Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (666)

Search Parameters:
Keywords = multiple stressors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1333 KB  
Opinion
From Microbial Consortia to Ecosystem Resilience: The Integrative Roles of Holobionts in Stress Biology
by Maximino Manzanera
Biology 2025, 14(9), 1203; https://doi.org/10.3390/biology14091203 (registering DOI) - 6 Sep 2025
Abstract
The holobiont paradigm, conceptualizing host–microbiome assemblages as functionally integrated entities, has fundamentally altered interpretations of adaptive responses to environmental pressures spanning multiple organizational levels. This review synthesizes the current knowledge on microbiome-host coevolution, focusing on three key aspects. First, it examines the evolutionary [...] Read more.
The holobiont paradigm, conceptualizing host–microbiome assemblages as functionally integrated entities, has fundamentally altered interpretations of adaptive responses to environmental pressures spanning multiple organizational levels. This review synthesizes the current knowledge on microbiome-host coevolution, focusing on three key aspects. First, it examines the evolutionary origins of holobionts from primordial microbial consortia. Second, it considers the mechanistic basis of microbiome-mediated stress resilience in plants and animals. Finally, it explores the ecological implications of inter-holobiont interactions. We highlight how early microbial alliances (protomicrobiomes) laid the groundwork for eukaryotic complexity through metabolic cooperation, with modern holobionts retaining this plasticity to confront abiotic and biotic stressors. In plants, compartment-specific microbiomes (e.g., rhizosphere, phyllosphere) enhance drought tolerance or nutrient acquisition, while in animals, the gut microbiome modulates neuroendocrine and immune functions via multi-organ axes (gut–brain, gut–liver, etc.). Critically, we emphasize the role of microbial metabolites (e.g., short-chain fatty acids, VOCs) as universal signaling molecules that coordinate holobiont responses to environmental change. Emerging strategies, like microbiome engineering and probiotics, are discussed as tools to augment stress resilience in agriculture and medicine. By framing adaptation as a collective trait of the holobiont, this work bridges evolutionary biology, microbiology, and ecology to offer a unified perspective on stress biology. Full article
11 pages, 363 KB  
Article
Traditional Gender Role Attitudes and Job-Hunting in Relation to Well-Being: A Cross-Sectional Study of Japanese Women in Emerging Adulthood
by Yumiko Kobayashi, Yuki Imamatsu, Azusa Arimoto, Kenkichi Takase, Ayumi Fusejima, Kanami Tsuno, Takashi Sugiyama, Masana Sannnomiya and Tomoyuki Miyazaki
Int. J. Environ. Res. Public Health 2025, 22(9), 1385; https://doi.org/10.3390/ijerph22091385 - 4 Sep 2025
Viewed by 143
Abstract
Employment and job-hunting can improve well-being by increasing confidence among emerging adults when equal employment opportunities exist for women and men. However, the relationship between well-being, traditional gender role attitudes, and job-hunting among women in emerging adulthood remains unclear. This study examined the [...] Read more.
Employment and job-hunting can improve well-being by increasing confidence among emerging adults when equal employment opportunities exist for women and men. However, the relationship between well-being, traditional gender role attitudes, and job-hunting among women in emerging adulthood remains unclear. This study examined the interactions between gender role attitudes and job-hunting in relation to the well-being of emerging adult women. An online survey was conducted in five universities and five companies in Japan. The dependent variable was well-being. The explanatory variables were job-hunting experience within the past 6 months and traditional gender role attitudes measured by the gender role stressor scale. Of the 137 women, we analyzed the data from 132 participants with no missing data. Thirty-five (26.5%) participants were employed and had job-hunting experience. Multiple regression analysis showed that job-hunting experiences were negatively associated with well-being. Additionally, gender role attitudes were not associated with well-being. In the interaction between job-hunting experience and gender role attitudes, the more traditional one’s attitude toward gender roles is, the more negative the relationship between job-hunting experience and well-being. Job-hunting may not necessarily lead to well-being for all women, so women’s attitudes toward gender roles should be considered and respected. Full article
Show Figures

