray diffraction (mineral phases), differential scanning calorimetry (metallic tin), and scanning electron microscopy with energy-dispersive spectroscopy (morphology). The slag exhibited a heterogeneous particle size distribution (D90 = 0.75 mm, D50 = 0.30 mm, D10 = 0.09 mm) and a complex multiphase structure composed mainly of silica, calcium silicate, and zirconia. The chemical analysis revealed 4.8 wt% Nb and 0.8 wt% Ta, along with high concentrations of Zr (11.1 wt%), confirming the material’s potential as a secondary resource. Thorium (2.7 wt%) and uranium (0.3 wt%) were also detected, indicating the presence of radioactive constituents. The detailed characterization of the slag provides essential insights into its chemical and mineralogical complexity, which directly influence the selection of suitable recovery routes. Understanding the distribution of Nb- and Ta-bearing phases within the refractory silicate–zirconia matrix is fundamental for defining pretreatment and leaching strategies. Therefore, this study establishes a necessary foundation for the design of efficient hydrometallurgical processes aimed at recovering critical metals from Brazilian tin slags. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

20 pages, 4410 KB  
Article
Fractal Analysis of Microstructural Effects on Gas-Water Relative Permeability in Fractured Reservoirs
by Linhao Qiu, Yuxi Yang, Xiang Luo, Yunxiu Sai and Youyou Cheng
Processes 2025, 13(11), 3435; https://doi.org/10.3390/pr13113435 - 26 Oct 2025
Viewed by 65
Abstract
During natural gas extraction, understanding multiphase flow in fractured reservoirs remains a critical challenge due to the heterogeneous distribution of pores and fractures and the multi-scale nature of seepage mechanisms. These complexities introduce randomness in fluid distribution and tortuosity in seepage channels, limiting [...] Read more.
During natural gas extraction, understanding multiphase flow in fractured reservoirs remains a critical challenge due to the heterogeneous distribution of pores and fractures and the multi-scale nature of seepage mechanisms. These complexities introduce randomness in fluid distribution and tortuosity in seepage channels, limiting accurate characterization of gas-water flow. To address this issue, a dual-medium gas-water two-phase relative permeability model is developed by incorporating the fractal dimension of fracture surfaces, the tortuosity of the rock matrix, and the stress sensitivity of fracture networks. The model integrates essential microstructural parameters to capture the nonlinear flow behavior in dual-porosity systems. A systematic sensitivity analysis is conducted to evaluate the effects of fracture and matrix properties on the relative permeability curve. Results indicate that the fracture surface fractal dimension exerts a dominant influence in the two-phase flow region (fracture fractal dimensions in the range of 1.6–2.8), while near single-phase flow, fracture fractal dimensions in the range of 2.4–2.8 strongly affect flow behavior. Overall, the findings demonstrate that fracture-related parameters play a greater role than matrix properties in governing permeability evolution. This study provides predictive capability for two-phase flow in stress-sensitive fractured carbonates. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

23 pages, 3697 KB  
Article
Microfluidic Edible Coatings: Multiphase VOF Modeling, Physicochemical Properties, Image Analysis, and Applications in Fried Foods
by Cristian Aarón Dávalos-Saucedo, Giovanna Rossi-Márquez, Sergio Rodríguez-Miranda and Carlos E. Castañeda
Coatings 2025, 15(11), 1245; https://doi.org/10.3390/coatings15111245 - 26 Oct 2025
Viewed by 92
Abstract
Edible coatings are widely used to modulate oil uptake and moisture in fried foods. In this study, we evaluated a microfluid-assisted flow-blurring spray against conventional application by dipping/spraying, focusing on the coating efficiency and preliminary implications for sustainable process. This study combines benchtop [...] Read more.
Edible coatings are widely used to modulate oil uptake and moisture in fried foods. In this study, we evaluated a microfluid-assisted flow-blurring spray against conventional application by dipping/spraying, focusing on the coating efficiency and preliminary implications for sustainable process. This study combines benchtop experiments with a near-nozzle numerical analysis where the gas–liquid interface and primary breakup are modeled using the Volume of Fluid (VOF) approach implemented in OpenFOAM, configured for a flow-blurring geometry to generate whey protein isolate (WPI) coatings. Viscosity, density, solid content, and contact angle were validated experimentally and used in the simulation setup. An image-based droplet pipeline quantified spray characteristics, yielding a volumetric median diameter D50 = 83.69 µm and confirming process uniformity. Contact angles showed marked substrate dependence: hydrophilic surfaces, 68°–85°; hydrophobic surfaces, 95°–110°. For turkey sausages, sessile-drop contact angles were not determinable (N.D.) due to wicking/roughness; wettability was therefore assessed on smooth surrogates and via performance metrics. Fit-for-purpose simulation procedures are outlined. Microfluidic application (WPI-McF) lowered oil uptake versus uncoated controls. Together, robust modeling, targeted image analytics, and high-precision microfluidics enable rational tuning of coating microstructure and barrier performance, offering a scalable pathway to reduce lipid content and enhance fried food quality. Full article
(This article belongs to the Section Coatings for Food Technology and System)
Show Figures

