Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (539)

Search Parameters:
Keywords = natural polymer hydrogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 4281 KB  
Review
Advances in Hydrogel Film Fabrication and Functional Applications Across Biomedical and Environmental Fields
by Alberto Ubaldini and Sara Calistri
Appl. Sci. 2025, 15(17), 9579; https://doi.org/10.3390/app15179579 (registering DOI) - 30 Aug 2025
Abstract
Hydrogel films are a promising class of materials due to their peculiar property of retaining water as well as responding to external stimuli. In contrast with conventional hydrogels, films provide enhanced responsiveness along with greater compliance to be integrated into devices as well [...] Read more.
Hydrogel films are a promising class of materials due to their peculiar property of retaining water as well as responding to external stimuli. In contrast with conventional hydrogels, films provide enhanced responsiveness along with greater compliance to be integrated into devices as well as on surfaces. This review is designed to comprehensively explore the many aspects of hydrogel films. It covers the principles of gelation; preparation methods, such as solvent casting, spin coating, and photolithography; and characterization. This review also presents the most common polymers (both natural and synthetic) utilized for the preparation of the hydrogel, the systems, such as nanoparticles, liposomes and hybrid metal–organic structure, that can be used as additives and the aspects related to the biocompatibility of hydrogels. In the second part, this review discusses the potential applications of hydrogel films and the challenges that still need to be overcome. Particular attention is given to biomedical applications, such as drug delivery, wound healing, and tissue engineering, but environmental and agricultural uses are also explored. Finally, this review presents recent examples of real-world applications of hydrogel films and explores the possibility they have for a wide variety of needs. Full article
(This article belongs to the Section Surface Sciences and Technology)
Show Figures

Figure 1

30 pages, 2100 KB  
Review
Hydrogel-Based Vitreous Substitutes
by Soheil Sojdeh, Amirhosein Panjipour, Zahra Bibak Bejandi, Majid Salehi, Amal Yaghmour, Zohreh Arabpour, Ali R. Djalilian and R. V. Paul Chan
Int. J. Mol. Sci. 2025, 26(17), 8406; https://doi.org/10.3390/ijms26178406 - 29 Aug 2025
Viewed by 119
Abstract
Hydrogel-based vitreous substitutes have been considered as a potential solution for the treatment of retinal disorders, especially when the natural vitreous body is damaged due to trauma, disease, or surgery. With their high-water content, biocompatibility, and tunable mechanical properties, these hydrogels offer a [...] Read more.
Hydrogel-based vitreous substitutes have been considered as a potential solution for the treatment of retinal disorders, especially when the natural vitreous body is damaged due to trauma, disease, or surgery. With their high-water content, biocompatibility, and tunable mechanical properties, these hydrogels offer a promising alternative to traditional vitreous substitutes. This review explores the role of polymers and crosslinkers in the development of hydrogel-based substitutes, focusing on how these components contribute to the structure and function of hydrogels. The choice of natural polymers, such as hyaluronic acid and collagen, or synthetic ones, such as polyethylene glycol and polyvinyl alcohol, is crucial to mimic the transparency and flexibility of the vitreous body. Crosslinking methods, including physical, chemical, and enzymatic approaches, help control the gelation process and enhance the mechanical strength of the hydrogel. Furthermore, this review demonstrates how these hydrogels interact with biological tissues, which enhances biocompatibility, cell growth, and tissue repair. This review also discusses the challenges and future directions in improving these hydrogels, particularly in terms of long-term stability, integration with ocular tissues, and appropriate mechanical properties. Overall, hydrogel-based vitreous substitutes have significant potential to improve surgical outcomes and restore vision for patients with vitreous injury. Full article
Show Figures