Figure 1

18 pages, 3054 KB  
Article
Harnessing Epigenetic Modifiers Reveals MAPK-Mediated Regulation Mechanisms in Hadal Fungi of Alternaria alternata Under High Hydrostatic Pressure
by Qingqing Peng, Qifei Wei and Xi Yu
J. Fungi 2025, 11(9), 650; https://doi.org/10.3390/jof11090650 - 2 Sep 2025
Viewed by 245
Abstract
High hydrostatic pressure (HHP) significantly modulates microbial metabolism, while chemical epigenetic modifiers are known to reactivate silent biosynthetic gene clusters and induce novel natural products. However, the mechanisms by which these epigenetic modifiers regulate fungal responses under differential pressure conditions, and how such [...] Read more.
High hydrostatic pressure (HHP) significantly modulates microbial metabolism, while chemical epigenetic modifiers are known to reactivate silent biosynthetic gene clusters and induce novel natural products. However, the mechanisms by which these epigenetic modifiers regulate fungal responses under differential pressure conditions, and how such regulation affects natural product biosynthesis, remain completely unexplored. Here, we investigated the hadal fungus Alternaria alternata CIEL23 isolated from 7332 m sediments in the Mariana Trench under epigenetic modifier treatment with contrasting pressures (0.1 MPa vs. 40 MPa). Our results revealed that epigenetic perturbations and high pressure significantly altered fungal phenotypes, gene expression, and secondary metabolite composition. Transcriptome-level analysis of epigenetic regulatory mechanisms under epigenetic modifiers in both pressure conditions (0.1 MPa and 40 MPa) demonstrated that the addition of epigenetic modifiers regulated MAPK pathway-related gene expression in response to the environment stimuli. Under dual stress conditions, the IG, CWI, and HOG branches of the MAPK pathway showed significantly altered activity patterns. These changes were associated with differential the regulation of genes related to hyphal growth, cell wall remodeling, cell cycle progression, and osmolyte synthesis, suggesting the coordinated modulation of multiple cellular processes. These findings provide the mechanistic link between epigenetic modification induced HHP-response changes and regulation in hadal fungi. Our study not only advances understanding of hadal fungal response to dual stressors but also unlocks new possibilities for harnessing their stress-driven metabolic versatility for biotechnological applications. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

21 pages, 2136 KB  
Review
Radiation-Resistant Bacteria: Potential Player in Sustainable Wastewater Treatment
by Zheng Tan, Delin Yin, Jiangchuan Min, Yushuai Liu, Daoyang Zhang, Jiahong He, Yanke Bi and Kena Qin
Sustainability 2025, 17(17), 7864; https://doi.org/10.3390/su17177864 - 1 Sep 2025
Viewed by 351
Abstract
Radioactive wastewater generated from nuclear energy, medical, and industrial sectors poses persistent ecological and health risks, necessitating the development of safe and sustainable treatment strategies. Compared with conventional physicochemical approaches, bioremediation using radiation-resistant bacteria (RRB) provides distinct advantages, including lower energy requirements, reduced [...] Read more.
Radioactive wastewater generated from nuclear energy, medical, and industrial sectors poses persistent ecological and health risks, necessitating the development of safe and sustainable treatment strategies. Compared with conventional physicochemical approaches, bioremediation using radiation-resistant bacteria (RRB) provides distinct advantages, including lower energy requirements, reduced secondary pollution, and superior ecological compatibility. This review synthesizes current knowledge on RRB’s biological characteristics, molecular resistance mechanisms, and applications in radioactive wastewater treatment. Moreover, potential applications in non-radioactive wastewater treatment—such as selective removal of heavy metals, degradation of refractory organics, and mitigation of antibiotic resistance—are discussed. Evidence from existing studies indicates that RRB share fundamental adaptive traits, including extraordinary radiotolerance, unique morphological modifications, and cross-tolerance to multiple stressors, which are underpinned by specialized DNA repair systems, potent antioxidant defenses, and radiation-responsive regulatory networks. These mechanisms collectively confer the ability to withstand and mitigate radiation-induced damage. Future research should responsibly prioritize the genetic engineering of RRB and its integration with complementary technologies, such as microbial fuel cells, to achieve synergistic pollutant removal and energy recovery. This synthesis provides a theoretical basis and technical reference for advancing RRB-enabled bioremediation toward sustainable wastewater management. Full article
(This article belongs to the Special Issue Research on Sustainable Wastewater Treatment)
Show Figures