Figure 1

33 pages, 4268 KB  
Article
AI-Driven Digital Twin for Optimizing Solar Submersible Pumping Systems
by Yousef Salah, Omar Shalash, Esraa Khatab, Mostafa Hamad and Sherif Imam
Inventions 2025, 10(6), 93; https://doi.org/10.3390/inventions10060093 (registering DOI) - 25 Oct 2025
Viewed by 101
Abstract
Reliable water access in remote and desert-like regions remains a challenge, particularly in areas with limited infrastructure. Solar-powered submersible pumps offer a promising solution; however, optimizing their performance under variable environmental conditions remains a challenging task. This research presents an Artificial Intelligence (AI)-driven [...] Read more.
Reliable water access in remote and desert-like regions remains a challenge, particularly in areas with limited infrastructure. Solar-powered submersible pumps offer a promising solution; however, optimizing their performance under variable environmental conditions remains a challenging task. This research presents an Artificial Intelligence (AI)-driven digital twin framework for modeling and optimizing the performance of a solar-powered submersible pump system. The proposed system has three core components: (1) an AI model for predicting the inverter motor’s output frequency based on the current generated by the solar panels, (2) a predictive model for estimating the pump’s generated power based on the inverter motor’s output, and (3) a mathematical formulation for determining the volume of water lifted based on the system’s operational parameters. Moreover, a dataset comprising 6 months of environmental and system performance data was collected and utilized to train and evaluate multiple predictive models. Unlike previous works, this research integrates real-world data with a multi-phase AI modeling pipeline for real-time water output estimation. Performance assessments indicate that the Random Forest (RF) model outperformed alternative approaches, achieving the lowest error rates with a Mean Absolute Error (MAE) of 1.00 Hz for output frequency prediction and 1.39 kW for pump output power prediction. The framework successfully estimated annual water delivery of 166,132.77 m3, with peak monthly output of 18,276.96 m3 in July and minimum of 9784.20 m3 in January demonstrating practical applicability for agricultural water management planning in arid regions. Full article
Show Figures