Figure 1

35 pages, 1429 KB  
Review
Progressive Hydrogel Applications in Diabetic Foot Ulcer Management: Phase-Dependent Healing Strategies
by Priyanka Mallanagoudra, Sai Samanvitha M Ramakrishna, Sowmya Jaiswal, Dhruthi Keshava Prasanna, Rithika Seetharaman, Arunkumar Palaniappan and Sudarshan Kini
Polymers 2025, 17(17), 2303; https://doi.org/10.3390/polym17172303 - 26 Aug 2025
Viewed by 664
Abstract
Diabetes is emerging as a significant health and societal concern globally, impacting both young and old populations. In individuals with diabetic foot ulcers (DFUs), the wound healing process is hindered due to abnormal glucose metabolism and chronic inflammation. Minor injuries, blisters, or pressure [...] Read more.
Diabetes is emerging as a significant health and societal concern globally, impacting both young and old populations. In individuals with diabetic foot ulcers (DFUs), the wound healing process is hindered due to abnormal glucose metabolism and chronic inflammation. Minor injuries, blisters, or pressure sores can develop into chronic ulcers, which, if left untreated, may lead to serious infections, tissue necrosis, and eventual amputation. Current management techniques include debridement, wound dressing, oxygen therapy, antibiotic therapy, topical application of antibiotics, and surgical skin grafting, which are used to manage diabetic wounds and foot ulcers. This review focuses on a hydrogel-based strategy for phase-wise targeting of DFUs, addressing sequential stages of diabetic wound healing: hemostasis, infection, inflammation, and proliferative/remodeling phases. Hydrogels have emerged as a promising wound care solution due to their unique properties in providing a suitable wound-healing microenvironment. We explore natural polymers, including hyaluronic acid, chitosan, cellulose derivatives, and synthetic polymers such as poly (ethylene glycol), poly (acrylic acid), poly (2-hydroxyethyl methacrylate, and poly (acrylamide), emphasizing their role in hydrogel fabrication to manage DFU through phase-dependent strategies. Recent innovations, including self-healing hydrogels, stimuli-responsive hydrogels, nanocomposite hydrogels, bioactive hydrogels, and 3D-printed hydrogels, demonstrate enhanced therapeutic potential, improving patient outcomes. This review further discusses the applicability of various hydrogels to each phase of wound healing in DFU treatment, highlighting their potential to advance diabetic wound care through targeted, phase-specific interventions. Full article
(This article belongs to the Special Issue Advances in Biomimetic Smart Hydrogels)
Show Figures

Graphical abstract

28 pages, 1673 KB  
Review
Advancement of 3D Bioprinting Towards 4D Bioprinting for Sustained Drug Delivery and Tissue Engineering from Biopolymers
by Maryam Aftab, Sania Ikram, Muneeb Ullah, Shahid Ullah Khan, Abdul Wahab and Muhammad Naeem
J. Manuf. Mater. Process. 2025, 9(8), 285; https://doi.org/10.3390/jmmp9080285 - 21 Aug 2025
Viewed by 605
Abstract
The transition from three-dimensional (3D) to four-dimensional (4D)-bioprinting marks a significant advancement in tissue engineering and drug delivery. 4D-bioprinting offers the potential to more accurately mimic the adaptive qualities of living tissues due to its dynamic flexibility. Structures created with 4D-bioprinting can change [...] Read more.
The transition from three-dimensional (3D) to four-dimensional (4D)-bioprinting marks a significant advancement in tissue engineering and drug delivery. 4D-bioprinting offers the potential to more accurately mimic the adaptive qualities of living tissues due to its dynamic flexibility. Structures created with 4D-bioprinting can change shape in response to internal and external stimuli. This article reviews the background, key concepts, techniques, and applications of 4D-bioprinting, focusing on its role in tissue scaffolding and drug delivery. We discuss the limitations of traditional 3D-bioprinting in providing customized and sustained medication release. Shape memory polymers and hydrogels are examples of new responsive materials enabled by 4D-bioprinting that can enhance drug administration. Additionally, we provide a thorough analysis of various biopolymers used in drug delivery systems, including cellulose, collagen, alginate, and chitosan. The use of biopolymers in 4D-printing significantly increases material responsiveness, allowing them to react to stimuli such as temperature, light, and humidity. This capability enables complex designs with programmable shape and function changes. The expansion and contraction of hydrogels in response to temperature changes offer a practical method for controlled drug release. 4D-bioprinting has the potential to address significant challenges in tissue regeneration and medication administration, spurring ongoing research in this technology. By providing precise control over cell positioning and biomaterial integration, traditional 3D-bioprinting has evolved into 4D-bioprinting, enhancing the development of tissue constructs. 4D-bioprinting represents a paradigm shift in tissue engineering and biomaterials, offering enhanced possibilities for creating responsive, adaptive structures that address clinical needs. Researchers can leverage the unique properties of biopolymers within the 4D-printing framework to develop innovative approaches for tissue regeneration and drug delivery, leading to advanced treatments in regenerative medicine. One potential future application is in vivo tissue regeneration using bioprinted structures that can enhance the body’s natural healing capabilities. Full article
Show Figures