Figure 1

13 pages, 4853 KB  
Review
Stress Septal Sign (Triple S) Preexists in Hypertensive Hearts and Clarifies Critical Diagnostic Strategies
by Fatih Yalçin, Boran Cagatay, M. Roselle Abraham and Mario J. Garcia
J. Clin. Med. 2025, 14(17), 6143; https://doi.org/10.3390/jcm14176143 - 30 Aug 2025
Viewed by 347
Abstract
The interventricular septum is recognized as the first region to undergo remodeling, and a septal bulge is described as an early echocardiographic sign of hypertensive heart disease. Using third-generation microscopic ultrasonography in an animal model, we validated, for the first time, that remodeling [...] Read more.
The interventricular septum is recognized as the first region to undergo remodeling, and a septal bulge is described as an early echocardiographic sign of hypertensive heart disease. Using third-generation microscopic ultrasonography in an animal model, we validated, for the first time, that remodeling originates in the basal septum, presenting as basal septal hypertrophy (BSH), an early imaging biomarker, and subsequently progresses to other regions, leading to tissue dysfunction and heart failure. We have termed this finding the “stress septal sign” (Triple S) because a variety of stress stimuli, such as treadmill exercise or pressure overload from aortic banding in animals, induced BSH, a region with more intensive sympathetic innervation than the mid-apex. This finding also represents a conjunctive point between functional etiologies, such as hypertension, and emotional etiologies that precipitate acute stress cardiomyopathy. Microscopic analysis of the remodeling revealed that hemodynamic stress has a specific effect on cardiac geometry. The Triple S is associated with exercise-induced hypertension and high stress scores in patients with hypertension. Furthermore, three-dimensional segmental remodeling is more effective than cross-sectional measurements for detecting the impact of superimposed multiple stressors. A high-rate pressure product and blood pressure variability in patients exhibiting the Triple S should be managed comprehensively through an integrated approach to stress and hypertension to avoid high mortality in clinical practice. A precise etiologic evaluation of incidentally detected BSH may contribute to the early diagnosis of hypertensive disease. The integrated and timely management of stress and hypertension is important for patients presenting with the Triple S and high stress scores. This management strategy may provide a practical solution for avoiding the adverse hypertensive consequences of global remodeling and maladaptation to superimposed multiple stressors. Full article
Show Figures

Figure 1

17 pages, 1971 KB  
Review
Current Evidence on the Involvement of RAGE–Diaph1 Signaling in the Pathology and Treatment of Neurodegenerative Diseases—An Overview
by Judyta K. Juranek, Bernard Kordas, Piotr Podlasz, Agnieszka Bossowska and Marta Banach
Pathophysiology 2025, 32(3), 43; https://doi.org/10.3390/pathophysiology32030043 - 29 Aug 2025
Viewed by 309
Abstract
Neurodegenerative diseases are a group of disorders characterized by the progressive deterioration of the structure and function of central nervous system neurons and include, among others, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Parkinson’s (PD), Alzheimer’s (AD), and Huntington’s (HD) diseases. And while [...] Read more.
Neurodegenerative diseases are a group of disorders characterized by the progressive deterioration of the structure and function of central nervous system neurons and include, among others, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Parkinson’s (PD), Alzheimer’s (AD), and Huntington’s (HD) diseases. And while all these diseases seem to have different genetic and environmental components, growing evidence shows that they share common underlying pathological features such as increased neuroinflammation and excessive oxidative stress. RAGE, the receptor for advanced glycation end-products, is a signal transduction receptor, and its activation triggers an increase in proinflammatory molecules, oxidative stressors, and cytokines. Diaph1, protein diaphanous homolog 1, is an actin modulator and an intracellular ligand of RAGE. Studies demonstrated that RAGE and Diaph1 act together, and their downstream signaling pathways play a role in neurodegeneration. Here, based on current evidence and our own research, we provide an overview of the RAGE–Diaph1 signaling and discuss the therapeutic potential of targeted therapy aimed at RAGE–Diaph1 signaling inhibition in the prevention and treatment of neurodegenerative diseases. Full article
(This article belongs to the Section Neurodegenerative Disorders)
Show Figures