Figure 1

16 pages, 860 KB  
Article
Impact of Preprocedural Collateral Status on Hemorrhagic Transformation and Outcomes After Endovascular Thrombectomy in Acute Ischemic Stroke
by Shiu-Yuan Huang, Nien-Chen Liao, Jin-An Huang, Wen-Hsien Chen and Hung-Chieh Chen
Diagnostics 2025, 15(21), 2701; https://doi.org/10.3390/diagnostics15212701 - 25 Oct 2025
Viewed by 207
Abstract
Background: Hemorrhagic transformation (HT) is a major complication of endovascular thrombectomy (EVT) for acute ischemic stroke (AIS). Objectives: To investigate the factors as sociated with HT in patients with successful recanalization and examine the impact of collateral status (CS) on ischemic [...] Read more.
Background: Hemorrhagic transformation (HT) is a major complication of endovascular thrombectomy (EVT) for acute ischemic stroke (AIS). Objectives: To investigate the factors as sociated with HT in patients with successful recanalization and examine the impact of collateral status (CS) on ischemic progression and outcomes. Methods: We retrospectively analyzed patients with AIS with successful recanalization (modified treatment in cerebral infarction (mTICI) 2B-3) who underwent dual-energy CT (DECT) within 24 h and MRI within 10 days post-EVT. Patients with posterior circulation stroke, missing multiphase CT angiography (CTA) collateral scores, or missing 3-month modified ranking scale scores were excluded from the study. Results: Among the 86 patients, those with HT had a significantly lower proportion of 3-month excellent outcomes and worse imaging scores, including non-contrast CT (NCCT)-Alberta Stroke Program Early CT Score (ASPECTS), virtual non-contrast (VNC)-ASPECTS, and diffusion-weighted imaging (DWI)-ASPECTS. Patients with HT with poor CS had a significantly lower proportion of 3-month excellent outcomes, poorer post-EVT National Institutes of Health Stroke Scale (NIHSS) score, worse imaging scores, including VNC-ASPECTS, and DWI-ASPECTS. In the predictive factor analysis, post-EVT NIHSS and VNC-ASPECTS scores were significantly associated with 3-month excellent functional outcomes (modified Rankin Scale (mRS) 0-1). Conclusions: In patients with successfully recanalized AIS, HT with poor CS was associated with poorer functional outcomes and worse imaging scores, and a 24 h combined measure (post-EVT NIHSS and DECT VNC-ASPECT) show promise for early risk stratification; prospective external validation is warranted before routine use. Full article
(This article belongs to the Special Issue Cerebrovascular Lesions: Diagnosis and Management, 2nd Edition)
Show Figures

Figure 1

20 pages, 5441 KB  
Article
Study on the γ/γ′ Eutectic Inhomogeneity of a Novel 3rd Generation Nickel-Based Single-Crystal Superalloy Casting
by Xiaoshan Liu, Anping Long, Haijie Zhang, Dexin Ma, Min Song, Menghuai Wu and Jianzheng Guo
Materials 2025, 18(21), 4872; https://doi.org/10.3390/ma18214872 (registering DOI) - 24 Oct 2025
Viewed by 222
Abstract
In the manufacture of single-crystal blades for aero-engines, the problem of eutectic aggregation on the upper surface of the blades has long been restricting the casting performance improvement. To investigate this phenomenon, this paper employs a simplified blade-like shape casting and focuses a [...] Read more.
In the manufacture of single-crystal blades for aero-engines, the problem of eutectic aggregation on the upper surface of the blades has long been restricting the casting performance improvement. To investigate this phenomenon, this paper employs a simplified blade-like shape casting and focuses a 3rd generation nickel-based single-crystal superalloy as the research material. A systematic analysis is conducted to elucidate the distribution of γ/γ’ eutectic during solidification. Experimental results show distinct spatial variations in γ/γ’ eutectic distribution. Pronounced eutectic aggregation is observed on the upper surface of the blade but with sparse eutectic dispersion‌ on the lower regions of the casting. Relatively uniform eutectic distribution‌ dominates the mid-section of the specimen. To unravel the underlying mechanisms, this paper utilized a ‌multiphase volume-averaged solidification model‌, developed in prior work, to numerically simulate the γ/γ’ eutectic evolution during directional solidification. This computational framework enabled a comprehensive ‌quantitative analysis‌ of spatial and temporal variations in the eutectic volume fraction along the solidification direction. The integration of experimental and modeling approaches provides critical insights into the interplay between thermal gradients, alloy composition, and microstructural heterogeneity. Full article
(This article belongs to the Special Issue Microstructure and Defect Simulation during Solidification of Alloys)
Show Figures