Figure 1

25 pages, 4527 KB  
Article
New Antimicrobial Gels Based on Clove Essential Oil–Cyclodextrin Complex and Plant Extracts for Topical Use
by Alina Ionela Stancu, Lia Mara Dițu, Eliza Oprea, Anton Ficai, Irinel Adriana Badea, Mihaela Buleandră, Oana Brîncoveanu, Anca Gabriela Mirea, Sorina Nicoleta Voicu, Adina Magdalena Musuc, Ludmila Aricov, Daniela Cristina Culita and Magdalena Mititelu
Gels 2025, 11(8), 653; https://doi.org/10.3390/gels11080653 - 18 Aug 2025
Viewed by 436
Abstract
This study aimed to develop and characterise novel hydrogels based on natural bioactive compounds for topical antimicrobial applications. Four gel systems were formulated using different polymers, namely polyacrylic acid (Carbopol 940, CBP-G), chitosan with high and medium molecular weights (CTH-G and CTM-G), and [...] Read more.
This study aimed to develop and characterise novel hydrogels based on natural bioactive compounds for topical antimicrobial applications. Four gel systems were formulated using different polymers, namely polyacrylic acid (Carbopol 940, CBP-G), chitosan with high and medium molecular weights (CTH-G and CTM-G), and sodium alginate (ALG-G), incorporating tinctures of Verbena officinalis and Aloysia triphylla, Laurus nobilis essential oil, and a β-cyclodextrin–clove essential oil complex. All gels displayed a homogeneous macroscopic appearance and maintained stability for over 90 days. Rheological studies demonstrated gel-like behaviour for CBP-G and ALG-G, with well-defined linear viscoelastic regions and distinct yield points, while CTM-G exhibited viscoelastic liquid-like properties. SEM imaging confirmed uniform and continuous matrices, supporting controlled active compound distribution. Thermogravimetric analysis (TG-DTA) revealed a two-step degradation profile for all gels, characterised by high thermal stability up to 230 °C and near-total decomposition by 500 °C. FTIR spectra confirmed the incorporation of bioactive compounds and products and highlighted varying interaction strengths with polymer matrices, which were stronger in CBP-G and CTH-G. Antimicrobial evaluation demonstrated that chitosan-based gels exhibited the most potent inhibitory and antibiofilm effects (MIC = 2.34 mg/mL) and a cytocompatibility assessment on HaCaT keratinocytes showed enhanced cell viability for chitosan gels and dose-dependent cytotoxicity for alginate formulations at high concentrations. Overall, chitosan-based gels displayed the most favourable combination of stability, antimicrobial activity, and biocompatibility, suggesting their potential for topical pharmaceutical use. Full article
Show Figures

Figure 1

16 pages, 2324 KB  
Article
A Stability Study of [Cu(I)(dmby)2]TFSI in Biopolymer-Based Aqueous Quasi-Solid Electrolytes
by Giulia Adriana Bracchini, Elvira Maria Bauer, Claudia Mazzuca and Marilena Carbone
Gels 2025, 11(8), 645; https://doi.org/10.3390/gels11080645 - 14 Aug 2025
Viewed by 287
Abstract
In the field of advanced electrical energy conversion and storage, remarkable attention has been given to the development of new, more sustainable electrolytes. In this regard, the combination of redox shuttles with aqueous bio-polymer gels seems to be a valid alternative via which [...] Read more.
In the field of advanced electrical energy conversion and storage, remarkable attention has been given to the development of new, more sustainable electrolytes. In this regard, the combination of redox shuttles with aqueous bio-polymer gels seems to be a valid alternative via which to overcome the typical drawbacks of common liquid electrolytes such as corrosion, volatility or leakage. Despite the promising results obtained so far, redox-active species such as bis(6,6′-dimethyl-2,2′-bipyridine)copper(I) trifluoromethanesulfonylimide, ([Cu(I)(dmby)2]TFSI), still present inherent challenges associated with their poor water solubility and oxidative lability, which prevents their employment in cheap and sustainable aqueous electrolytes. The present study investigates the stabilization of the Cu(I) complex ([Cu(I)(dmby)2]TFSI) within two natural hydrogels based on the biopolymers κ-carrageenan and galactomannan, using ZnO nanoparticles as gelling agents. These eco-friendly and biocompatible systems are proposed as potential matrices for quasi-solid electrolytes (QSEs), offering a promising platform for advanced electrolyte design in electrochemical applications. Both hydrogels effectively stabilized and retained the redox species within their networks. In order to shed light on distinct stabilization mechanisms, complementary FTIR and SEM analyses were relevant to reveal the structural rearrangements, specific to each matrix, upon complex incorporation. Furthermore, thermogravimetric analysis confirmed notable thermal resilience in both systems, with the galactomannan-based gel demonstrating enhanced performance. Altogether, this work introduces a novel strategy for embedding copper-based redox couples into gelled electrolytes, paving the way toward their integration in real electrochemical devices, where long-term stability, redox retention, and energy conversion efficiency are critical evaluation criteria. Full article
Show Figures