Figure 1

12 pages, 623 KB  
Article
Antagonistic Interaction Between Microplastics and Herbivory on the Growth of Native and Invasive Plants
by Jeffrey Okundi, Ling Yuan, Guanlin Li, Daolin Du and Junmin Li
Plants 2025, 14(17), 2692; https://doi.org/10.3390/plants14172692 - 28 Aug 2025
Viewed by 395
Abstract
Microplastic pollution and herbivory are increasingly recognized as significant stressors in terrestrial ecosystems, yet their interactive effects on native and invasive plants remain poorly understood. In this study, we investigated the individual and combined effects of polyethylene microplastics (PE-MPs) and herbivory by Helicoverpa [...] Read more.
Microplastic pollution and herbivory are increasingly recognized as significant stressors in terrestrial ecosystems, yet their interactive effects on native and invasive plants remain poorly understood. In this study, we investigated the individual and combined effects of polyethylene microplastics (PE-MPs) and herbivory by Helicoverpa armigera on the growth and functional traits of twelve plant species (six invasive and six native). Exposure to PE-MPs significantly reduced biomass accumulation, with larger reductions in shoot, root, and total biomass for native plants than for invasive ones. Herbivory also significantly reduced biomass accumulation. When combined, PE-MPs and herbivory produced antagonistic effects on shoot, root, and total biomass. No significant three-way interaction was found among PE-MPs, herbivory, and plant status. Both PE-MPs and herbivory significantly reduced the root mass fraction and root-to-shoot ratio (RSR) while increasing the shoot mass fraction, with the PE-MP-induced reduction in RSR being stronger in native plants. Our findings suggest that multiple anthropogenic stressors can act as ecological filters, reshaping plant competitive dynamics and accelerating community shifts toward stress-tolerant species. Full article
(This article belongs to the Special Issue Plant Invasions and Their Interactions with the Environment)
Show Figures

Figure 1

27 pages, 1567 KB  
Review
NR4A1 Acts as a Nutrient Sensor That Inhibits the Effects of Aging
by Stephen Safe
Nutrients 2025, 17(16), 2709; https://doi.org/10.3390/nu17162709 - 21 Aug 2025
Viewed by 956
Abstract
Orphan nuclear receptor 4A1 (NR4A1) is a member of the NR4A subfamily that was initially discovered as an intermediate early gene expressed in response to stressors, including inflammatory agents. This review addresses the hypothesis that NR4A1 is a key nutrient sensor that contributes [...] Read more.
Orphan nuclear receptor 4A1 (NR4A1) is a member of the NR4A subfamily that was initially discovered as an intermediate early gene expressed in response to stressors, including inflammatory agents. This review addresses the hypothesis that NR4A1 is a key nutrient sensor that contributes to the anti-aging and health-protective effects of receptor ligands, dietary phenolics, and other diet-derived compounds. There is evidence in animal models including humans that NR4A1 serves as an important gene that decreases the rate of aging and its associated diseases. For example, in humans and mice, NR4A1 expression decreases with age and loss of NR4A1 enhances disease susceptibility, and survival curves show that NR4A1-deficient mice live 4 months less than wild-type animals. An extensive comparison of inflammatory diseases, immune dysfunction, and fibrosis in multiple tissues shows that in NR4A1−/− mice and rats these diseases and injuries are enhanced compared to wild-type NR4A1−/− animals. There is evidence showing that structurally diverse NR4A1 ligands reverse the induced adverse effects in NR4A1 wild-type mice. This raises an important question regarding the mechanisms of NR4A1-dependent inhibition of the aging process and the potential for this receptor as a nutrient sensor. It has been well established that polyphenolics, including flavonoids, resveratrol, and other compounds in the diet, are health-protective and decrease the aging process. Recent studies show that resveratrol and flavonoids such as quercetin and kaempferol bind NR4A1 and exhibit protective NR4A1-dependent inhibition of endometriosis and cancer. These limited studies support a role for NR4A1 as a potential dietary sensor of nutrients that are known to be health-protective and a potential nutrient target for improving health. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Graphical abstract