Figure 1

14 pages, 4376 KB  
Article
Microscale Flow Mechanism of Gas Displacement in Heterogeneous Pore Structures
by Shasha Feng, Xinzhe Liu, Keliu Wu and Zhangxing (John) Chen
Processes 2025, 13(11), 3417; https://doi.org/10.3390/pr13113417 - 24 Oct 2025
Viewed by 164
Abstract
As oilfield development enters the mid-to-late stages, conventional water flooding techniques face increasing challenges such as high water cut and limited improvement in recovery efficiency. Gas flooding has gradually become a critical method for enhancing oil recovery (EOR). However, significant heterogeneity in pore [...] Read more.
As oilfield development enters the mid-to-late stages, conventional water flooding techniques face increasing challenges such as high water cut and limited improvement in recovery efficiency. Gas flooding has gradually become a critical method for enhancing oil recovery (EOR). However, significant heterogeneity in pore structures within complex reservoirs severely affects flow capacity and development performance during gas flooding processes. To elucidate the microscale flow mechanisms influenced by heterogeneity, this study constructs a series of two-dimensional pore network models with varying degrees of heterogeneity based on an improved Quartet Structure Generation Set algorithm. Gas-oil two-phase flow simulations were conducted using the multiphase flow module of COMSOL Multiphysics® 6.2. By adjusting the bimodal pore size ratio and pore distribution parameters, the heterogeneity level of the reservoir was systematically controlled, and relative permeability curves were extracted to inform macro-scale development strategy design. Simulation results indicate that (1) strong heterogeneity reduces the stability of the displacement front, leading to pronounced gas channeling; (2) in strongly heterogeneous pore structures, residual oil saturation significantly increases, with small pore regions forming residual oil-enriched zones that are difficult to mobilize; (3) relative permeability curves vary markedly under different heterogeneity conditions—oil-phase permeability declines rapidly during displacement, while gas-phase permeability rises sharply at high gas saturation levels. This study systematically investigates, for the first time, the microscale impact of pore structure heterogeneity on gas flooding behavior and applies pore-scale simulation outcomes to optimize macro-scale development strategies. The findings offer theoretical support and a technical pathway for gas injection design in complex heterogeneous reservoirs. While two-dimensional pore-network models enable controlled mechanistic and sensitivity analyses of heterogeneity, they do not fully capture three-dimensional connectivity and tortuosity. Accordingly, our results are positioned as mechanistic priors that are calibrated to field data during upscaling. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 4246 KB  
Article
Development of a Machine Learning Interatomic Potential for Zirconium and Its Verification in Molecular Dynamics
by Yuxuan Wan, Xuan Zhang and Liang Zhang
Nanomaterials 2025, 15(21), 1611; https://doi.org/10.3390/nano15211611 - 22 Oct 2025
Viewed by 341
Abstract
Molecular dynamics (MD) can dynamically reveal the structural evolution and mechanical response of Zirconium (Zr) at the atomic scale under complex service conditions such as high temperature, stress, and irradiation. However, traditional empirical potentials are limited by their fixed function forms and parameters, [...] Read more.
Molecular dynamics (MD) can dynamically reveal the structural evolution and mechanical response of Zirconium (Zr) at the atomic scale under complex service conditions such as high temperature, stress, and irradiation. However, traditional empirical potentials are limited by their fixed function forms and parameters, making it difficult to accurately describe the multi-body interactions of Zr under conditions such as multi-phase structures and strong nonlinear deformation, thereby limiting the accuracy and generalization ability of simulation results. This paper combines high-throughput first-principles calculations (DFT) with the machine learning method to develop the Deep Potential (DP) for Zr. The developed DP of Zr was verified by performing molecular dynamic simulations on lattice constants, surface energies, grain boundary energies, melting point, elastic constants, and tensile responses. The results show that the DP model achieves high consistency with DFT in predicting multiple key physical properties, such as lattice constants and melting point. Also, it can accurately capture atomic migration, local structural evolution, and crystal structural transformations of Zr under thermal excitation. In addition, the DP model can accurately capture plastic deformation and stress softening behavior in Zr under large strains, reproducing the characteristics of yielding and structural rearrangement during tensile loading, as well as the stress-induced phase transition of Zr from HCP to FCC, demonstrating its strong physical fidelity and numerical stability. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