Graphical abstract

30 pages, 11860 KB  
Review
Bioprinting Vascularized Constructs for Clinical Relevance: Engineering Hydrogel Systems for Biological Maturity
by Jeonghyun Son, Siyuan Li and Wonwoo Jeong
Gels 2025, 11(8), 636; https://doi.org/10.3390/gels11080636 - 12 Aug 2025
Viewed by 736
Abstract
Vascularization remains a critical challenge in tissue engineering, limiting graft survival, integration, and clinical translation. Although bioprinting enables spatial control over vascular architectures, many existing approaches prioritize geometric precision over biological performance. Bioprinted vasculature can be understood as a dynamic and time-dependent system [...] Read more.
Vascularization remains a critical challenge in tissue engineering, limiting graft survival, integration, and clinical translation. Although bioprinting enables spatial control over vascular architectures, many existing approaches prioritize geometric precision over biological performance. Bioprinted vasculature can be understood as a dynamic and time-dependent system that requires tissue-specific maturation. Within this framework, hydrogel systems act as active microenvironments rather than passive scaffolds. Hydrogel platforms vary from natural matrices and synthetic polymers to bioinspired or stimuli-responsive systems, each offering tunable control over stiffness, degradation, and biochemical signaling needed for vascular maturation. The design requirements of large and small vessels differ in terms of mechanical demands, remodeling capacity, and host integration. A key limitation in current models is the absence of time-resolved evaluation, as critical processes such as lumen formation, pericyte recruitment, and flow-induced remodeling occur progressively and are not captured by static endpoints. Advancements in bioprinting technologies are evaluated based on their capacity to support hydrogel-mediated vascularization across varying length scales and structural complexities. A framework for functional assessment is proposed, and translational challenges related to immunogenicity, scalability, and regulatory requirements are discussed. Such integration of hydrogel-driven biological cues and bioprinting fidelity is critical to advancing vascularized constructs toward clinical translation. Full article
(This article belongs to the Special Issue Advances in Hydrogels for Regenerative Medicine)
Show Figures

Figure 1

40 pages, 14675 KB  
Review
Recent Advances in Hydrogel-Promoted Photoelectrochemical Sensors
by Yali Cui, Yanyuan Zhang, Lin Wang and Yuanqiang Hao
Biosensors 2025, 15(8), 524; https://doi.org/10.3390/bios15080524 - 10 Aug 2025
Viewed by 748
Abstract
Photoelectrochemical (PEC) sensors have garnered increasing attention due to their high sensitivity, low background signal, and rapid response. The incorporation of hydrogels into PEC platforms has significantly expanded their analytical capabilities by introducing features such as biocompatibility, tunable porosity, antifouling behavior, and mechanical [...] Read more.
Photoelectrochemical (PEC) sensors have garnered increasing attention due to their high sensitivity, low background signal, and rapid response. The incorporation of hydrogels into PEC platforms has significantly expanded their analytical capabilities by introducing features such as biocompatibility, tunable porosity, antifouling behavior, and mechanical flexibility. This review systematically categorizes hydrogel materials into four main types—nucleic acid-based, synthetic polymer, natural polymer, and carbon-based—and summarizes their functional roles in PEC sensors, including structural support, responsive amplification, antifouling interface construction, flexible electrolyte integration, and visual signal output. Representative applications are highlighted, ranging from the detection of ions, small biomolecules, and biomacromolecules to environmental pollutants, photodetectors, and flexible bioelectronic devices. Finally, key challenges—such as improving fabrication scalability, enhancing operational stability, integrating emerging photoactive materials, and advancing bio-inspired system design—are discussed to guide the future development of hydrogel-enhanced PEC sensing technologies. Full article
(This article belongs to the Special Issue Biosensors Based on Self-Assembly and Boronate Affinity Interaction)
Show Figures