18 pages, 501 KB  
Article
A Low Dose of Berberine Is Metabolized in Weaned Piglets Without Major Changes to Gut Morphology or Gut Microbiota
by Christina Mouchtoglou, Marc Cherlet, Tessa Dehau, Marijke Aluwe, Richard Ducatelle, Evy Goossens, Siska Croubels and Filip Van Immerseel
Animals 2025, 15(16), 2450; https://doi.org/10.3390/ani15162450 - 21 Aug 2025
Viewed by 629
Abstract
Weaning is one of the most challenging stages in a piglet’s life, with multiple stressors contributing to poor gut health. For several years, zinc oxide (ZnO) was the preferred means of promoting a healthy gut and preventing post-weaning diarrhea (PWD). However, with the [...] Read more.
Weaning is one of the most challenging stages in a piglet’s life, with multiple stressors contributing to poor gut health. For several years, zinc oxide (ZnO) was the preferred means of promoting a healthy gut and preventing post-weaning diarrhea (PWD). However, with the banning of its use at medicinal levels in the EU since 2022, alternatives are needed. Berberine (BBR), an isoquinoline alkaloid, has been used for centuries in Chinese medicine to treat diarrhea and has pharmacological properties that could make this molecule an attractive alternative to ZnO. The aim of this study was to investigate how berberine is metabolized in the intestinal tract and liver of weaned piglets; determine which metabolites are detected in intestinal contents and plasma; and whether a low dose can alter histomorphological parameters, short-chain fatty acid (SCFA) production, and gut microbiota composition. A total of 60 piglets weaned at 4 weeks were divided into two groups (Control and BBR), each consisting of six pens of five animals. After two weeks of feeding with a normal diet or a berberine-supplemented diet (30 mg berberine/kg feed), berberine and its metabolites were quantified in intestinal contents and plasma by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) on 12 animals per group (2 male piglets per pen). Moreover, villus length and crypt depth were measured in small-intestinal tissue, and 16S rRNA gene sequencing was performed to examine jejunal, cecal, and colonic gut microbiota composition. Our findings show that piglets metabolize berberine into phase I and II metabolites; however, a low dose does not affect their histomorphology, microbiota composition, or SCFA production. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