22 pages, 5486 KB  
Article
CFD Simulation and Analysis of Velocity, Temperature, and Pressure Fields for Salt-Carrying Steam Flow in a U-Bend Tube
by Genying Gao, Mingyu Luan, Hanzeng Cheng, Junde Liu, Yang Yang and Lei Deng
Processes 2025, 13(11), 3379; https://doi.org/10.3390/pr13113379 - 22 Oct 2025
Viewed by 190
Abstract
To investigate the influence of salt transport in water–steam mixtures on flow and heat transfer and to ensure the operational safety of steam injection boilers, this study simulated the behavior of high-dryness steam carrying salts in U-tubes. The analysis focused on three representative [...] Read more.
To investigate the influence of salt transport in water–steam mixtures on flow and heat transfer and to ensure the operational safety of steam injection boilers, this study simulated the behavior of high-dryness steam carrying salts in U-tubes. The analysis focused on three representative substances—silica, hematite, and calcium carbonate—to evaluate their effects on flow and heat transfer characteristics under varying conditions. The simulation results show that under specified operating conditions, vortices induced by rotational flow lead to complex flow behavior in U-tubes, with transitions from stratified flow to annular flow and back to stratified flow. The effects of salt precipitation on the temperature, velocity, and pressure fields of the boiling flow were also examined. The findings indicate that for pure water, large gradients and multiple vortices adversely affect flow stability, whereas the introduction of small amounts of salts provides localized stabilization in regions of the fluid away from the wall. Full article
(This article belongs to the Special Issue Transport Processes in Single- and Multi-Phase Flow Systems)
Show Figures

Figure 1

24 pages, 3040 KB  
Article
Fully Biobased Biodegradable Elastomeric Polymer Blends Based on PHAs
by Pavol Alexy, Vojtech Horváth, Roderik Plavec, Zuzana Vanovčanová, Katarína Tomanová, Michal Ďurfina, Mária Fogašová, Leona Omaníková, Slávka Hlaváčiková, Zuzana Kramárová, Jana Navrátilová, Vojtěch Komínek, David Jaška and Jozef Feranc
Polymers 2025, 17(21), 2811; https://doi.org/10.3390/polym17212811 - 22 Oct 2025
Viewed by 339
Abstract
This study examines binary blends of three types of polyhydroxyalkanoates (PHAs)—poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB)—with a focus on their rheological, thermal, and mechanical behavior. The blends exhibit partial miscibility in both the melt and solid states. Glass transition analysis revealed that [...] Read more.
This study examines binary blends of three types of polyhydroxyalkanoates (PHAs)—poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB)—with a focus on their rheological, thermal, and mechanical behavior. The blends exhibit partial miscibility in both the melt and solid states. Glass transition analysis revealed that semicrystalline/amorphous PHA combinations are fully miscible (single Tg) at amorphous PHA contents below 30 wt%. Above this threshold, a two-phase morphology develops, consisting of crystalline spherulites embedded in an amorphous matrix. When the amorphous PHA content reached ≥30 wt%, the blends could be oriented by stretching, yielding materials that display thermoplastic elastomer (TPE)-like behavior without chemical modification of the base polymers. Thermal and mechanical characterization, supported by X-ray diffraction of samples before and after orientation, confirmed that the elastomeric properties originate from the multiphase architecture formed by crystalline and amorphous domains interconnected through a miscible amorphous fraction. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 2049 KB  
Article
Polymerization Reaction Kinetics of Poly α-Olefin and Numerical Simulation of a Continuous Polymerization Reactor
by Jianxin Shi, Jinxue He, Qiang Yao, Ruilong Li, Dan Liu, Xuemei Liang and Lin Wang
Processes 2025, 13(11), 3375; https://doi.org/10.3390/pr13113375 - 22 Oct 2025
Viewed by 194
Abstract
The hydrodynamic and reaction characteristics of poly-alpha-olefin (PAO) polymerization in a continuous stirred tank reactor (CSTR) under Eulerian–Eulerian multiphase flow and a finite-rate chemical kinetics model were studied in this paper. A mathematical framework correlating 1-decene conversion with operational and structural parameters was [...] Read more.
The hydrodynamic and reaction characteristics of poly-alpha-olefin (PAO) polymerization in a continuous stirred tank reactor (CSTR) under Eulerian–Eulerian multiphase flow and a finite-rate chemical kinetics model were studied in this paper. A mathematical framework correlating 1-decene conversion with operational and structural parameters was established. Numerical simulations revealed an axial circulation flow pattern driven by combined impellers, with internal coils enhancing heat exchange and flow guidance. The gaseous catalyst, injected below the turbine impeller, achieved rapid dispersion and low gas holdup. The results demonstrated that 1-decene conversion exhibited insensitivity to impeller speed under fully turbulent mixing (mixing time <0.15% of space time), suggesting limited mass transfer benefits from further speed increases. Conversion positively correlated with temperature and space time, albeit with diminishing returns at prolonged durations. Series reactor configurations improved conversion efficiency, though incremental gains decreased with additional units. Optimal reactor design should balance conversion targets with economic factors, including energy consumption and capital investment. These findings provide critical insights into scaling PAO polymerization processes, emphasizing the interplay between reactor geometry, mixing dynamics, and reaction kinetics for industrial applications. Full article
Show Figures