Figure 1

27 pages, 3312 KB  
Review
Influence of Structure–Property Relationships of Polymeric Biomaterials for Engineering Multicellular Spheroids
by Sheetal Chowdhury and Amol V. Janorkar
Bioengineering 2025, 12(8), 857; https://doi.org/10.3390/bioengineering12080857 - 9 Aug 2025
Viewed by 518
Abstract
Two-dimensional cell culture systems lack the ability to replicate the complex, three-dimensional (3D) architecture and cellular microenvironments found in vivo. Multicellular spheroids (MCSs) present a promising alternative, with the ability to mimic native cell–cell and cell–matrix interactions and provide 3D architectures similar to [...] Read more.
Two-dimensional cell culture systems lack the ability to replicate the complex, three-dimensional (3D) architecture and cellular microenvironments found in vivo. Multicellular spheroids (MCSs) present a promising alternative, with the ability to mimic native cell–cell and cell–matrix interactions and provide 3D architectures similar to in vivo conditions. These factors are critical for various biomedical applications, including cancer research, tissue engineering, and drug discovery and development. Polymeric materials such as hydrogels, solid scaffolds, and ultra-low attachment surfaces serve as versatile platforms for 3D cell culture, offering tailored biochemical and mechanical cues to support cellular organization. This review article focuses on the structure–property relationships of polymeric biomaterials that influence MCS formation, growth, and functionality. Specifically, we highlight their physicochemical properties and their influence on spheroid formation using key natural polymers, including collagen, hyaluronic acid, chitosan, and synthetic polymers like poly(lactic-co-glycolic acid) and poly(N-isopropylacrylamide) as examples. Despite recent advances, several challenges persist, including spheroid loss during media changes, limited viability or function in long-term cultures, and difficulties in scaling for high-throughput applications. Importantly, the development of MCS platforms also supports the 3R principle (Replacement, Reduction, and Refinement) by offering ethical and physiologically relevant alternatives to animal testing. This review emphasizes the need for innovative biomaterials and methodologies to overcome these limitations, ultimately advancing the utility of MCSs in biomedical research. Full article
(This article belongs to the Special Issue 3D Cell Culture Systems: Current Technologies and Applications)
Show Figures

Figure 1

15 pages, 3139 KB  
Review
From Agro-Industrial Waste to Natural Hydrogels: A Sustainable Alternative to Reduce Water Use in Agriculture
by César F. Alonso-Cuevas, Nathiely Ramírez-Guzmán, Liliana Serna-Cock, Marcelo Guancha-Chalapud, Jorge A. Aguirre-Joya, David R. Aguillón-Gutiérrez, Alejandro Claudio-Rizo and Cristian Torres-León
Gels 2025, 11(8), 616; https://doi.org/10.3390/gels11080616 - 7 Aug 2025
Viewed by 567
Abstract
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most [...] Read more.
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most of these materials are based on synthetic polymers that are not biodegradable. This raises serious environmental and health concerns, highlighting the urgent need for sustainable, biodegradable alternatives. Biomass-derived from agro-industrial waste presents a substantial potential for producing hydrogels, which can effectively function as water collectors and suppliers for crops. This review article provides a comprehensive overview of recent advancements in the application of agro-industrial waste for the formulation of hydrogels. Additionally, it offers a critical analysis of the development of hydrogels utilizing natural and compostable materials. Agro-industrial and food waste, which are rich in hemicellulose and cellulose, have been utilized to enhance the mechanical properties and water absorption capacity of hydrogels. These biomaterials hold significant potential for the development of effective hydrogels in agricultural applications; they can be either hybrid or natural materials that exhibit efficacy in enhancing seed germination, improving water retention capabilities, and facilitating the controlled release of fertilizers. Natural hydrogels derived from agro-industrial waste present a sustainable technological alternative that is environmentally benign. Full article
Show Figures

Graphical abstract

20 pages, 4467 KB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 667
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