21 pages, 20253 KB  
Article
Study on Stress Testing and the Evaluation of Flood Resilience in Mountain Communities
by Mingjun Yin, Hong Huang, Fucai Yu, Aizhi Wu, Yingchun Tao and Xiaoxiao Sun
Sustainability 2025, 17(16), 7463; https://doi.org/10.3390/su17167463 - 18 Aug 2025
Viewed by 423
Abstract
The increasing frequency and intensity of extreme weather events pose significant challenges to mountain communities, particularly in terms of flash flood risks. This study presents a framework for stress testing and evaluating flood resilience in mountain communities through the integration of high-resolution InfoWorks [...] Read more.
The increasing frequency and intensity of extreme weather events pose significant challenges to mountain communities, particularly in terms of flash flood risks. This study presents a framework for stress testing and evaluating flood resilience in mountain communities through the integration of high-resolution InfoWorks ICM two-dimensional hydrodynamic modeling and systematic resilience assessment. The framework makes three key innovations: (1) multi-scale temporal stress scenarios combining short-duration extreme events (1–2 h) with long-duration persistent events (24 h) and historical extremes; (2) integrated infrastructure–drainage stress analysis that explicitly models roads’ dual role as critical infrastructure and emergency drainage channels; and (3) dynamic resilience quantification under multiple stressors across 15 systematically designed stress conditions. Using Western Beijing as a case study, the model is validated, achieving Nash–Sutcliffe efficiency values exceeding 0.9, demonstrating its robust capability in simulating complex mountainous terrain flood processes. Through systematic analysis of fifteen rainfall scenarios designed based on Chicago rainfall patterns and historical events (including the July 2023 Haihe River basin flood), encompassing various intensities (30–200 mm/h), durations (1 h, 2 h, 24 h), and return periods (10, 50, 100 years), the key findings include the following: (1) A rainfall intensity of 60 mm/h represents a crucial threshold for system performance, beyond which significant impacts on community infrastructure emerge, with built-up areas experiencing inundation depths of 0.27–0.4 m that exceed safe passage limits. (2) Road networks become primary drainage channels during intense precipitation, with velocities exceeding 5 m/s in village roads and exceeding 5 m/s in country road sections, creating significant hazard potential. (3) Four major risk spots were identified with distinct waterlogging patterns, characterized by maximum depths ranging from 0.8 to 2.0 m and recovery periods varying from 2 to 12 hours depending on the topographic confluence effects and drainage efficiency. (4) The system demonstrates strong recovery capability, achieving >90% recovery within 3–6 hours for short-duration events, while showing vulnerability to extreme scenarios, with performance declining to 0.75–0.80, highlighting the coupling effects between water depth and flow velocity in steep terrain. This research provides quantitative insights for flood risk management and for enhancing community resilience in mountainous regions, offering valuable guidance for infrastructure improvement, emergency response optimization, and sustainable community development. This study primarily focuses on physical resilience aspects, with socioeconomic and institutional dimensions representing important directions for future research. Full article
Show Figures

Figure 1

20 pages, 1033 KB  
Article
Examining the Effects of Family and Acculturative Stress on Mexican American Parents’ Psychological Functioning as Predictors of Children’s Anxiety and Depression: The Mediating Role of Family Cohesion
by Catherine Myshell Gonzalez-Detrés, Velma McBride Murry and Nancy A. Gonzales
Behav. Sci. 2025, 15(8), 1098; https://doi.org/10.3390/bs15081098 - 13 Aug 2025
Viewed by 750
Abstract
The combination of discrimination and cultural-contextual stressors associated with acculturation demands and immigration processes cause stressful conditions for Latinos above and beyond daily, stressful life events experienced in families. This in turn, can have repercussions on parent–child relationships and family dynamics. We hypothesized [...] Read more.
The combination of discrimination and cultural-contextual stressors associated with acculturation demands and immigration processes cause stressful conditions for Latinos above and beyond daily, stressful life events experienced in families. This in turn, can have repercussions on parent–child relationships and family dynamics. We hypothesized that acculturative and general family stress would be associated with increased parental depression, which would negatively affect family cohesion and parents, and that these disruptions would predict children’s internalizing symptoms. Accordingly, mothers and fathers (N = 467) completed questionnaires to describe their experiences of acculturative stress, with mothers also reporting on general family stress. Parent and children’s reports of parenting and family cohesion were also assessed. Structural equation modeling analyses were employed to examine the relationship between parental stress (acculturative and general family stress) and depression at Wave 1, with spillover effects on family cohesion, parenting, and children’s internalizing symptoms at Wave 2. Familial acculturative stress was positively associated with increased parental depression, compromised family relationships and parenting, and in turn, was linked to increased anxiety and depression in their children. In addition, family cohesion served a mediating role in families, helping to explain the pathway though which acculturative stress affects family relationships and children’s internalizing symptoms. This study addresses a critical gap in immigrant family adaptation research, highlighting the need for a cohesive model that integrates multiple stressors to capture their unique, collective, and cumulative effects. Full article
Show Figures