Figure 1

12 pages, 2836 KB  
Article
A Study on Improving Separation Efficiency Through Weir Curvature Optimization in an FWKO with a Dish-Head Inlet
by Hyun-Su Jeong and Youn-Jea Kim
Separations 2025, 12(10), 287; https://doi.org/10.3390/separations12100287 - 19 Oct 2025
Viewed by 223
Abstract
The Free Water Knock Out (FWKO) vessel is a critical device in the oil sands treatment process, responsible for separating water, oil, and gas. This study investigates the gas–oil interface within the FWKO and analyzes the flow characteristics of the unresolved mixture near [...] Read more.
The Free Water Knock Out (FWKO) vessel is a critical device in the oil sands treatment process, responsible for separating water, oil, and gas. This study investigates the gas–oil interface within the FWKO and analyzes the flow characteristics of the unresolved mixture near the interface. To enhance the separation efficiency by increasing the residence time of the mixture, a concave-shaped weir was introduced. Numerical simulations were conducted using ANSYS Fluent 2023 R1, applying the Volume of Fluid (VOF) model to capture the multiphase flow behavior. Optimization was performed using a genetic algorithm, and the optimal weir curvature with a minor radius of 0.017333 m and a major radius of 0.19032 m yielded the highest separation efficiency. The model incorporating the optimized weir demonstrated a 1.26% improvement in separation efficiency compared to the reference model, and a 2.13% improvement over the baseline model without curvature. These findings confirm that applying curvature to the traditionally flat weir can achieve higher separation efficiency. Moreover, improving separation efficiency through such a simple geometric modification demonstrates significant economic effectiveness. Full article
Show Figures