16 pages, 5497 KB  
Review
Hydrogel Applications for Cultural Heritage Protection: Emphasis on Antifungal Efficacy and Emerging Research Directions
by Meijun Chen, Shunyu Xiang and Huan Tang
Gels 2025, 11(8), 606; https://doi.org/10.3390/gels11080606 - 2 Aug 2025
Viewed by 351
Abstract
Hydrogels, characterized by their high water content, tunable mechanical properties, and excellent biocompatibility, have emerged as a promising material platform for the preservation of cultural heritage. Their unique physicochemical features enable non-invasive and adaptable solutions for environmental regulation, structural stabilization, and antifungal protection. [...] Read more.
Hydrogels, characterized by their high water content, tunable mechanical properties, and excellent biocompatibility, have emerged as a promising material platform for the preservation of cultural heritage. Their unique physicochemical features enable non-invasive and adaptable solutions for environmental regulation, structural stabilization, and antifungal protection. This review provides a comprehensive overview of recent progress in hydrogel-based strategies specifically developed for the conservation of cultural relics, with a particular focus on antifungal performance—an essential factor in preventing biodeterioration. Current hydrogel systems, composed of natural or synthetic polymer networks integrated with antifungal agents, demonstrate the ability to suppress fungal growth, regulate humidity, alleviate mechanical stress, and ensure minimal damage to artifacts during application. This review also highlights future research directions, such as the application prospects of novel materials, including stimuli-responsive hydrogels and self-dissolving hydrogels. As an early exploration of the use of hydrogels in antifungal protection and broader cultural heritage conservation, this work is expected to promote the wider application of this emerging technology, contributing to the effective preservation and long-term transmission of cultural heritage worldwide. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
Show Figures

Figure 1

22 pages, 1268 KB  
Review
Natural Polymer-Based Hydrogel Platforms for Organoid and Microphysiological Systems: Mechanistic Insights and Translational Perspectives
by Yeonoh Cho, Jungmok You and Jong Hun Lee
Polymers 2025, 17(15), 2109; https://doi.org/10.3390/polym17152109 - 31 Jul 2025
Viewed by 722
Abstract
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of [...] Read more.
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of providing a three-dimensional, biomimetic scaffold that supports cell viability, spatial organization, and dynamic signaling. Natural polymer-based hydrogels, derived from materials such as collagen, gelatin, hyaluronic acid, and alginate, offer favorable properties including biocompatibility, degradability, and an extracellular matrix-like architecture. This review presents recent advances in the design and application of such hydrogels, focusing on crosslinking strategies (physical, chemical, and hybrid), the viscoelastic characteristics, and stimuli-responsive behaviors. The influence of these materials on cellular processes, such as stemness maintenance, differentiation, and morphogenesis, is critically examined. Furthermore, the applications of organoid culture and dynamic MPS platforms are discussed, highlighting their roles in morphogen delivery, barrier formation, and vascularization. Current challenges and future perspectives toward achieving standardized, scalable, and translational hydrogel systems are also addressed. Full article
Show Figures

Figure 1

14 pages, 1259 KB  
Review
Engineered Hydrogels for Musculoskeletal Regeneration: Advanced Synthesis Strategies and Therapeutic Efficacy in Preclinical Models
by Gabriela Calin, Mihnea Costescu, Marcela Nour (Cârlig), Tudor Ciuhodaru, Batîr-Marin Denisa, Letitia Doina Duceac, Cozmin Mihai, Melania Florina Munteanu, Svetlana Trifunschi, Alexandru Oancea and Daniela Liliana Damir
Polymers 2025, 17(15), 2094; https://doi.org/10.3390/polym17152094 - 30 Jul 2025
Viewed by 534
Abstract
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial [...] Read more.
According to the World Health Organization, musculoskeletal injuries affect more than 1.71 billion people around the world. These injuries are a major public health issue and the leading cause of disability. There has been a recent interest in hydrogels as a potential biomaterial for musculoskeletal tissue regeneration. This is due to their high water content (70–99%), ECM-like structure, injectability, and controllable degradation rates. Recent preclinical studies indicate that they can enhance regeneration by modulating the release of bioactive compounds, growth factors, and stem cells. Composite hydrogels that combine natural and synthetic polymers, like chitosan and collagen, have compressive moduli that are advantageous for tendon–bone healing. Some of these hydrogels can even hold up to 0.8 MPa of tensile strength. In osteoarthritis models, functionalized systems such as microspheres responsive to matrix metalloproteinase-13 have demonstrated disease modulation and targeted drug delivery, while intelligent in situ hydrogels have exhibited a 43% increase in neovascularization and a 50% enhancement in myotube production. Hydrogel-based therapies have been shown to restore contractile force by as much as 80%, increase myofiber density by 65%, and boost ALP activity in bone defects by 2.1 times in volumetric muscle loss (VML) models. Adding TGF-β3 or MSCs to hydrogel systems improved GAG content by about 60%, collagen II expression by 35–50%, and O’Driscoll scores by 35–50% in cartilage regeneration. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

80 pages, 962 KB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Cited by 1 | Viewed by 2352
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
Back to TopTop