Figure 1

16 pages, 1679 KB  
Review
Unraveling of Seaweed Bioactive Substances and Their Nutritional Regulation Functions for Poultry
by Si-Bing Li, Qing-Hua Yao, Xue-Qing Ye, Balamuralikrishnan Balasubramanian and Wen-Chao Liu
Mar. Drugs 2025, 23(8), 324; https://doi.org/10.3390/md23080324 - 10 Aug 2025
Viewed by 642
Abstract
Seaweed is a rich and valuable marine biological resource that contains various bioactive substances, including polysaccharides, polyphenols, fatty acids, and more. These compounds exhibit a range of biological activities, such as antimicrobial, antioxidant, and immunomodulation effects. In the face of challenges related to [...] Read more.
Seaweed is a rich and valuable marine biological resource that contains various bioactive substances, including polysaccharides, polyphenols, fatty acids, and more. These compounds exhibit a range of biological activities, such as antimicrobial, antioxidant, and immunomodulation effects. In the face of challenges related to intensive farming, poultry are often exposed to multiple stressors during production, which can lead to oxidative stress, impaired intestinal barrier function, and excessive inflammatory responses. Due to their potent biological activities, seaweeds and their bioactive components have shown potential in improving poultry health and performance. This paper mainly reviews the classification of seaweeds and their extracts, their main biological functions, and the research progress on the application to poultry, with the aim of providing a reference for the research and application of seaweed active substances as functional feed additives in poultry. Full article
Show Figures

Graphical abstract

13 pages, 694 KB  
Article
COVID-19 Pandemic Experiences and Hazardous Alcohol Use: Findings of Higher and Lower Risk in a Heavy-Drinking Midwestern State
by Justinian Wurtzel, Paul A. Gilbert, Loulwa Soweid and Gaurab Maharjan
Int. J. Environ. Res. Public Health 2025, 22(8), 1230; https://doi.org/10.3390/ijerph22081230 - 7 Aug 2025
Viewed by 559
Abstract
This study assessed whether COVID-19 pandemic experiences were associated with excessive alcohol use during the first year of the pandemic in Iowa, a heavy-drinking midwestern US state. We analyzed survey data from 4047 adult residents of Iowa collected in August 2020, focusing on [...] Read more.
This study assessed whether COVID-19 pandemic experiences were associated with excessive alcohol use during the first year of the pandemic in Iowa, a heavy-drinking midwestern US state. We analyzed survey data from 4047 adult residents of Iowa collected in August 2020, focusing on three pandemic-related stressors (e.g., emotional reactions to the pandemic; disruption of daily activities; and financial hardship) and salient social support. Using multiple logistic regression, we tested correlates of increased drinking, heavy drinking, and binge drinking, controlling for demographic characteristics and health status. We found that nearly half (47.6%) of respondents did not change their drinking compared to before the pandemic; however, 12.4% of respondents reported increasing their drinking and 5.3% reported decreasing their drinking. Emotional reactions to the pandemic and disruption of daily activities were associated with higher odds of increased drinking, and rurality was associated with lower odds of increased drinking. No pandemic-related stressor was associated with heavy or binge drinking, but social support was associated with lower odds of binge drinking. Thus, we concluded that some pandemic-related stressors may explain increased drinking but not heavy or binge drinking. Understanding the nuances of alcohol use can inform preventive interventions, policy decisions, and preparations for future catastrophic events. Full article
(This article belongs to the Section Behavioral and Mental Health)
Show Figures