Figure 1

14 pages, 2649 KB  
Article
The Influence of the Depth of Tubing in Downward-Inclined Horizontal Wells for Shale Gas on the Drainage and Production Effect
by Jingjia Yang, Lujie Zhang, Guofa Ji, Junliang Li and Zilong Liu
Processes 2025, 13(10), 3348; https://doi.org/10.3390/pr13103348 - 19 Oct 2025
Viewed by 212
Abstract
Shale gas pressure post-production accompanies the entire production process. The depth of the tubing is crucial for the entire life cycle of production, especially influencing the production dynamics in the middle and later stages of downward-inclined Wells. The full dynamic multiphase flow simulation [...] Read more.
Shale gas pressure post-production accompanies the entire production process. The depth of the tubing is crucial for the entire life cycle of production, especially influencing the production dynamics in the middle and later stages of downward-inclined Wells. The full dynamic multiphase flow simulation method is adopted, combined with wellbore structure, fluid composition (gas), gas layer temperature and pressure gradient, production dynamic data, etc., to establish the wellbore structure model of the gas well, simulate the production dynamics under different formation pressures and tubing depths, and determine a reasonable tubing depth. Considering the material balance of the constant-volume gas reservoir and the critical formation pressure of the gas well’s self-injection, the cumulative gas production of the gas well at different tubing depths was analyzed. Taking 11210-1-well as an example, it was believed that when the tubing depth reached 4000 m, the self-injection production time could be extended by 206 days, and the cumulative gas production increased by 5.1 × 106 m3, compared with the tubing depth of 2983 m. The gas production is increased by approximately 12.2 × 106 cubic meters when the tubing depth is 2000 m. The research conclusion can provide theoretical guidance for the optimization of tubing depth during the drainage and production process of shale gas downward-inclined horizontal Wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 5705 KB  
Article
Research on Internal Flow and Runner Force Characteristics of Francis Turbine
by Jianwen Xu, Peirong Chen, Yanhao Li, Xuelin Yang and An Yu
Water 2025, 17(20), 3004; https://doi.org/10.3390/w17203004 - 19 Oct 2025
Viewed by 267
Abstract
Francis turbines are widely used due to their large capacity and broad head adaptability, placing higher demands on the internal flow characteristics and runner performance of the units. In this paper, numerical simulations of a Francis turbine model were conducted using ANSYS CFX [...] Read more.
Francis turbines are widely used due to their large capacity and broad head adaptability, placing higher demands on the internal flow characteristics and runner performance of the units. In this paper, numerical simulations of a Francis turbine model were conducted using ANSYS CFX 2022 R1. The SST turbulence model, ZGB cavitation model, and VOF multiphase flow model were selected for the calculations. The internal flow characteristics and pressure pulsations in the runner and draft tube under different operating conditions were analyzed, and the variations in normal and tangential forces acting on the runner blades during operation were investigated. The results indicate significant differences in the internal flow within the runner and draft tube under various guide vane opening conditions. The pressure pulsation in the unit is influenced by both the internal flow in the draft tube and the rotation of the runner. The mechanical load on the runner blades is affected by multiple factors, including the wake from upstream fixed guide vanes, rotor–stator interaction, and downstream vortex ropes. Under low-flow conditions, the variation in forces acting on the runner blades is relatively small, whereas under high-flow conditions, the runner blades are prone to abrupt force fluctuations at 0.6–0.8 times the rotational frequency. This is manifested as periodic abrupt force changes in both the X and Y directions of the runner blades under high-flow conditions. The normal force in the Z-direction of the runner blades increases instantaneously and then decreases immediately, while the tangential force decreases instantaneously and then increases promptly. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

24 pages, 1182 KB  
Article
Exploring the Power and Possibility of Contextually Relevant Social Studies–Literacy Integration
by Courtney Hattan, Jennie Baumann, Meghan M. Parkinson and Deborah MacPhee
Educ. Sci. 2025, 15(10), 1401; https://doi.org/10.3390/educsci15101401 - 18 Oct 2025
Viewed by 1005
Abstract
The authors of this article describe a study designed to support first-grade students’ social studies knowledge and literacy development through a teacher–researcher co-constructed and teacher implemented integrated unit within the context of a rural community. The goals of the study were to determine [...] Read more.
The authors of this article describe a study designed to support first-grade students’ social studies knowledge and literacy development through a teacher–researcher co-constructed and teacher implemented integrated unit within the context of a rural community. The goals of the study were to determine the extent to which a contextually relevant unit of study affected the development of students’ content knowledge of key terms from the domain of social studies and influenced students’ reading and social studies interest. The researchers used a combined multi-phase and convergent mixed methods design, implementing a matched pairs design for the quantitative, quasi-experimental component of the study. Results indicated that assignment to the treatment condition was a predictor of students’ post implementation vocabulary scores and social studies interest. In pairing these results with the qualitative analyses of students’ end-of-unit retellings, researchers found that vocabulary can be a powerful bridge to cultural and content knowledge when the focus of instruction and texts is on local and community knowledge, demonstrating that contextually relevant social studies–literacy integration is a promising practice for building content knowledge and interest in first grade classrooms. Directions for future research are discussed. Full article
(This article belongs to the Special Issue Advances in Evidence-Based Literacy Instructional Practices)
Show Figures

Figure 1

Back to TopTop