Figure 1

19 pages, 1080 KB  
Article
Microplastic Bioaccumulation and Oxidative Stress in Key Species of the Bulgarian Black Sea: Ecosystem Risk Early Warning
by Albena Alexandrova, Svetlana Mihova, Elina Tsvetanova, Madlena Andreeva, Georgi Pramatarov, Georgi Petrov, Nesho Chipev, Valentina Doncheva, Kremena Stefanova, Maria Grandova, Hristiyana Stamatova, Elitsa Hineva, Dimitar Dimitrov, Violin Raykov and Petya Ivanova
Microplastics 2025, 4(3), 50; https://doi.org/10.3390/microplastics4030050 - 6 Aug 2025
Viewed by 488
Abstract
Plastic pollution in marine environments poses a new global threat. Microplastics (MPs) can bioaccumulate in marine organisms, leading to oxidative stress (OS). This study investigates MP accumulation and associated OS responses in six invertebrate species (Bivalvia, Gastropoda, and Malacostraca) and three key fish [...] Read more.
Plastic pollution in marine environments poses a new global threat. Microplastics (MPs) can bioaccumulate in marine organisms, leading to oxidative stress (OS). This study investigates MP accumulation and associated OS responses in six invertebrate species (Bivalvia, Gastropoda, and Malacostraca) and three key fish species of the Bulgarian Black Sea ecosystems. The target hydrobionts were collected from nine representative coastal habitats of the northern and southern aquatory. MPs were quantified microscopically, and OS biomarkers (lipid peroxidation, glutathione, and antioxidant enzymes) were analyzed spectrometrically in fish liver and gills and invertebrate soft tissues (STs). The specific OS (SOS) index was calculated as a composite indicator of the ecological impact, incl. MP effects. The results revealed species-specific MP bioaccumulation, with the highest concentrations in Palaemon adspersus, Rathke (1837) (0.99 ± 1.09 particles/g ST) and the least abundance in Bittium reticulatum (da Costa, 1778) (0.0033 ± 0.0025 particles/g ST). In Sprattus sprattus (Linnaeus, 1758), the highest accumulation of MPs was present (2.01 ± 2.56 particles/g muscle). The correlation analyses demonstrated a significant association between MP counts and catalase activity in all examined species. The SOS index varied among species, reflecting different stress responses, and this indicated that OS levels were linked to ecological conditions of the habitat and the species-specific antioxidant defense potential to overcome multiple stressors. These findings confirmed the importance of environmental conditions, including MP pollution and the evolutionarily developed capacity of marine organisms to tolerate and adapt to environmental stress. This study emphasizes the need for novel approaches in monitoring MPs and OS to better assess potential ecological risks. Full article
Show Figures

Figure 1

30 pages, 9116 KB  
Article
Habitat Loss and Other Threats to the Survival of Parnassius apollo (Linnaeus, 1758) in Serbia
by Dejan V. Stojanović, Vladimir Višacki, Dragana Ranđelović, Jelena Ivetić and Saša Orlović
Insects 2025, 16(8), 805; https://doi.org/10.3390/insects16080805 - 4 Aug 2025
Viewed by 716
Abstract
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive [...] Read more.
The cessation of traditional mountain grazing has emerged as a principal driver of habitat degradation and the local extinction of Parnassius apollo (Linnaeus, 1758) in Serbia. While previous studies have cited multiple contributing factors, our research provides evidence that the abandonment of extensive livestock grazing has triggered vegetation succession, the disappearance of the larval host plant (Sedum album), and a reduction in microhabitat heterogeneity—conditions essential for the persistence of this stenophagous butterfly species. Through satellite-based analysis of vegetation dynamics (2015–2024), we identified clear structural differences between habitats that currently support populations and those where the species is no longer present. Occupied sites were characterized by low levels of exposed soil, moderate grass coverage, and consistently high shrub and tree density, whereas unoccupied sites exhibited dense encroachment of grasses and woody vegetation, leading to structural instability. Furthermore, MODIS-derived indices (2010–2024) revealed a consistent decline in vegetation productivity (GPP, FPAR, LAI) in succession-affected areas, alongside significant correlations between elevated land surface temperatures (LST), thermal stress (TCI), and reduced photosynthetic capacity. A wildfire event on Mount Stol in 2024 further exacerbated habitat degradation, as confirmed by remote sensing indices (BAI, NBR, NBR2), which documented extensive burn scars and post-fire vegetation loss. Collectively, these findings indicate that the decline of P. apollo is driven not only by ecological succession and climatic stressors, but also by the abandonment of land-use practices that historically maintained suitable habitat conditions. Our results underscore the necessity of restoring traditional grazing regimes and integrating ecological, climatic, and landscape management approaches to prevent further biodiversity loss in montane environments. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

Back to TopTop